ERLÄUTERUNGEN ZUM KRAFTGRÖßENVERFAHREN An einem einfachen Beispiel soll hier das Prinzip des Kraftgrößenverfahrens erläutert werden.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "ERLÄUTERUNGEN ZUM KRAFTGRÖßENVERFAHREN An einem einfachen Beispiel soll hier das Prinzip des Kraftgrößenverfahrens erläutert werden."

Transkript

1 FACHBEREICH 0 BAUINGENIEURWESEN Arbeitsblätter ERLÄUTERUNGEN ZUM An einem einfachen Beispiel soll hier das Prinzip des Kraftgrößenverfahrens erläutert werden.. SYSTEM UND BELASTUNG q= 20 kn / m C 2 B 4 m A 6 m Material und Querschnittsdaten : 8 2 E = 2, 0 kn / m EI = knm EA = GA = Annahme für alle Stäbe S ( ) Zur Vereinfachung werden die o. g. Annahmen für die Dehn- und Schubstarrheit getroffen. 2. BETRACHTUNGSWEISEN Das KGV lässt zwei Betrachtungsweisen für die Berechnung bzw. den Arbeitssatz zu: ) Physikalisch korrekte Formulierung als Arbeitsaussage 2) Physikalisch unkorrekte Formulierung als Weggrößenaussage. Beide Aussagen führen natürlich zum gleichen Ergebnis. Hier soll die Berechnung bzw. der Arbeitssatz als Weggrößenaussage formuliert werden. Näheres zu beiden Aussagen ist u. a. im Lehrbuch Tragwerke 2 von Krätzig (Kapitel.3.3 nachzulesen). 3. GRUNDGEDANKE Das System ist statisch unbestimmt (-fach statisch unbestimmt). Somit kann sich das System unter der gegeben Belastung nicht frei verformen, da beide Lager als Festlager angegeben sind (Zwei- Gelenk-Rahmen). Es kommt daher zu Zwang bzw. zu Zwangsschnittgrößen, die sich gerade eben aus dieser Verformungsbehinderung ergeben. Im Gegensatz dazu können sich statisch bestimmte Systeme (vgl. TM I und TM II) frei und ohne Zwang verformen und es existieren daher keine Zwangsschnittgrößen. Anhand von zwei unterschiedlichen Rechenwegen soll in erster Linie das Verständnis für die Berechnung näher erläutert werden.

2 FACHBEREICH 0 BAUINGENIEURWESEN Arbeitsblätter 2 4. VORGEHENSWEISE FÜR DAS BERECHNUNGSBEISPIEL 4. Statisch bestimmtes Hauptsystem Zunächst muss das statisch bestimmte Hauptsystem gewählt werden. q= 20 kn / m C 2 B X A Es wird am Lager A die horizontale Auflagerkraft als äußere, virtuelle, statisch unbestimmte Kraftgröße angesetzt. Das Festlager A wird somit zu einem verschieblichen Lager modifiziert. Das System ist nun statisch bestimmt (analog zum Einfeldträger) und es kann sich frei und ohne Zwang verformen. Genauer gesagt kann sich das Tragwerk am Lager A horizontal verschieben. Aufgrund der gegebenen äußeren Belastung wird sich eine horizontale Verschiebung nach links einstellen. Die Verträglichkeit des Systems ist somit nicht mehr gegeben. Diese Verschiebung ist jedoch am ursprünglichen, statisch unbestimmten System aufgrund des Festlagers nicht zulässig und muss mit Hilfe der virtuellen, statisch unbestimmten Kraftgröße wieder rückgängig gemacht werden. Dies erfolgt mit Hilfe des Arbeitssatzes (PvK). 4.2 Schnittgrößen im Nullzustand M 0 [ knm] 0 90 Dies ist die Momentenlinie infolge der äußeren Belastung am statisch bestimmten Hauptsystem. Durch die fehlende horizontale Auflagerkraft im Punkt A ergibt sich die quadratische Parabel.

3 FACHBEREICH 0 BAUINGENIEURWESEN 4.3 Schnittgrößen im Einheitszustand Arbeitsblätter 3 4 M [ knm] X = Dies ist die Momentenlinie infolge der virtuellen, statisch unbestimmten Kraftgröße am statisch bestimmten Hauptsystem. 4.4 Arbeitssatz Mit Hilfe des Arbeitssatzes (PvK) wird nun genau die erforderliche Größe der virtuellen, statisch unbestimmten Kraftgröße X bestimmt, damit sich die horizontale Verschiebung am Lager A zu Null ergibt. Prinzipiell wird hier der Reduktionssatz (2. Art) angewendet δ 0 - Zahl Als erstes wird die horizontale Verschiebung (δ 0 ) bestimmt, die sich aufgrund der äußeren Belastung ergibt. Wie aus der TM II und Baustatik I bekannt ist, werden Verformungen mit Hilfe des PvK, also der -Kraftgröße, berechnet. Dazu werden die Endschnittgrößen des statisch bestimmten Systems mit den Schnittgrößen überlagert, die aus der -Kraftgröße resultieren. Beide Schnittgrößenverläufe sind oben schon dargestellt. Dies ist also nichts anderes als die Anwendung des Reduktionssatzes (2. Art) und es ergibt sich: EI δ0 = ( 4) 90 6 = Man erhält die virtuelle EI-fache horizontale Verschiebung des Punktes A. Wie oben schon erwähnt ergibt sich das negative Vorzeichen, also eine horizontale Verschiebung nach links δ Zahl Für das statisch bestimmte Hauptsystem wurde angenommen, dass keine horizontale Auflagerreaktion vorhanden ist, im ursprünglichen, statisch unbestimmten System ist jedoch eine horizontale Auflagerkraft vorhanden. Sie wurde zunächst durch eine Einheitskraftgröße als virtuelle, äußere, statisch Unbestimmte angesetzt. Diese Einheitskraftgröße erzeugt ebenfalls eine horizontale Verschiebung, die mit Hilfe des Reduktionssatzes (2. Art) bestimmt werden muss. Es müssen also die Schnittgrößenverläufe bestimmt werden, die sich aus der angenommenen virtuellen äußeren Belastung und aus der -Kraftgröße ergeben. Dies sind die Schnittgrößen des Einheitszustandes, die natürlich aufgrund des gleichen Lastfalls übereinstimmen. Aufgrund der angesetzten Richtung muss sich eine Verschiebung nach rechts einstellen und es ergibt sich: EI δ = ( 4) ( 4) 4 ( 4) ( 4) 6 = 53, Man erhält die virtuelle EI-fache horizontale Verschiebung des Punktes A. Wie oben schon erwähnt ergibt sich das positive Vorzeichen, also eine horizontale Verschiebung nach rechts.

