Aufgaben aus Zentralen Klassenarbeiten Mathematik (Baden-Württemberg) zu Logarithmen und Wachstum

Größe: px
Ab Seite anzeigen:

Download "Aufgaben aus Zentralen Klassenarbeiten Mathematik (Baden-Württemberg) zu Logarithmen und Wachstum"

Transkript

1 Aufgben us Zenrlen Klssenrbeien Mhemik (Bden-Würemberg) zu Logrihmen und Wchsum ZK 96 ) Besimme mi Hilfe der Definiion des Logrihmus : ) 6 b) c) d) ) Es is 0, 6. Berechne dmi ) b) 0. ) ) Herr Schmid gewinn K DM im Loo. Er leg dieses Geld bei seiner Bnk zu 6% Zinseszins fes n. Wie groß is sein Guhben nch Jhren? In welcher Zei würde sich sein Guhben verdoppeln? b) Fru Kern leg ihren Loogewinn T 0 ebenflls zu 6% Zinseszins n. In welcher Zei würde sich ihr Guhben verdoppeln? ZK 97 ) Besimme mi > 0: ) 6 b) 0, c) d) 6 + ) Es is, 0,7969. Berechne dmi Näherungswere für ) (,) b) 7, b ) Es is b. Vereinfche dmi (b) + ( ) (b ). + ) Ds Schubild der Funkion f() b geh durch die Punke P(0/ ) und Q(/ ). 9 Unersuche durch Rechnung, ob es uch durch R(/ ) geh. ZK 9 ) Berechne mi > 0: ) b) 7 c) d) ) Für,, y > 0 und > y gele: ( + y) und ( y) Berechne dmi ) ( y ) b) ( + y + y ) c) ( + y) d) y ) ) Eine Kolonie von 000 Bkerien verdoppel sich uner Lborbedingungen jeweils in 6 Sunden. In welcher Zei verzehnfch sie sich? ( Runde uf volle Tge. )

2 b) Die Kolonie von 000 Bkerien wächs zunächs 9 Tge lng uner den Lborbedingungen us Teilufgbe ). Dnch werden die Bedingungen so veränder, dss sich die Anzhl der Bkerien äglich hlbier. Nch wie vielen Tgen ( von Anfng n gerechne ) is die ursprüngliche Anzhl von 000 Bkerien wieder erreich? ZK 99 ) Besimme us ) b) ) Fru Müller möche Geld bei einer Bnk zu einem Jhreszinssz von p% nlegen, dmi sie späer einschließlich der Zinseszinsen ew 000 DM zur Verfügung h. ) Eine Bnk empfiehl ihr,,70 DM uf ein Sprkono mi % einzuzhlen. Welchen Berg häe sie dnn nch vier Jhren? b) Bei einer nderen Bnk müsse sie 07, DM nlegen, um nch Jhren ein Guhben von 000,00 DM zu besizen. Welchen Jhreszinssz gewähr diese Bnk? c) Auf wie viele Jhre müsse sie 6, DM nlegen, um bei % ein Guhben von 000,00 DM zu erzielen? ZK 990 ) Berechne us ) b) c), 7 ) ) Fru Schild gewinn 00 DM im Loo. Sie leg dieses Geld bei der Bnk zu einem jährlichen Zinssz von % n. Wie hoch is ihr Guhben nch Jhren ( einschließlich Zinseszins )? b) Fru Schild erfähr, dss bei einer nderen Bnk ein Kpil von 00 DM in Jhren um 60 DM nwchsen würde.welcher Zinssz gil bei dieser Bnk? c) Wie lnge muss Fru Schild wren, bis ihr Loogewinn von 00 DM bei dem Zinssz von % uf ein Guhben von 600 DM ngewchsen sein wird? ZK 99 ) Berechne us ) 6 b) 7 c) ( ) ; > 0. ) Es is u und w ; > 0. Berechne ) (uw) b) u ) Eine Bkerienkulur umfss nfngs 0000 Bkerien; die Anzhl der Bkerien wächs eponeniell. Die Anzhl vergrößer sich lle 0 Minuen um 0%. ) Wie viele Bkerien sind es nch Sunden? b) Nch welcher Zei sind es 0 Millionen Bkerien?

3 ZK 99 ) Besimme mi Hilfe der Definiion des Logrihmus : ) ( ) b) 7 c) - d) ) Birgi besiz zwei Sprbücher. Auf Sprbuch I sind 00 DM zu,% jährlich ngeleg, uf Sprbuch II 900 DM zu,%. Einzhlungen und Abhebungen erfolgen keine. ) Berechne ds Guhben uf Sprbuch I nch 7 Jhren. b) Bei welchem Zinssz würde sich ds Guhben uf Sprbuch I in Jhren verdoppeln? c) Nch wie viel Jhren is ds Guhben uf Sprbuch II ersmls höher ls ds Guhben uf Sprbuch I? ZK 99 ) Berechne us ) b) c) - d) lg(+0). ) Ein Disrik in einem Enwicklungslnd he Ende des Jhres 9 rund 0000 Einwohner ; die Bevölkerungszhl nimm lu Sisik jährlich um,% zu. ) Wie viele Einwohner wird dnch dieser Disrik Ende des Jhres 000 vorussichlich hben? b) Die Lndwirschf dieses Disriks konne zum Jhresende 9 nur 0000 Menschen ernähren. Ein Enwicklungsprogrmm soll bis zum Ende des Jhres 000 die lndwirschfliche Produkion um insgesm 70% erhöhen. Wie viele Menschen sind demnch rechnerisch im Jhre 000 noch uf eine Nhrungsmieleinfuhr ngewiesen, wenn sie nich hungern sollen? c) In welchem Jhr könne der Disrik lle seine Bewohner selbs ernähren, wenn die für ds Jhr 000 errechnee Lebensmielprodukion von d n jährlich um % seig?