4 FACHBEREICH 0 BAUINGENIEURWESEN Bestimmung der statisch unbekannten Kraftgröße Arbeitsblätter 4 Beide virtuellen horizontalen Verschiebungen sind nun bestimmt, jedoch gilt die Verschiebung des Einheitszustandes nur für eine Einheitskraftgröße. Sie muss jetzt mit einem Faktor so multipliziert werden, dass die Summe beider horizontalen Verschiebungen Null ergibt. Das ist zulässig, da das linear-elastische Materialgesetz (Hooke sche Gesetz) gilt und eine Superposition erlaubt. Addition beider virtuellen Verschiebungen: EI δ X EI δ = 0 Verschiebung muss Null werden 0 ( EI δ ) ( 720) 0 X = = = EI δ 53,333 3,50 kn Es ist also eine horizontale Auflagerkraft vom Betrag 3,50 kn in der angegebenen Richtung erforderlich, damit die horizontale Verschiebung am Lager A zu Null wird. Nun kann durch eine Superposition von Nullzustand und Einheitszustand jede Schnittgröße bestimmt werden. M = M X M Q Q X Q N = N X N oder aus der M Linie bestimmen Auflager Auflager X Auflager 0 = 0 0 = 0 Zwangsschnittgrößen

5 FACHBEREICH 0 BAUINGENIEURWESEN Arbeitsblätter 5 5. VORGEHENSWEISE FÜR DAS BERECHNUNGSBEISPIEL 2 5. Statisch bestimmtes Hauptsystem Zunächst muss das statisch bestimmte Hauptsystem gewählt werden. q= 20 kn / m X C 2 B A Es wird am Punkt C ein Gelenk eingefügt. Somit ist im statisch bestimmten System das Moment am Punkt C Null. Es existiert jedoch im statisch unbestimmten System ein Moment am Punkt C. Dieses Moment muss somit als äußere, virtuelle, statisch unbestimmte Kraftgröße angesetzt. Man erhält durch das Einfügen des Gelenkes zwei Einfeldträger (sehr günstig). Das System ist nun statisch bestimmt (analog zum Drei-Gelenk-Rahmen) und es kann sich nun frei und ohne Zwang verformen. Genauer gesagt wird sich am Punkt C eine gegenseitige Verdrehung einstellen (am M-Gelenk existieren zwei unterschiedliche Verdrehungen). Die Verträglichkeit des Systems ist somit nicht mehr gegeben. Diese gegenseitige Verdrehung ist jedoch am ursprünglichen, statisch unbestimmten System aufgrund der biegesteifen Rahmenecke nicht zulässig und muss mit Hilfe der virtuellen, statisch unbestimmten Kraftgröße wieder rückgängig gemacht werden. Dies erfolgt mit Hilfe des Arbeitssatzes (PvK). 5.2 Schnittgrößen im Nullzustand M 0 [ knm] 0 90 Dies ist die Momentenlinie infolge der äußeren Belastung am statisch bestimmten Hauptsystem. Durch das eingefügte Gelenk ergibt sich die quadratische Parabel.

6 FACHBEREICH 0 BAUINGENIEURWESEN 5.3 Schnittgrößen im Einheitszustand Arbeitsblätter 6 X = M [ knm] Dies ist die Momentenlinie infolge der virtuellen, statisch unbestimmten Kraftgröße am statisch bestimmten Hauptsystem. 5.4 Arbeitssatz Mit Hilfe des Arbeitssatzes (PvK) wird nun genau die erforderliche Größe der virtuellen, statisch unbestimmten Kraftgröße X bestimmt, damit sich die gegenseitige Verdrehung am Punkt C zu Null ergibt. Prinzipiell wird hier der Reduktionssatz (2. Art) angewendet δ 0 - Zahl Als erstes wird die gegenseitige Verdrehung (δ 0 ) bestimmt, die sich aufgrund der äußeren Belastung ergibt. Wie aus der TM II und Baustatik I bekannt ist, werden Verformungen mit Hilfe des PvK, also der -Kraftgröße, berechnet. Dazu werden die Endschnittgrößen des statisch bestimmten Systems mit den Schnittgrößen überlagert, die aus der -Kraftgröße resultieren. Beide Schnittgrößenverläufe sind oben schon dargestellt. Dies ist also nichts anderes als die Anwendung des Reduktionssatzes (2. Art) und es ergibt sich: EI δ0 = 90 6 = 80 3 Man erhält die virtuelle EI-fache gegenseitige Verdrehung am Punkt C δ Zahl Für das statisch bestimmte Hauptsystem wurde angenommen, dass das Moment am Punkt C Null ist, im ursprünglichen, statisch unbestimmten System ist jedoch ein Moment vorhanden. Das Moment wurde zunächst durch eine Einheitskraftgröße als virtuelle, äußere, statisch Unbestimmte angesetzt. Diese Einheitskraftgröße erzeugt ebenfalls eine gegenseitige Verdrehung am Punkt C, die mit Hilfe des Reduktionssatzes (2. Art) bestimmt werden muss. Es müssen also die Schnittgrößenverläufe bestimmt werden, die sich aus der angenommenen äußeren Belastung und aus der -Kraftgröße ergeben. Das sind die Schnittgrößen des Einheitszustandes, die natürlich aufgrund des gleichen Lastfalls übereinstimmen. Es ergibt sich: EI δ = 4 6 = 3, Man erhält die virtuelle EI-fache gegenseitige Verdrehung am Punkt C.

7 FACHBEREICH 0 BAUINGENIEURWESEN Bestimmung der statisch unbekannten Kraftgröße Arbeitsblätter 7 Beide virtuellen gegenseitigen Verdrehungen sind nun bestimmt, jedoch gilt die gegenseitige Verdrehung des Einheitszustandes nur für eine Kraftgröße von. Sie muss jetzt mit einem Faktor so multipliziert werden, dass die Summe beider gegenseitigen Verdrehungen Null ergibt. Das ist zulässig, da das linear-elastische Materialgesetz (Hooke sche Gesetz) gilt und eine Superposition erlaubt. Addition der beiden virtuellen gegenseitigen Verdrehungen: EI δ X EI δ = 0 gegenseitige Verdrehung muss Null werden 0 ( EI δ ) 80 0 X = = = EI δ 3,333 54,00 knm Es ist also ein Moment vom Betrag -54,00 knm in der angegebenen Richtung erforderlich, damit die gegenseitige Verdrehung am Punkt C zu Null wird. Nun kann durch eine Superposition von Nullzustand und Einheitszustand jede Größe bestimmt werden (s. o.). 6. BEMERKUNG Besitzt ein System einen höherwertigen Grad der statischen Unbestimmtheit (a 2), so müssen alle einzelnen Verformungen bestimmt werden, die sich aus der äußeren Belastung und den virtuellen, statisch unbestimmten Kraftgrößen ergeben. Dabei ergeben sich auch innerhalb der Einheitszustände entsprechende Verformungen (δ ik -Zahlen), die bestimmt werden müssen. Da beim Kraftgrößenverfahren die Verträglichkeit für das Gesamttragwerk erfüllt sein muss erhält man das bekannte lineare Gleichungssystem in der folgenden Form: δ δ2 δ a δ2 δ22 δ2a δa δa2 δaa X δ0 X 2 δ 20 = X a δa0 Systemnachgiebigkeitsmatrix

8 FACHBEREICH 0 BAUINGENIEURWESEN Arbeitsblätter 8 7. ENDSCHNITTGRÖßEN UND AUFLAGERREAKTIONEN 54 M [ knm] 2,55 m M max = 65, 03 5 Q [ kn] 3, , 50 3, N [ kn] Auflager 3,50 69

Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen

Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen www.statik-lernen.de Beispiele (Ein-) Gelenkrahmen Seite Auf den folgenden Seiten wird das 'Kraftgrößenverfahren' (X A -Methode) zur Berechnung der Schnittkräfte statischer Systeme am Beispiel eines 2-fach

Mehr

1. EINFLUSSLINIEN FÜR KRAFTGRÖßEN

1. EINFLUSSLINIEN FÜR KRAFTGRÖßEN Arbeitsblätter 1 Hinweise zur Konstruktion und Berechnung von Einflusslinien Definition: Eine Einflusslinie (EL) liefert den Einfluss einer Wanderlast P = 1 von festgelegter Wirkungsrichtung. längs des

Mehr

3. Kraftgrößenverfahren

3. Kraftgrößenverfahren .Kraftgrößenverfahren von 8. Kraftgrößenverfahren. Prinzip Das Prinzip des Kraftgrößenverfahrens ist es ein statisch unbestimmtes System durch Einschalten von Gelenken und Zerschneiden von Stäben oder

Mehr

5.1 Grundlagen zum Prinzip der virtuellen Kräfte

5.1 Grundlagen zum Prinzip der virtuellen Kräfte 5 Prinzip der virtuellen Kräfte 5. Grundlagen zum Prinzip der virtuellen Kräfte Das Prinzip der virtuellen Kräfte (PvK) stellt eine nwendung des Prinzips der virtuellen rbeit dar. Es dient zur Bestimmung

Mehr

Statik I Ergänzungen zum Vorlesungsskript Dr.-Ing. Stephan Salber Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Statik I Vorlesungs- und Übungsmaterial Vorlesung Benutzername: Vorlesungsskript

Mehr

Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen

Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen www.statik-lernen.de Beispiele Zweifeldträger Seite Auf den folgenden Seiten wird das 'Kraftgrößenverfahren' (X A -Methode) zur Berechnung der Schnittkräfte statischer Systeme am Beispiel eines -fach statisch

Mehr

Potentielle Energie, P.d.v.K. und P.d.v.V.

Potentielle Energie, P.d.v.K. und P.d.v.V. IBSD Institut für Baustatik und Baudynamik Fachbereich Bauingenieurwesen Potentielle Energie, P.d.v.K. und P.d.v.V. Fachgebiet Baustatik 2. Februar 26 Inhaltsverzeichnis 1 Die potentielle Energie 1 1.1

Mehr

Baustatik & Festigkeitslehre Vorlesung & Übung

Baustatik & Festigkeitslehre Vorlesung & Übung Baustatik & Festigkeitslehre Vorlesung & Übung Vortragender: O.Univ.Prof. DI Dr. Dr. Konrad Bergmeister Kraftgrößenverfahren Wenn statisch unbestimmte Systeme berechnet werden sollen, müssen zusätzliche

Mehr

RUHR-UNIVERSITÄT BOCHUM FAKULTÄT FÜR BAUINGENIEURWESEN STATIK UND DYNAMIK. Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am

RUHR-UNIVERSITÄT BOCHUM FAKULTÄT FÜR BAUINGENIEURWESEN STATIK UND DYNAMIK. Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am Diplomprüfung Frühjahr 00 Prüfungsfach Statik Klausur am 0.0.00 Name: Vorname: Matr.-Nr.: (bitte deutlich schreiben!) (9-stellig!) Aufgabe 5 6 7 8 9 Summe mögliche Punkte 7 5 5 6 0 8 0 6 0 erreichte Punkte

Mehr

Arbeitsunterlagen. Statik 2

Arbeitsunterlagen. Statik 2 Arbeitsunterlagen Statik 2 WS 2014/15 Stand 07.10.2014 Inhalt 1. Vertiefung KGV 1.1 Eingeprägte Auflagerverformungen 1.2 Vorspannung 1.3 Systeme mit elastischer Lagerung 1.4 Ermittlung von Federsteifigkeiten

Mehr

Grundfachklausur Teil 2 / Statik II

Grundfachklausur Teil 2 / Statik II Technische Universität Darmstadt Institut für Werkstoffe und Mechanik im Bauwesen Fachgebiet Statik Prof. Dr.-Ing. Jens Schneider Grundfachklausur Teil 2 / Statik II im Sommersemester 204, am 08.09.204

Mehr

Skript zur Vorlesung Baustatik II

Skript zur Vorlesung Baustatik II BS III Skript zur Vorlesung Baustatik II an der Hochschule Augsburg Hochschule für angewandte Wissenschaften University of Applied Sciences Prof. Dr.-Ing. Gerhard Zirwas BS III Inhalt I. Wiederholungen

Mehr

Aufgabensammlung zur Baustatik

Aufgabensammlung zur Baustatik Kai-Uwe Bletzinger Falko Dieringer Rupert Fisch Benedikt Philipp Aufgabensammlung zur Baustatik Übungsaufgaben zur Berechnung ebener Stabtragwerke 5 Carl Hanser Verlag München PDF Bletzinger/Dieringer/Fisch/Philipp,

Mehr

Leseprobe. Kai-Uwe Bletzinger, Falko Dieringer, Rupert Fisch, Benedikt Philipp. Aufgabensammlung zur Baustatik

Leseprobe. Kai-Uwe Bletzinger, Falko Dieringer, Rupert Fisch, Benedikt Philipp. Aufgabensammlung zur Baustatik Leseprobe Kai-Uwe Bletzinger, Falko Dieringer, Rupert Fisch, Benedikt Philipp Aufgabensammlung zur Baustatik Übungsaufgaben zur Berechnung ebener Stabtragwerke ISBN (Buch): 978-3-446-4478-8 Weitere Informationen