4 Lösungen us Zenrlen Klssenrbeien Mhemik (Bden-Würemberg) zu Logrihmen und Wchsum Lösung us ZK 96: ) ) 6 6 b) c) d) ( 0 ) ) 0,6 ) 0,6 0, 07 b) 0 ( ) + 0,6 +, 6 ) ) Guhben nch Jhren : K 0.000,06., 6 DM Verdoppelungszei Zeiduer, bis der Berg uf DM ngewchsen is : ,06,06,06,9 Jhre.,06 Ds Guhben verdoppel sich ungefähr lle Jhre. b) Ds Anfngskpil is nun unbeknn. Nch n Jhren besiz Fru Kern ein Kpil von n K n T0, 06 Verdoppelungszei Zeiduer, bis der Berg uf T0 ngewchsen is: n n T T,06,06 n,9 Jhre (siehe ) ) 0 0 Die Verdoppelungszei von knpp Jhren is unbhängig von der Höhe des Anfngskpils Lösung ZK 97 : ) ) , b) 0, c)

5 d) ) Es is, 0,7969. Berechne dmi Näherungswere für ) (,) +, +, + 0,9, 9 b) 7, (,) +, + 0,7969, 7969 b ) (b) + ( ) + (b ) + b + b + b + + b + + b + 0 ) Einsezen von P: f(0) b Einsezen von Q: b 9 f () b lso f() 9 9 Lieg R uch uf dem Schubild? Punkprobe: ergib keine whre Aussge, lso lieg R nich uf dem Schubild von f. Lösung ZK 9: ) ), b) , 7 c) d) ) ) ( y ) ( + y)( y) ( + y) + ( y) + 7 b) ( + y + y ) ( + y) ( + y) c) ( + y) ( + y) + ( + y) + d) ( y) 0,, y ) ) Aufgrund der ngegebenen Verdoppelungszei lieg ein eponenielles Wchsum vor. B() B(0) wobei die Zei in Sunden is. B() 000 Nch 6 Sunden sind 000 Bkerien vorhnden: , 09 Wchsumsgleichung: B() 000,09 0 Verzehnfchung: ,09 9, Sunden,09 Eine Verzehnfchung ergib sich nch c. Tgen.

6 b) Aus ): B() 000,09 Besnd nch 9 Tgen (6 Sunden) B(6) 000, Bkerien Nun hlbier sich der Besnd pro Tg: B() B(0) 0, wobei die Zei in Tgen is. Nun sei 6 der Anfngsbesnd und es wird ermiel, wie lnge es duer, bis wieder 000 Bkerien vorhnden sind: 0, , 0,076 0, 6 Tge 0, Von Beginn n gerechne duer es Tge, bis wieder 000 Bkerien erreich sind. Lösung ZK 99: ) ) b) ) Fru Müller möche Geld bei einer Bnk zu einem Jhreszinssz von p% nlegen, dmi sie späer einschließlich der Zinseszinsen ew 000 DM zur Verfügung h. ) Einzhlung,70 DM, Zinssz % ergib B(),70,0 Nch Jhren: B(),70,0 000DM Fru Müller häe nch Jhren genu 000 DM zur Verfügung. b) B() 07, Nch Jhren ergeben sich 000 DM: ,,, 0 Der Zinssz bei der nderen Bnk beräg,%. c) B() 6,,0, ,,0,79,0 Jhre,0 Lösung ZK 990: ) ) 7 7 b), 0, c), 6 6

7 ) ) Ds Geld vermehr sich gemäß dem Modell des eponeniellen Wchsums. B() 00,0 Kpil nch Jhren: B() 00,0 09, DM b) Fru Schild besiz nch Jhren ein Guhben von 760 DM. B() 00 B() Der Zinssz beräg % ,0 c) Wchsumsgleichung: B() 00,0 600 Duer bis 600 DM erreich sind: ,0 00,0 Fru Schild muss Jhre wren. Lösung ZK 99: ) ) 6 6 b) c) ( ) ) ) (uw) u + w + 9 b) u u ) ) Wchsumsgleichung: B() 0000 Nch 0 Minuen umfss die Kulur 0000, Bkerien Also gil B(0) , Wchsumgleichung: B() 0000,0096 ( in Minuen) Besnd nch Sunden (0 Minuen) B(0) 0000, Nch Sunden sind es 09 Bkerien. b) Zei, bis es 0 Mio. Bkerien sind: , Minuen 9 h min,0096 7

8 Lösung ZK 99 ) ) ( ) b) c) d) ) ) Wchsumsgleichung Sprbuch I: B() 00,0 in Jhren Guhben nch 7 Jhren: B(7) 00,0 7 67, 79 DM b) Gesuch is nun der Wchsumsfkor : B() 00 Nch Jhren soll ds Guhben 00 DM bergen: 00 00,00 lso is der Zinssz,0%. c) Aufgrund der höheren Verzinsung uf Sprbuch II wird ds Guhben uf Sprbuch II irgendwnn höher sein ls ds uf Sprbuch I. Zunächs wird ermiel, nch wie viel Jhren uf beiden Sprbüchern ds Guhben gleich hoch is. Die Berechnung erfolg durch Gleichsezen der Wchsumsfunkionen: 00,0,0 00,0 900,0 9 0, 900,0 9,0,0,0 Nch 0, Jhren is uf beiden Sprbüchern ds gleiche Sprguhben, lso is nch Jhren ds Guhben uf Sprbuch II höher. Lösung ZK 99: ) ) 0, 0, 0,, b) c) d) lg( + 0)

9 ) ) Die Einwohnerzhl nimm nch dem eponeniellen Wchsumsmodell zu: B() B(0) B() 0000,0 in Jhren sei 9 Einwohnerzhl im Jhr 000: B() 0000,0 67 Einwohner b) Anzhl der Menschen, die im Jhr 000 versorg werden sollen: 0000, Menschen Es sind noch Menschen uf Nhrungsmieleinfuhr ngewiesen. c) Wchsumsgleichung für die Lebensmielprodukion: B() 6000,0 in Jhren sei 000 Wchsumsgleichung für die Bevölkerung: B() 67,0 in Jhren sei 000 Der Disrik knn lle seine Bewohner selbs ernähren, wenn sich die Schubilder für die Lebensmielprodukion und für die Bevölkerung schneiden: 67, ,0 67,0 6000, Jhre,0 6000,0,0 Ab dem Jhr 0 knn der Disrik seine Bewohner selbs ernähren. 9

Analysis: Exponentielles Wachstum Analysis Übungsaufgaben zum Exponentiellen Wachstum zum Einstieg Gymnasium Klasse 10

Analysis: Exponentielles Wachstum Analysis Übungsaufgaben zum Exponentiellen Wachstum zum Einstieg Gymnasium Klasse 10 www.mhe-ufgben.com Anlysis: Eponenielles Wchsum Anlysis Übungsufgben zum Eponeniellen Wchsum zum Einsieg Gymnsium Klsse 1 Alender Schwrz www.mhe-ufgben.com Jnur 214 1 www.mhe-ufgben.com Anlysis: Eponenielles

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K Abiurprüfung Mhemik (Bden-Würemberg) Berufliche Gymnsien Anlysis, Aufgbe. Für jedes * is die Funkion f gegeben durch f (x) = x x + x +, x Ds Schubild von f is K. ( )( ).. (4 Punke) Zeichnen Sie K und K

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Bden-Würemberg: Abiur 05 Anlysis www.mhe-ufgben.com Hupprüfung Abiurprüfung 05 (ohne CAS) Bden-Würemberg Anlysis Hilfsmiel: GTR, Formelsmmlung berufliche Gymnsien (AG, BTG, EG, SG, TG, WG) Alexnder Schwrz

Mehr

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G wwwmhe-ufgbencom Abiurprüfung Mhemik 0 (Bden-Würemberg) Berufliche ymnsien Anlysis, Aufgbe Für jedes mi > is die Funkion g gegeben durch x g (x) = e, x Ds Schubild von g is ( Punke) Nennen Sie drei gemeinsme

Mehr

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 006 über Finnzmhemik und Invesmenmngemen Grundwissen Peer Albrech Mnnheim Am 07. Okober 006 wurde zum ersen Ml eine Prüfung im Fch Finnzmhemik und Invesmenmngemen nch PO III

Mehr

( ) ( 1) ( ) ( ) ( ) S ( 1;1) a () 1 1. Analysis Ableitungen: x x. Berechnung der Koeffizienten: b = ( ) Gleichung der Tangenten t:

( ) ( 1) ( ) ( ) ( ) S ( 1;1) a () 1 1. Analysis Ableitungen: x x. Berechnung der Koeffizienten: b = ( ) Gleichung der Tangenten t: Lösungen Abiur Leisungskurs Mhemik www.mhe-schule.de Seie von 9 P Anlysis = R, ² k.. p = + b+, b, R Ableiungen: k' ( ) = = p' = + b Berechnung der Koeffizienen: ; p =.. S : () p' () k' () + b + = b= =

Mehr

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft.

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft. Prmeergleichung und Koordinenform einer Ebene Prmeergleichung und Koordinenform einer Ebene Die Lge einer Ebene E im Rum is durch drei Größen eindeuig fesgeleg: X. Einen Punk A, durch den die Ebene verläuf..