Mehr

Grundfachklausur Teil 1 / Statik I

Grundfachklausur Teil 1 / Statik I Technische Universität Darmstadt Institut für Werkstoffe und Mechanik im Bauwesen Fachgebiet Statik Prof. Dr.-Ing. Jens Schneider Grundfachklausur Teil / Statik I im Sommersemester 03, am 09.09.03 Die

Mehr

Baustatik 2. Raimond Dallmann. Berechnung statisch unbestimmter Tragwerke ISBN Leseprobe

Baustatik 2. Raimond Dallmann. Berechnung statisch unbestimmter Tragwerke ISBN Leseprobe Baustatik Raimond Damann Berechnung statisch unbestimmter Tragwerke ISBN -446-4075-6 Leseprobe Weitere Informationen oder Besteungen unter http://www.hanser.de/-446-4075-6 sowie im Buchhande 6 Das Kraftgrößenverfahren.1

Mehr

Untersuchen Sie das unten dargestellte System auf statische Unbestimmtheit. Bestimmen Sie die Biegelinie aus der Balkendifferentialgleichung und

Untersuchen Sie das unten dargestellte System auf statische Unbestimmtheit. Bestimmen Sie die Biegelinie aus der Balkendifferentialgleichung und Biegelinien Statisch bestimmte Systeme Aufgabe 1 Untersuchen Sie das unten dargestellte System auf statische Unbestimmtheit. Bestimmen Sie die Biegelinie aus der Balkendifferentialgleichung und stellen

Mehr

Gelenkträger unter vertikalen und schrägen Einzellasten und einer vertikalen Streckenlast

Gelenkträger unter vertikalen und schrägen Einzellasten und einer vertikalen Streckenlast www.statik-lernen.de Beispiele Gelenkträger Seite 1 Auf den folgenden Seiten wird das Knotenschnittverfahren zur Berechnung statisch bestimmter Systeme am Beispiel eines Einfeldträgers veranschaulicht.

Mehr

6. Arbeitssatz, Prinzip der virtuellen Verschiebungen (PvV) und Prinzip der virtuellen Kräfte (PvK)

6. Arbeitssatz, Prinzip der virtuellen Verschiebungen (PvV) und Prinzip der virtuellen Kräfte (PvK) Technische Mechanik 2 (SS 2011) 6. Arbeitssatz, Prinzip der virtuellen Verschiebungen (PvV) und Prinzip der virtuellen Kräfte (PvK) Arbeit: 6.1 Grundbegriffe und Arbeitssatz 6.1 Grundbegriffe und Arbeitssatz

Mehr

Baustatik 2. Berechnung statisch unbestimmter Tragwerke. von Raimond Dallmann. 1. Auflage

Baustatik 2. Berechnung statisch unbestimmter Tragwerke. von Raimond Dallmann. 1. Auflage Baustatik Berechnung statisch unbestimmter Tragwerke von Raimond Damann 1. Aufage Baustatik Damann schne und portofrei erhätich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 006 Verag C.H. Beck

Mehr

2. Statisch bestimmte Systeme

2. Statisch bestimmte Systeme 1 von 14 2. Statisch bestimmte Systeme 2.1 Definition Eine Lagerung nennt man statisch bestimmt, wenn die Lagerreaktionen (Kräfte und Momente) allein aus den Gleichgewichtsbedingungen bestimmbar sind.

Mehr

Rahmen. Rahmenwirkung Berechnung einfacher Systeme. Institut für Tragwerksentwurf. Tragwerkslehre 2

Rahmen. Rahmenwirkung Berechnung einfacher Systeme. Institut für Tragwerksentwurf. Tragwerkslehre 2 Rahmen Rahmenwirkung Berechnung einfacher Systeme Rahmen Riegel vertikale Lasten horizontale Lasten Stiel biegesteife Ecke Vertikale und horizontale Lagerkräfte Vertikale und horizontale Lagerkräfte Rahmen

Mehr

Inhaltsverzeichnis. 1 Einführung in die Statik der Tragwerke 1

Inhaltsverzeichnis. 1 Einführung in die Statik der Tragwerke 1 1 Einführung in die Statik der Tragwerke 1 1.1 Vorbemerkungen 1 1.1.1 Definition und Aufgabe der Baustatik l 1.1.2 Tragwerksformen irnd deren Idealisierung 2 1.1.2.1 Dreidimensionale Tragelemcnte: Räume

Mehr

Übung zu Mechanik 1 Seite 34

Übung zu Mechanik 1 Seite 34 Übung zu Mechanik 1 Seite 34 Aufgabe 58 Für das dargestellte System berechne man die Auflagerreaktionen und Schnittgrößen! [m, kn] Aufgabe 59 Bestimmen Sie für das dargestellte System die Auflagerreaktionen

Mehr

Universität für Bodenkultur

Universität für Bodenkultur Baustatik Übungen Kolloquiumsvorbereitung Universität für Bodenkultur Department für Bautechnik und Naturgefahren Wien, am 15. Oktober 2004 DI Dr. techn. Roman Geier Theoretischer Teil: Ziele / Allgemeine

Mehr

Statik im Bauwesen. HUSS-MEDIEN GmbH Verlag Bauwesen Berlin. Fritz Bochmann/Werner Kirsch. Band 3: Statisch unbestimmte ebene Systeme

Statik im Bauwesen. HUSS-MEDIEN GmbH Verlag Bauwesen Berlin. Fritz Bochmann/Werner Kirsch. Band 3: Statisch unbestimmte ebene Systeme Fritz Bochmann/Werner Kirsch Statik im Bauwesen Band 3: Statisch unbestimmte ebene Systeme 13. Auflage HUSS-MEDIEN GmbH Verlag Bauwesen 10400 Berlin Inhaltsverzeichnis Einführung 11.1. Allgemeine Grundlagen

Mehr

Ruhr-Universität Bochum Bau- und Umweltingenieurwissenschaften Statik und Dynamik. Bachelorprüfung Frühjahr Klausur am

Ruhr-Universität Bochum Bau- und Umweltingenieurwissenschaften Statik und Dynamik. Bachelorprüfung Frühjahr Klausur am Bachelorprüfung Frühjahr 2013 Modul 13 (BI) / Modul IV 3b (UTRM) Baustatik I und II Klausur am 25.02.2013 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig!) Aufgabe 1 2 3 4 5 Summe mögliche

Mehr

Berechnung statisch unbestimmter Systeme mit Hilfe des Kraftgrößenverfahrens

Berechnung statisch unbestimmter Systeme mit Hilfe des Kraftgrößenverfahrens Berechnung statisch unbestimmter Systeme mit Hilfe des Kraftgrößenverfahrens Bachelorprojekt eingereicht am Institut für Baustatik der Technischen Universität Graz im Wintersemester 2009/20 Verfasser:

Mehr

Lauf- und Wartungssteg mit Geländern

Lauf- und Wartungssteg mit Geländern Lauf- und Wartungssteg mit Geländern Allgemeine Beschreibung Die Laufstege werden nach [1.4] und die Geländer nach [1.5] bemessen. Da die Förderbrücke an der Achse S2 einen Knick von 5.5 auf 11,1 aus der

Mehr

Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am (bitte deutlich schreiben!)

Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am (bitte deutlich schreiben!) Diplomprüfung Frühjahr 00 Prüfungsfach Statik Klausur am 04.0.00 Name: Vorname: (bitte deutlich schreiben) Matr.-Nr.: (9-stellig) Aufgabe 4 5 6 7 8 9 Summe mögliche Punkte 7 5 4 6 6 4 4 0 erreichte Punkte

Mehr

Prüfungsrelevante Beispiele für Baustatik 1 VO ( ) Prof. Eberhardsteiner

Prüfungsrelevante Beispiele für Baustatik 1 VO ( ) Prof. Eberhardsteiner Prüfungsrelevante für Baustatik 1 VO (202.065) Prof. Eberhardsteiner Die folgende Liste enthält prüfungsrelevante für die o.a. Vorlesung. Datum und Beispiel beziehen sich dabei auf schriftliche Vorlesungsprüfungen

Mehr

7.1 Grundregeln der Kinematik: Polplan

7.1 Grundregeln der Kinematik: Polplan 7 Einflusslinien 7. Grundregeln der Kinematik: Polplan Trotz der Erfüllung der Bedingungsgleichungen für statisch (un)bestimmte Tragwerke (Abzählkriterien A/B) kann es vorkommen, dass Stabwerksstrukturen

Mehr

Baustatik Theorie I. und II. Ordnung

Baustatik Theorie I. und II. Ordnung Prof. Dr.-Ing. Helmut Rubin Prof. Dipl.-Ing. Klaus-Jürgen Schneider Baustatik Theorie I. und II. Ordnung 3., völlig neu bearbeitete und erweiterte Auflage 1996 Werner-Verlag Inhaltsverzeichnis 1 Einfuhrung

Mehr

Fachhochschule München Fachbereich 02 BI 4. Semester Name:... 1. und 2. Studienarbeit aus Baustatik II

Fachhochschule München Fachbereich 02 BI 4. Semester Name:... 1. und 2. Studienarbeit aus Baustatik II Fachbereich 02 BI 4. Semester 1. und 2. Studienarbeit aus Baustatik II 1. Aufgabe: Bestimmen Sie mit Hilfe des Drehwinkelverfahrens die Schnittgrößen des obigen Tragwerkes und stellen Sie deren Verlauf

Mehr

Baustatik Formelsammlung

Baustatik Formelsammlung Baustatik Formelsammlung Jan Höffgen 16. April 2013 Die Formelsammlung wurde auf der Grundlage der Vorlesungen Baustatik I im SS2012 und Baustatik II im WS2012/2013 am KIT erstellt. Es besteht kein Anspruch

Mehr

Übungsaufgaben Systemmodellierung WT 2015

Übungsaufgaben Systemmodellierung WT 2015 Übungsaufgaben Systemmodellierung WT 2015 Robert Friedrich Prof. Dr.-Ing. Rolf Lammering Institut für Mechanik Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg Holstenhofweg 85, 22043 Hamburg

Mehr

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17)

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17) Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17) Lösung 15.1: Element-Steifigkeitsmatrix Jeweils drei 2*2-Untermatrizen einer Element- Steifigkeitsmatrix

Mehr

Grundfachklausur Teil 1 / Statik I

Grundfachklausur Teil 1 / Statik I Technische Universität Darmstadt Institut für Werkstoffe und Mechanik im Bauwesen Fachgebiet Statik Prof. Dr.-Ing. Jens Schneider Grundfachklausur Teil 1 / Statik I im Wintersemester 2013/2014, am 21.03.2014

Mehr

Kontrolle von Beispielen zum Kraftgrößenverfahren mit RuckZuck

Kontrolle von Beispielen zum Kraftgrößenverfahren mit RuckZuck Kontrolle von Beispielen zum Kraftgrößenverfahren mit RuckZuck Bachelor Projekt eingereicht am Institut für Baustatik der Technischen Universität Graz im November 2009 Verfasser: Betreuer: Mario Jackisch

Mehr

4. Verschiebungsgrößenverfahren

4. Verschiebungsgrößenverfahren Baustatik I WS 2013/2014 4. Verschiebungsgrößenverfahren 4.2 Geometrische Unbestimmtheit Geometrische Unbestimmtheit Geometrisch bestimmtes System: Bei einem geometrisch bestimmten System sind alle Knotenverschiebungen

Mehr

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18)

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18) Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18) Lösung 18.1: Die Aufgabe wird nach der im Beispiel des Abschnitt 18.1.5 demonstrierten Strategie für die Lösung

Mehr

TWL Klausur SOS Termin / Bearbeitet von

TWL Klausur SOS Termin / Bearbeitet von TWL Klausur SOS 2014 2.Termin / 19.09.2014 Bearbeitet von Name Matr.-Nr. WICHTIGE HINWEISE Die Bearbeitungszeit beträgt 180 Minuten. Sie können die Aufgabenblätter und eigenes Papier verwenden. Jedes Arbeitsblatt

Mehr

Inhaltsverzeichnis. Raimond Dallmann. Baustatik 1. Berechnung statisch bestimmter Tragwerke ISBN:

Inhaltsverzeichnis. Raimond Dallmann. Baustatik 1. Berechnung statisch bestimmter Tragwerke ISBN: Inhaltsverzeichnis Raimond Dallmann Baustatik 1 Berechnung statisch bestimmter Tragwerke ISBN: 978-3-446-42319-0 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42319-0 sowie

Mehr

Statik. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben)

Statik. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) Diplomprüfung Frühjahr 2006 Prüfungsfach Statik Klausur am 20.02.2006 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig) Aufgabe 1 2 3 4 5 6 7 8 9 Summe mögliche Punkte 20 4 6 25 20 30

Mehr

5) GLEICHGEWICHT VON KRAEFTEN (Auflagerreaktionen)

5) GLEICHGEWICHT VON KRAEFTEN (Auflagerreaktionen) BAULEITER HOCHBAU S T A T I K / F E S T I G K E I T S L E H R E 5) GLEICHGEWICHT VON KRAEFTEN (Auflagerreaktionen) 1) Einleitung 2) Definition 3) Gleichgewichtsbedingungen der Ebene 4) Beispiele zur Bestimmung