Mehr

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG)

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) 26. November 2007 DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) Informion zur Anwendung der gesezlichen Regelungen zur Zueilung von Kohlendioxid-Emissionsberechigungen

Mehr

Mathe-Abitur ab 2004: Fundus für den Pflichtbereich

Mathe-Abitur ab 2004: Fundus für den Pflichtbereich Mhe-Abiur b : Fundus für den Pflichbereich Lösungen) Die Auoren übernehmen keine Grnie für die Richigkei der Lösungen. Auch wurde sicher nich immer der kürzese und elegnese Lösungsweg eingeschlgen. Einfche

Mehr

Wiederholung Exponentialfunktion

Wiederholung Exponentialfunktion SEITE 1 VON 9 Wiederholung Eponenialfunkion VON HEINZ BÖER 1. Regeln und Beispiele Der Funkionserm Eponenialfunkionen haben die Form f() = b a. Die y-achse wird bei b geschnien, denn f(0) = 0 b a = b 1

Mehr

10 Gewöhnliche Differentialgleichungen

10 Gewöhnliche Differentialgleichungen Mhemik für Physiker III, WS 212/213 Diensg 5.2 $Id: ode.ex,v 1.1 213/2/6 13:25:6 hk Exp $ $Id: picrd.ex,v 1.3 213/2/6 1:22:12 hk Exp $ 1 Gewöhnliche Differenilgleichungen 1.8 Inhomogene linere Differenilgleichungen

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Bden-Würemberg: Abiur 04 Anlysis www.mhe-ufgben.com Hupprüfung Abiurprüfung 04 (ohne CAS) Bden-Würemberg Anlysis Hilfsmiel: GTR, Formelsmmlung berufliche Gymnsien (AG, BTG, EG, SG, TG, WG) Alexnder Schwrz

Mehr

Weitere Aufgaben zum Themenkomplex 1: Grundlagen, Hauptsatz der Diff.- und Integralrechnung und Substitutionsverfahren

Weitere Aufgaben zum Themenkomplex 1: Grundlagen, Hauptsatz der Diff.- und Integralrechnung und Substitutionsverfahren Prof. Dr. Gerd von Cölln Prof. Dr. Dirk Re Mhemik II Weiere Aufgen zum hemenkomple : Grundlgen, Hupsz der Diff.- und Inegrlrechnung und Susiuionsverfhren. Sind folgende Aussgen whr oder flsch ) Sind f

Mehr

Übungsblatt zu Funktionenscharen

Übungsblatt zu Funktionenscharen Übungsbl zu Funkionenschren Seie von Gnzrionle Funkionen Ohne Inegrlrechnung Bei Funkionenschren Beispiel: f 6 erhäl mn für ein besimmes jeweils eine Funkion: Beispiel: : f : f Diese Funkionen hben Unerschiede,

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen 26. Mthemtik Olympide 2. Stufe (Kreisolympide) Klsse 7 Sison 986/987 Aufgben und Lösungen OJM 26. Mthemtik-Olympide 2. Stufe (Kreisolympide) Klsse 7 Aufgben Hinweis: Der Lösungsweg mit Begründungen und

Mehr

Universität Passau Lehrstuhl für Finanzierung

Universität Passau Lehrstuhl für Finanzierung Universiä Pssu Lehrsuhl für Finnzierung Nuzenfunkionen und Risikoversion Snd 26..2 Um ds Bernoulli-Prinzi (execed-uiliy-rincile) zu konkreisieren, is die Sezifikion einer (von Neumnn - Morgensern -) Nuzenfunkion

Mehr

Wir wollen nun die gegenseitige Lage von Punkten, Geraden und Ebenen untersuchen.

Wir wollen nun die gegenseitige Lage von Punkten, Geraden und Ebenen untersuchen. Lebezieunen Lebezieunen Wir wollen nun die eenseiie Le von Punken, Gerden und benen unersucen.. Le eines Punkes bezülic einer Gerden Ds is eine scon beknne Übun. Nics deso roz ier noc einml ein Beispiel.

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Zusammenfassung: Geraden und Ebenen

Zusammenfassung: Geraden und Ebenen LGÖ Ks M Schuljhr 06/07 Zusmmenfssung: Gerden und Ebenen Inhlsverzeichnis Gerden Gegenseiige Lge von Gerden 4 Ebenen 6 Gegenseiige Lge von Gerden und Ebenen Gegenseiige Lge von Ebenen 5 ür Experen 8 Gerden

Mehr

5. Value at Risk als Instrument zur Risikomessung. 5.1. Allgemeines zum Value at Risk

5. Value at Risk als Instrument zur Risikomessung. 5.1. Allgemeines zum Value at Risk 5. Vlue Risk ls Insrumen zur Risikomessung 5.1. Allgemeines zum Vlue Risk Folien: Tnj Dresel, Luz Johnning,. Hns-Peer Burghof 61 5.1 Allgemeines zum Vlue--Risk Der Vlue--Risk einer Einzel- oder Gesmposiion

Mehr

1 * B. Finanzmathematische Grundlagen 4 Aufgaben Aufgabe B/4

1 * B. Finanzmathematische Grundlagen 4 Aufgaben Aufgabe B/4 Fizmhemik Them: Fizmhemische Grudlge A Eiführug B Fizmhemische Grudlge Gegesd der Fizmhemik Folge- ud Reiherechug ls Bsis der Fizmhemik 3 Reche mi Logrihme 4 Aufgbe - Lösuge Dr. Alfred Brik Fizmhemik Dr.