Mehr

Schnittgrößen und Vorzeichenkonvention

Schnittgrößen und Vorzeichenkonvention Schnittgrößen und Vorzeichenkonvention Die äußeren Kräfte (Belastungen) auf einem Tragwerk verursachen innere Kräfte in einem Tragwerk. Da diese inneren Kräfte nur durch ein Freischneiden veranschaulicht

Mehr

Kleines Einmaleins der Baustatik

Kleines Einmaleins der Baustatik IBSD Institut für Baustatik und Baudynamik Fachbereich Bauingenieurwesen Buchvorstellung Ein einfacher Einstieg I Ein einfacher Einstieg I Ein einfacher Einstieg I Ein einfacher Einstieg I Ein einfacher

Mehr

Sommer Baustatik I+II Sessionsprüfung. Bemerkungen. ( und ) Montag, 08. August 2016, Uhr, HIL G 61 / HIL E 9

Sommer Baustatik I+II Sessionsprüfung. Bemerkungen. ( und ) Montag, 08. August 2016, Uhr, HIL G 61 / HIL E 9 Baustatik I+II Sessionsprüfung (101-0113-00 und 101-0114-00) Sommer 2016 Montag, 08. August 2016, 09.00 12.00 Uhr, HIL G 61 / HIL E 9 Name, Vorname: Studenten-Nr.: Bemerkungen 1. Die Aufgaben dürfen in

Mehr

TWL Klausur WS 2016/ Termin / Bearbeitet von

TWL Klausur WS 2016/ Termin / Bearbeitet von TWL Klausur WS 2016/2017 1.Termin / 03.02.2017 Bearbeitet von Name Matr.-Nr. WICHTIGE HINWEISE Die Bearbeitungszeit beträgt 180 Minuten. Sie können die Aufgabenblätter und eigenes Papier verwenden. Jedes

Mehr

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf.

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6. Ebene Fachwerke In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6.1 Definition Ein ideales Fachwerk besteht aus geraden, starren Stäben, die miteinander

Mehr

Berechnung von Trägerrosten mittels Kraftgrößenmethode

Berechnung von Trägerrosten mittels Kraftgrößenmethode Berechnung von Trägerrosten mittels Kraftgrößenmethode Bachelor Projekt eingereicht am Institut für Baustatik der Technischen Universität Graz im Oktober 2010 Verfasser: Betreuer: Novak Friedrich Dipl.-Ing.

Mehr

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit:

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit: Kurs: Statik Thema: Resultierende bestimmen Aufgabe 1) Wo liegt bei der Berechnung der Resultierenden der Unterschied zwischen Kräften mit einem gemeinsamen Angriffspunkt und Kräften mit unterschiedlichen

Mehr

Das Fachwerk ist statisch unterbestimmt (Mechanismus) und fällt in sich zusammen. Abbildung 1: Rahmenfachwerk

Das Fachwerk ist statisch unterbestimmt (Mechanismus) und fällt in sich zusammen. Abbildung 1: Rahmenfachwerk Übung 2: Fachwerke Aufgabe Musterlösung Das Rahmenwerk in Abb. besteht aus biegesteifen Stäben und Knoten. Es wird auf seiner Unterseite mittig mit einer abwärts gerichteten, vertikalen Kraft belastet

Mehr

Modul 13. Baustatik I und II. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben)

Modul 13. Baustatik I und II. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) Bachelorprüfung Winter 2011 Modul 13 Baustatik I und II Klausur am 15.01.2011 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig!) Aufgabe 1 2 3 4 5 6 7 Summe mögliche Punkte 30 22 18

Mehr

S Holzbalken (mit U-Profil-Verstärkung)

S Holzbalken (mit U-Profil-Verstärkung) S302-1 1 Allgemeine Erläuterungen S302-2 1.1 Statisches System, Schnittgrößen 1.1.1 Geometrie Das statische System kann aus bis zu 10 Feldern mit jeweils unterschiedlichen Längen und Steifigkeiten (Trägheitsmomenten)

Mehr

Hauptdiplomprüfung Statik und Dynamik Pflichtfach

Hauptdiplomprüfung Statik und Dynamik Pflichtfach UNIVERSITÄT STUTTGART Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Komm. Leiter: Prof. Dr.-Ing. S. Staudacher Hauptdiplomprüfung Statik und Dynamik Pflichtfach Herbst 2011 Aufgabenteil

Mehr

Stabwerkslehre - WS 11/12 Prof. Dr. Colling

Stabwerkslehre - WS 11/12 Prof. Dr. Colling Fachhochschule Augsburg Studiengang Bauingenieurwesen Stabwerkslehre - WS 11/12 Name: Prof. Dr. Colling Arbeitszeit: Hilfsmittel: 90 min. alle, außer Rechenprogrammen 1. Aufgabe (ca. 5 min) Gegeben: Statisches

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 05/08/13 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die

Mehr

S Allgemeine Dachkonstruktion

S Allgemeine Dachkonstruktion S 100-1 S 100-2 1 Allgemeine Erläuterungen Das Programm dient der Schnittgrößenermittlung und Bemessung eines asymmetrischen Sparren-, Pfetten- oder Kehlbalkendaches. 1.1 System Bild 1: Möglichkeiten der

Mehr

Übung zu Mechanik 2 Seite 62

Übung zu Mechanik 2 Seite 62 Übung zu Mechanik 2 Seite 62 Aufgabe 104 Bestimmen Sie die gegenseitige Verdrehung der Stäbe V 2 und U 1 des skizzierten Fachwerksystems unter der gegebenen Belastung! l l F, l alle Stäbe: EA Übung zu

Mehr

Fundamentplatte F04/2

Fundamentplatte F04/2 Sie können ihn im Menüpunkt 'Einstellungen > Firmenkopf' setzen. Fundamentplatte F0/ Fundamentplatte F0/ Alle Bemessungen und Nachweise wurden nach ÖN B 700 ggf. EN 99-- durchgeführt Tragwerk PLATTE, BetonC0/7,

Mehr

POS: 001 Bezeichnung: Hallendach Thermodachelemente System M 1 : 75 1 2 3 45 9.10 BAUSTOFF : S 355 E-Modul E = 21000 kn/cm2 γm = 1.10 spez. Gewicht : 7.85 kg/dm3 QUERSCHNITTSWERTE Quersch. Profil I A Aq

Mehr

Kräftepaar und Drehmoment

Kräftepaar und Drehmoment Kräftepaar und Drehmoment Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Kräftepaar

Mehr

www.statik-lernen.de Inhaltsverzeichnis Kräfte und Kraftarten Äußere und innere Kräfte Das zentrale Kräftesystem Momente Auflager Zustandslinien

www.statik-lernen.de Inhaltsverzeichnis Kräfte und Kraftarten Äußere und innere Kräfte Das zentrale Kräftesystem Momente Auflager Zustandslinien www.statik-lernen.de Grundlagen Inhaltsverzeichnis Kräfte und Kraftarten o Bestimmung von Kräften... Seite 1 o Graphische Darstellung... Seite 1 o Einheit der Kraft... Seite 1 o Kräftegleichgewicht...