Mehr

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser

Mehr

Nachtrag Nr. 71 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt

Nachtrag Nr. 71 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt London Brnch Nchrg Nr. 71 gemäß 10 Verkufsprospekgesez (in der vor dem 1. Juli 2005 gelenden Fssung) vom 6. Novemer 2006 zum Unvollsändigen Verkufsprospek vom 31. März 2005 üer Zerifike uf * üer FlexInves

Mehr

Definition: Eine Folge, bei welcher der Quotient zweier aufeinanderfolgender Glieder immer gleich gross ist, heisst geometrische Folge (GF).

Definition: Eine Folge, bei welcher der Quotient zweier aufeinanderfolgender Glieder immer gleich gross ist, heisst geometrische Folge (GF). 7. Geometrische Folgen (exponentielles Wchstum) Beispiele: 2, 6, 8, 54, 62,... = 6= 2 8 8, -4, 2, -,,,... =, ds Vorzeichen wechselt b (lternierende Folge), -,, -,... = Definition: Eine Folge, bei welcher

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Lösung Arbeitsblatt Potenzen / Wurzeln / Logarithmen

Lösung Arbeitsblatt Potenzen / Wurzeln / Logarithmen Fchhochschule Nordwestschweiz FHNW) Hochschule für Technik Institut für Geistes- und Nturwissenschft Lösung Arbeitsbltt Potenzen / Wurzeln / Logrithmen Dozent: - Klsse: Brückenkurs 0 Büro: - Semester:

Mehr

7.9A. Nullstellensuche nach Newton

7.9A. Nullstellensuche nach Newton 7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

a. Lösen Sie das LGS mit Hilfe eines Verfahrens Ihrer Wahl und machen Sie danach die Probe. Die Taschenrechnerlösung reicht nicht aus.

a. Lösen Sie das LGS mit Hilfe eines Verfahrens Ihrer Wahl und machen Sie danach die Probe. Die Taschenrechnerlösung reicht nicht aus. Mthemti 9/E1 oder 10/E1 Test zu den Übungsufgben Übergng in die Einführungsphse E1 Freitg, 6. August 011 Zeit : 90 Minuten Nme :!!! Doumentieren Sie lle Ansätze und Zwischenrechnungen!!! 1. Linere Funtionen

Mehr

Potenzen, Wurzeln, Logarithmen Definitionen

Potenzen, Wurzeln, Logarithmen Definitionen Definitionen Wir gehen von der Gleichung c und dem Beispiel 8 2 us: nennt mn Potenz nennt mn Bsis nennt mn Eponent Allgemein: "Unter versteht mn die -te Potenz zur Bsis " " ist hoch " Beispiel: 2 8 Vorgng:

Mehr

Aufgaben zur beschl. Bewegung (Abi 2007) 517. Ein Zug fährt mit 72 km/h Geschwindigkeit. Durch eine Baustelle wird er gezwungen,

Aufgaben zur beschl. Bewegung (Abi 2007) 517. Ein Zug fährt mit 72 km/h Geschwindigkeit. Durch eine Baustelle wird er gezwungen, Aufgben zur bechl. Bewegung 66. (Abi 007) Ein Lieferwgen der Me,5 wird u de Sillnd durch eine konne Krf i de k Berg,0 kn bechleunig. Nchde die Gechwindigkei 7 erreich i, fähr der h Lieferwgen gleichförig

Mehr

Das Bogenintegral einer gestauchten Normalparabel

Das Bogenintegral einer gestauchten Normalparabel Ds Bogenintegrl einer gestuchten Normlprbel Jn Günther und Luks Vrnhorst Im Mthemtikleistungskurs der Jhrgngsstufe sind wir uf folgende Aufgbe gestoÿen: Bestimmen Sie eine Stmmfunktion von f(x) + x mit

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Schriftliche Reifeprüfung aus Mathematik

Schriftliche Reifeprüfung aus Mathematik Schriftliche Reifeprüfung us Mthemtik 1) Linere Optimierung Ein Händler für Bürortikel füllt für den Schulnfng sein Lger mit Tschenrechnern des Typs Advnced und des Typs Bsic uf. Typ A kostet ihn im Einkuf

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

Green-Funktion. Wir betrachten (z. B.) eine inhomogene lineare DGL 2. Ordnung. y +y = r(x) Die allgemeine Lösung mit y(0) = 0 und y( π 2

Green-Funktion. Wir betrachten (z. B.) eine inhomogene lineare DGL 2. Ordnung. y +y = r(x) Die allgemeine Lösung mit y(0) = 0 und y( π 2 Green-Funkion Wir berchen (z. B.) eine inhomogene linere DGL 2. Ordnung y +y = r() Die llgemeine Lösung mi y() = und y( π 2 ) = (Rndwerufgbe) sez sich us der llgemeinen Lösung der zugehörigen homogenen

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO)

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO) Fchhochschule Düsseldorf SS 2007 Teilfchprüfung Mthemtik Studiengng: Wirtschft Neue Diplomprüfungsordnung (NPO) Prüfungsdtum: 29..2007 Prüfer: Prof. Dr. Horst Peters / Dipl. Volkswirt Lothr Schmeink Prüfungsform:

Mehr

Repetitionsaufgaben Exponential-und Logarithmusfunktion

Repetitionsaufgaben Exponential-und Logarithmusfunktion Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen

Mehr

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen:

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen: Die Schwingungs-Differenilgleichung Freie ungedämpfe Schwingung eines Mssenpunes Federschwinger Bei Auslenung des Mssenpunes: Hooesches Gesez F - Federonsne Die Bewegungsgleichung lue dher: d m oder m

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion:

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion: Pro. Dr.-In. W.-P. Buchwld Sinl- und Sysemheorie 8. Absun Koninuierliches Sinl: u() Sinlspekrum: U() Abesees Sinl: ( ) = u( ) ( ) u Absunkion: + n= ( ) = δ ( n ) Spekrum der Absunkion: + n= Spekrum des

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x Bltt 1: Hilfe zur Umformung von Gleichungen mit vielen Vriblen Im Mthemtikunterricht hben Sie gelernt, wie mn Gleichungen mit einer Vriblen umformt, um diese Vrible uszurechnen. Meistens hieß sie. In Physik

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

x usw., wie oben unter 1.) behauptet.]

x usw., wie oben unter 1.) behauptet.] [Anmerkung zur Berechnung im Beispiel: Ersetzen wir die Zhlen der AzM durch die Koeffizienten, 2, 2 und 22, so lässt sich die Rechnung sowohl für ) ls uch b) gnz nlog durchführen, und es ergibt sich z.

Mehr

Mikro-Controller-Pass 1

Mikro-Controller-Pass 1 Mikro-Conroller-Pss Lernsyseme MC 85 eie: rdl. Logik_B rundlgen logische Verknüpfungen Inhlserzeichnis Vorwor eie Binäre Aussgen in der Technik eie Funkionseschreiungen der Digilechnik eie 5 Funkionselle

Mehr

VORKURS MATHEMATIK VORKURS MATHEMATIK. Mit der STFW praxisnah zum Berufserfolg.

VORKURS MATHEMATIK VORKURS MATHEMATIK. Mit der STFW praxisnah zum Berufserfolg. VORKURS MATHEMATIK Mi der STFW prxisnh zum Berufserfolg. VORKURS MATHEMATIK Für einige Weierildungsngeoe werden mhemische Kennnisse enöig, die nch ein pr Jhren Berufsildung nich mehr ei jedem präsen sind.

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

03 Lineare Fkten-Glgen-Unglgen ohne Lösung.doc. Der beste Lehrer ist jener, der sich nach und nach überflüssig macht.

03 Lineare Fkten-Glgen-Unglgen ohne Lösung.doc. Der beste Lehrer ist jener, der sich nach und nach überflüssig macht. 0 Linere Fen-Glgen-Unglgen ohne Lösungdoc Der bese Lehrer is jener, der sich nch und nch überflüssig mch (George Orwell) 0 Linere Fen-Glgen-Unglgen ohne Lösungdoc Linere Funionen/Gleichungen/Ungleichungen

Mehr

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0 Ferienkurs Anlysis 1 WS 11/12 Florin Drechsler Antworten uf Anfrgen von Kursteilnehmern Zu Tylorreihen Zu folgender Aussge us den Multiple-Choice-Aufgben: Es gibt Funktionen f C (R) mit konvergenter Tylorreihe

Mehr

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 7. Mthemtik Olympide. Stufe (Kreisolympide) Klsse 9 Sison 1967/1968 Aufgben und Lösungen 1 OJM 7. Mthemtik-Olympide. Stufe (Kreisolympide) Klsse 9 Aufgben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen 56. Mthemtik-Olympide. Stufe (Regionlrunde) Olympideklsse 8 Lösungen c 016 Aufgbenusschuss des Mthemtik-Olympiden e.v. www.mthemtik-olympiden.de. Alle Rechte vorbehlten. 56081 Lösung 10 Punkte Nehmen wir

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmnn W Wu Herbstsemester 206 Linere Algebr und Numerische Mthemtik für D-BAUG Beispiellösung für Serie 5 ETH Zürich D-MATH Aufgbe 5 5) Seien u und v Lösungen des LGS Ax = b mit n Unbeknnten

Mehr

Kaufmännische Berufsmatura Kanton Uri

Kaufmännische Berufsmatura Kanton Uri 009 Prüfungsduer: Hilfsmittel: Bedingungen: 0 Minuten Netzunbhängiger nicht progrmmierbrer Tschenrechner Beigelegte Formelsmmlung Dokumentieren Sie den Lösungsweg suber Die Drstellung wird mit einem Punkt