Mehr

2. Sätze von Castigliano und Menabrea

2. Sätze von Castigliano und Menabrea 2. Sätze von Castigliano und Menabrea us der Gleichheit von äußerer rbeit und Formänderungsenergie kann die Verschiebung am Lastangriffspunkt berechnet werden, wenn an der Struktur nur eine Last angreift.

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Statisch Unbestimmte Systeme

Statisch Unbestimmte Systeme 3. Semester Seite 1/13 Statisch Unbestimmte Systeme 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. Begriffe 2 3. Grundlagen 2 4. Freischneiden 2 4.1 Darstellung des Verfahrens am Zweifeldträger 2 4.2 Verallgemeinerte

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

Tafel 6: Auflagerreaktionen einfeldriger Rechteckrahmen infolge äußerer Lasten

Tafel 6: Auflagerreaktionen einfeldriger Rechteckrahmen infolge äußerer Lasten Kapitel 0 Hilfstafeln Tafel : Querschnittswerte A, I, I T Tafel : M i -M k -Tafel für linearen, quadratischen und kubischen Schnittgrößenverlauf Tafel : M i -M k -Tafel für sinus- und cosinusförmigen Schnittgrößenverlauf

Mehr

Lineare Algebra in der Baustatik

Lineare Algebra in der Baustatik Naturwissenschaft Jonas Stecher Lineare Algebra in der Baustatik Diplomarbeit Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Bibliothek verzeichnet diese Publikation in der

Mehr

Bild aus: U. Gabbert, I. Raecke; Technische Mechanik für Wirtschaftsingenieure; Verlag: Hanser, 2010

Bild aus: U. Gabbert, I. Raecke; Technische Mechanik für Wirtschaftsingenieure; Verlag: Hanser, 2010 Momentendefinition: Bild aus: U. Gabbert, I. Raecke; Technische Mechanik für Wirtschaftsingenieure; Verlag: Hanser, 2010 Bild aus: M. Kofler, R. Fritsch, G.Möslinger; Statik 1; Verlag: Manz, 2007 Aufgabe:

Mehr

in den knotenzentrierten Koordinatensystemen des linken und rechten Knotens (Element i) bekannt sind. Das Prinzip der Berechnung lat

in den knotenzentrierten Koordinatensystemen des linken und rechten Knotens (Element i) bekannt sind. Das Prinzip der Berechnung lat Kapitel Gleichgewicht von Stabwerken Durch die Festlegung auf die grundlegenden Elementtypen und die knotenzentrierten Koordinatensysteme ist der Weg zur Formulierung der Gleichgewichtsbedingungen vorgezeichnet.

Mehr

Balkentragwerke mit dem FEM-System MEANS V10 berechnen. Homepage: Telefon:

Balkentragwerke mit dem FEM-System MEANS V10 berechnen. Homepage:    Telefon: Balkentragwerke mit dem FEM-System MEANS V10 berechnen Homepage: www.femcad.de Email: info@femcad.de Telefon: 07844 98 641 Kapitel 14: Balkentragwerke mit MEANS V10 berechnen 1 Kapitel 14: Balkentragwerke

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

Hauptdiplomprüfung Statik und Dynamik Pflichtfach

Hauptdiplomprüfung Statik und Dynamik Pflichtfach UNIVERSITÄT STUTTGART Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Komm. Leiter: Prof. Dr.-Ing. S. Staudacher Hauptdiplomprüfung Statik und Dynamik Pflichtfach Herbst 2011 Aufgabenteil

Mehr

( und ) Sommer Samstag, 22. August 2015, Uhr, HIL G 15. Name, Vorname: Studenten-Nr.:

( und ) Sommer Samstag, 22. August 2015, Uhr, HIL G 15. Name, Vorname: Studenten-Nr.: Baustatik I+II Sessionsprüfung (101-0113-00 und 101-0114-00) Sommer 2015 Samstag, 22. August 2015, 09.00 12.00 Uhr, HIL G 15 Name, Vorname: Studenten-Nr.: Bemerkungen 1. Die Aufgaben dürfen in beliebiger

Mehr

4. Ebene Fachwerke Prof. Dr. Wandinger 3. Tragwerksanalyse TM

4. Ebene Fachwerke Prof. Dr. Wandinger 3. Tragwerksanalyse TM 4. Ebene Fachwerke Prof. Dr. Wandinger 3. Tragwerksanalyse TM 1 3.4-1 4. Ebene Fachwerke Ein Fachwerk ist ein Tragwerk, bei dem die folgenden vereinfachenden Annahmen zulässig sind: Das Tragwerk besteht

Mehr

6) DIE EINFACHSTEN STATISCH BESTIMMTEN TRAEGER

6) DIE EINFACHSTEN STATISCH BESTIMMTEN TRAEGER BAULEITER HOCHBAU S T A T I K / F E S T I G K E I T S L E H R E 6) DIE EINFACHSTEN STATISCH BESTIMMTEN TRAEGER 1) Definition für statisch bestimmte Systeme 2) Auflagerreaktionen beim einfachen Balken 3)

Mehr

Innere Beanspruchungen - Schnittgrößen

Innere Beanspruchungen - Schnittgrößen Innere Beanspruchungen - Schnittgrößen Vorlesung und Übungen 1. Semester BA Architektur Q () M () M () Q () N () N () L - KIT Universität des Landes Baden-Württemberg und nationales orschungszentrum in

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Herbst 010 Seite 1/0 rage 1 ( Punkte) Ein masseloser Balken der Länge l stützt sich wie skizziert über einen masselosen Stab auf dem Mittelpunkt P einer Rolle ab. Ein horizontal verlaufendes Seil verbindet

Mehr

Beuth Hochschule für Technik Berlin

Beuth Hochschule für Technik Berlin Seite 1 Einführung Schlanke Stützen sind stabilitätsgefährdete Bauteile. Den Zusammenhang zwischen Belastung Verformung für verschiedene Werkstoffe zeigt das nächste Bild. Die Grundtypen stabilitätsgefährdeter