Mehr

12 Schweißnahtberechnung

12 Schweißnahtberechnung 225 12 Schweißnherechnung 12 Schweißnherechnung Die Berechnung der ufreenden Spnnungen in Schweißnähen erfolg im Regelfll mi Hilfe der elemenren Gleichungen der esigkeislehre. Auf weierführende Berechnungsverfhren,

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

4.7. Exponential- und Logarithmusfunktionen

4.7. Exponential- und Logarithmusfunktionen ... Eonenialfunkionen Definiion:.. Eonenial- und Logarihmusfunkionen Die Funkion f() = c a mi D = R, c und a R + \{}heiß Eonenialfunkion zur Basis a. Die Eonenialfunkion zur Basis a = e mi der Eulerschen

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

Unterrichtsentwurf Mathe

Unterrichtsentwurf Mathe Unterrichtsentwurf Mthe Them: Binomische Formeln Den Einstieg in die binomischen Formeln bildet folgende Problemstellung: Im Jugendclub gibt es eine qudrtische Tnzfläche, die für einen Discobend so vergrößert

Mehr

Kapitel 1 : Mathematische Grundlagen und Stöchiometrie

Kapitel 1 : Mathematische Grundlagen und Stöchiometrie pitel : Mthemtische Grundlgen und Stöchiometrie Elementre Rechenumformungen. Dreistzrechnung : Immer dnn, wenn zwei Meßgrößen zueinnder proportionl bzw. indirekt proportionl (d.h. die eine proportionl

Mehr

Abschlussprüfung Mathematik

Abschlussprüfung Mathematik Abschlussprüfung 0 Mthemtik 5. Mi 0, Klssen F08 und F08b Nme: Klsse: Hinweise: Zur Lösung der Aufgben stehen drei volle Stunden zur Verfügung. Als Hilfsmittel sind ein nicht lgebrfähiger und nicht grphikfähiger

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunktion eines NFA (Folien 107 und 108) Wie sieht die Üerführungsfunktion us? δ : Z Σ P(Z) Ds heißt, jedem Pr us Zustnd

Mehr

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik erbundstudiengng Wirtschftsingenieurwesen (Bchelor) Prktikum Grundlgen der Elektrotechnik und Elektronik ersuch Spnnungsteiler Teilnehmer: Nme ornme Mtr.-Nr. Dtum der ersuchsdurchführung: Spnnungsteiler

Mehr

Übungsheft Mittlerer Schulabschluss Mathematik

Übungsheft Mittlerer Schulabschluss Mathematik Ministerium für Bildung und Kultur des Lndes Schleswig-Holstein Zentrle Abschlussrbeit 011 Übungsheft Mittlerer Schulbschluss Mthemtik Korrekturnweisung Impressum Herusgeber Ministerium für Bildung und

Mehr

1. Klausur Physik Leistungskurs: Kinematik Klasse Dauer: 90 min

1. Klausur Physik Leistungskurs: Kinematik Klasse Dauer: 90 min 1. Kluur Phyik Leiungkur: Kineik Kle 11 1.1.13 Duer: 9 in 1. Mx und Mäxchen chen ein Werennen über 1. Mx gewinn d Rennen i en 5 Vorprung. U Mäxchen bei Lune zu hlen, ren ie einen Rencheluf, bei de ber

Mehr

Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium

Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium Algebr-Trining Theorie & Aufgben Serie Bruchrechnen Theorie: Kthrin Lpdul Aufgben: Bernhrd Mrugg VSGYM / Volksschule Gymnsium Liebe Schülerin, lieber Schüler Der Leitspruch «Übung mcht den Meister» gilt

Mehr

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen Teil 1: Rechenregeln us der Mittelstufe Allgemeine Termumformungen Kommuttivgesetz: Bei reinen Produkten oder Summen ist die Reihenfolge egl x y z = z y x = x z y =.. x+y+z = z+y+x = x+z+y =.. Ausklmmern:

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Aufgben mit en Aufgbe G mit Der römische Brunnen Aufsteigt der Strhl und fllend gießt Er voll der Mrmorschle Rund, Die, sich verschleiernd, überfließt

Mehr

Abschlussprüfungen 2009 Mathematik schriftlich

Abschlussprüfungen 2009 Mathematik schriftlich Fchmittelschule FMS Mthemtik schriftlich Klssen: F, Fb, Fc, Fd (Mh, Fr, Mo, Me) Prüfungsduer: h Erlubte Hilfsmittel: Tschenrechner, Fundmentum Jede Aufgbe gibt 10 Punkte. Aufgbe 1: Rum Der unten drgestellte

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Bden-Württemberg: Abitur 014 Whlteil A www.mthe-ufgben.com Huptprüfung Abiturprüfung 014 (ohne CAS) Bden-Württemberg Whlteil Anlysis Hilfsmittel: GTR und Formelsmmlung llgemeinbildende Gymnsien Alexnder

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 6 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 6 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle ysteme, utomten, Prozesse 2010 M rockschmidt, F Emmes, C Fuhs, C Otto, T tröder Hinweise: Die Husufgben sollen in Gruppen von je 2 tudierenden us dem gleichen Tutorium berbeitet

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Darstellung von Ebenen

Darstellung von Ebenen Drstellung von Ebenen. Ebenengleichung in Prmeterform: Sei E eine Ebene. Dnn lässt sich die Ebene drstellen durch eine Gleichung der Form p u x = p + r v u + s v (r, s R). p u v Der Vektor p heißt Stützvektor

Mehr

5.4. Aufgaben zur Kurvenuntersuchung zusammengesetzter Funktionen

5.4. Aufgaben zur Kurvenuntersuchung zusammengesetzter Funktionen 5.. Aufgbn zu Kuvnunsuchung zusmmngsz Funkionn Aufgb : Kuvndiskussion von Eponnilfunkionn Unsuch ds Schubild d Funkion f uf Symmi, Achsnschnipunk, Vhln fü ±, Em- und Wndpunk. Skizzi ds Schubild im wsnlichn

Mehr

Einführung in die Numerische Mathematik Vordiplomsklausur,

Einführung in die Numerische Mathematik Vordiplomsklausur, Institut für Angewndte Anlysis und Numerische Simultion Prof Dr C Eck, Dr M Schulz, Dipl- Mth J Giesselmnn Universität Stuttgrt Sommersemester 9 Einführung in die Numerische Mthemtik Vordiplomsklusur,

Mehr

Drehmomentwellenberechnung mit TEL1-PCM

Drehmomentwellenberechnung mit TEL1-PCM Drehmomenwellenberechnung mi TL1-PC Ds 1-Knl Telemeriesysem TL1-PC wird vorwiegend für roierende pplikionen eingesez, wie z.b. zur Überrgung von Drehmomenen, chwingungen oder Temperuren von drehenden Wellen,

Mehr

Vorbereitung auf die Mathematik Schularbeit

Vorbereitung auf die Mathematik Schularbeit Vorbereitung uf die Mthemtik Schulrbeit 7. März 0 Alles Gute ll deinen Bemühungen, KL, KV Viel Erfolg! . Schulrbeit: MATHEMATIK KL.: M3b/I. - S. Mi, 7.03.0 ) Zeichne ds Prllelogrmm us den Bestimmungsstücken

Mehr

Lösung Abiturprüfung 1994 Leistungskurs (Baden-Württemberg)

Lösung Abiturprüfung 1994 Leistungskurs (Baden-Württemberg) Lösung Abiurprüfung 1994 Leisungskurs (Baden-Würemberg) Analysis I.1. a) D f = IR / { 1 } f x= = K besiz keine Nullsellen 1x f ' x= 8 1x = 8 K besiz keine Exremsellen senkreche Asymoe : x= 1 waagereche

Mehr

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat Fachag Mahemaik: Kurvenscharen Ablauf: 1. Sunde Gemeinsame Einsiegsaufgabe. Sunde Sammgruppenaufgaben Sammgruppen (a bis 6 Schüler) Jedes Gruppenmiglied erhäl eine unerschiedliche Aufgabe A, B, C, D in

Mehr

Vergleichsarbeiten Jahrgangsstufe (VERA-8) Mathematik Durchführungserläuterungen

Vergleichsarbeiten Jahrgangsstufe (VERA-8) Mathematik Durchführungserläuterungen Vergleichsrbeiten 2010 8. Jhrgngsstufe (VERA-8) Mthemtik Durchführungserläuterungen Testdurchführung Für den Test werden insgesmt c. 90 Minuten benötigt. Die reine Testzeit beträgt 80 Minuten. Für die

Mehr

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001 Grundlgen zu Dtenstrukturen und Algorithmen Schmitt, Schömer SS 001 http://www.mpi-sb.mpg.de/~sschmitt/info5-ss01 U N S A R I V E R S A V I E I T A S N I S S Lösungsvorschläge für ds 4. Übungsbltt Letzte

Mehr

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung zkm (mi CAS) Miniserium für Landes Nordrhein-Wesfalen Seie 'les l von 6 Zenrale Klausur am Ende der Einführungsphase 202 Mahemaik Aufgabensellung Aufgabe : Unersuchung ganzraionaler Funkionen Gegeben is

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Sentsverwltung für Bildung, Wissenschft und Forschung Fch Nme, Vornme Klsse Abschlussprüfung n der Fchoberschule im Schuljhr / Mthemtik (A) Prüfungstg.. Prüfungszeit Zugelssene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Personal und Finanzen der öffentlich bestimmten Fonds, Einrichtungen, Betriebe und Unternehmen (FEU) in privater Rechtsform im Jahr 2003

Personal und Finanzen der öffentlich bestimmten Fonds, Einrichtungen, Betriebe und Unternehmen (FEU) in privater Rechtsform im Jahr 2003 Personl und Finnzen der öffentlich estimmten Fonds, Einrichtungen, Betriee und Unternehmen (FEU) in privter Rechtsform im Jhr 003 Dipl.-Volkswirt Peter Emmerich A Mitte der 980er-Jhre ist eine Zunhme von

Mehr