Mehr

1 Schubstarrer Balken

1 Schubstarrer Balken Einsteinufer 5, 1587 Berlin PdvK Energiemethoden 7. Übungsblatt, WS 212/13, S. 1 1 Schubstarrer Balken Freischnitt und Schnittlasten für das reale System x läuft mit der Balkenachse, die strichlierte Linie

Mehr

Inhalt 1 Einführung 2 Wirkung der Kräfte 3 Bestimmung von Schwerpunkten

Inhalt 1 Einführung 2 Wirkung der Kräfte 3 Bestimmung von Schwerpunkten Inhalt (Abschnitte, die mit * gekennzeichnet sind, enthalten Übungsaufgaben) 1 Einführung... 1 1.1 Begriffe und Aufgaben der Statik... 2 1.1.1 Allgemeine Begriffe 1.1.2 Begriffe für Einwirkungen... 4 1.1.3

Mehr

Übung zu Mechanik 1 Seite 19

Übung zu Mechanik 1 Seite 19 Übung zu Mechanik 1 Seite 19 Aufgabe 33 Bestimmen Sie die Lage des Flächenschwerpunktes für den dargestellten Plattenbalkenquerschnitt! (Einheit: cm) Aufgabe 34 Betimmen Sie die Lage des Flächenschwerpunktes

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello e-mail: Semester Klausur Datum BM II, S K 01. 07. 13 Genehmigte Hilfsmittel: Fach Urteil Statik u. Festigkeit Ergebnis: Punkte Taschenrechner

Mehr

TRAGSYSTEME KONSTRUIEREN MATERIAL Prof. Dr.-Ing. Michael Maas

TRAGSYSTEME KONSTRUIEREN MATERIAL Prof. Dr.-Ing. Michael Maas Klausur TKM 1 WS 2010-2011 Bearbeitet von Name Matr.-Nr. WICHTIGE HINWEISE Die Bearbeitungszeit beträgt 120 Minuten. Nach Beendigung der Klausur sind alle Aufgabenseiten und Arbeitsblätter abzugeben. Jedes

Mehr

Polynome. Analysis 1 für Informatik

Polynome. Analysis 1 für Informatik Gunter Ochs Analysis 1 für Informatik Polynome sind reelle Funktionen, die sich ausschlieÿlich mit den Rechenoperation Addition, Subtraktion und Multiplikation berechnen lassen. Die allgemeine Funktionsgleichung

Mehr

Lagerreaktionen und Schnittgrößen eines verzweigten Gelenkrahmens

Lagerreaktionen und Schnittgrößen eines verzweigten Gelenkrahmens . Aufgabe Lagerreaktionen und Schnittgrößen eines verzweigten Gelenkrahmens Geg.: Kräfte F, F = F, F Streckenlast q F a Moment M = Fa Maß a 5 F Ges.: a) Lagerreaktionen in B, C und Gelenkkräfte in G, b)

Mehr

Dreigelenkrahmen unter vertikalen und horizontalen Einzellasten sowie horizontaler Streckenlast

Dreigelenkrahmen unter vertikalen und horizontalen Einzellasten sowie horizontaler Streckenlast www.statik-lernen.de Beispiele Dreigelenkrahmen Seite 1 Auf den folgenden Seiten wird das Knotenschnittverfahren zur Berechnung statisch bestimmter Systeme am Beispiel eines Dreigelenkrahmens veranschaulicht.

Mehr

Vorlesung L Leichtbau, HS Fachwerke. Paolo Ermanni 7. Oktober 2015

Vorlesung L Leichtbau, HS Fachwerke. Paolo Ermanni 7. Oktober 2015 Vorlesung 151-3207-00L Leichtbau, HS 2015 Fachwerke Paolo Ermanni 7. Oktober 2015 PAOLO ERMANNI - 151-3207-K3-FACHWERKE 01.10.2015 1 Leitfaden Allgemeines Ebene statisch bestimmte Fachwerke Aufgabe 1 und

Mehr

Institut für Allgemeine Mechanik der RWTH Aachen

Institut für Allgemeine Mechanik der RWTH Aachen Prof. Dr.-Ing. D. Weichert 6.Übung Mechanik II SS 007 1.05.07 Abgabetermin 6.Übung: 04.06.07 14:00 Uhr 1. Aufgabe Ein einseitig eingespannter alken wird nacheinander mit einer Kraft F, einem Moment M und

Mehr

1. Aufgabe: (ca. 16 % der Gesamtpunkte)

1. Aufgabe: (ca. 16 % der Gesamtpunkte) Institut für Mechnik Prof. Dr.-Ing. hbil. P. Betsch Prof. Dr.-Ing. hbil. Th. Seelig Prüfung in Festigkeitslehre 0. März 05. Aufgbe: (c. 6 % der Gesmtpunkte) ) Wie viele unbhängige Spnnungskomponenten gibt

Mehr

1.1.2 Stabkräfte berechnen

1.1.2 Stabkräfte berechnen 1.1.2 Stabkräfte berechnen Wozu brauche ich dieses Thema? Man braucht die Berechnungsmethoden dieses Themas, um die Kräfte in Fachwerken zu berechnen. Auch Seilkräfte, z.b. im Bridle, können so ermittelt

Mehr

1. Zug und Druck in Stäben

1. Zug und Druck in Stäben 1. Zug und Druck in Stäben Stäbe sind Bauteile, deren Querschnittsabmessungen klein gegenüber ihrer änge sind: D Sie werden nur in ihrer ängsrichtung auf Zug oder Druck belastet. D Prof. Dr. Wandinger

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

PMM 10/2.9 schwerer Pneumatikmast 10m Best.Nr Seite 1-9 gilt für Windzone 1 (Windgeschwindigkeit max. 90 km/h, Staudruck q = 0,39 kn/m2)

PMM 10/2.9 schwerer Pneumatikmast 10m Best.Nr Seite 1-9 gilt für Windzone 1 (Windgeschwindigkeit max. 90 km/h, Staudruck q = 0,39 kn/m2) PMM 10/2.9 schwerer Pneumatikmast 10m Best. 38300 Statische Berechnung Seite 1-9 gilt für Windzone 1 (Windgeschwindigkeit max. 90 km/h, Staudruck q = 0,39 kn/m2) Seite 10-18 gilt für Windzone 3 (Windgeschwindigkeit

Mehr

1. Einfache ebene Tragwerke

1. Einfache ebene Tragwerke Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse

Mehr

Technische Mechanik. Festigkeitslehre

Technische Mechanik. Festigkeitslehre Hans Albert Richard Manuela Sander Technische Mechanik. Festigkeitslehre Lehrbuch mit Praxisbeispielen, \ Klausuraufgaben und Lösungen Mit 180 Abbildungen Viewegs Fachbücher der Technik Vieweg VII Inhaltsverzeichnis

Mehr