ERLÄUTERUNGEN ZUM KRAFTGRÖßENVERFAHREN An einem einfachen Beispiel soll hier das Prinzip des Kraftgrößenverfahrens erläutert werden.

Größe: px
Ab Seite anzeigen:

Download "ERLÄUTERUNGEN ZUM KRAFTGRÖßENVERFAHREN An einem einfachen Beispiel soll hier das Prinzip des Kraftgrößenverfahrens erläutert werden."

Transkript

1 FACHBEREICH 0 BAUINGENIEURWESEN Arbeitsblätter ERLÄUTERUNGEN ZUM An einem einfachen Beispiel soll hier das Prinzip des Kraftgrößenverfahrens erläutert werden.. SYSTEM UND BELASTUNG q= 20 kn / m C 2 B 4 m A 6 m Material und Querschnittsdaten : 8 2 E = 2, 0 kn / m EI = knm EA = GA = Annahme für alle Stäbe S ( ) Zur Vereinfachung werden die o. g. Annahmen für die Dehn- und Schubstarrheit getroffen. 2. BETRACHTUNGSWEISEN Das KGV lässt zwei Betrachtungsweisen für die Berechnung bzw. den Arbeitssatz zu: ) Physikalisch korrekte Formulierung als Arbeitsaussage 2) Physikalisch unkorrekte Formulierung als Weggrößenaussage. Beide Aussagen führen natürlich zum gleichen Ergebnis. Hier soll die Berechnung bzw. der Arbeitssatz als Weggrößenaussage formuliert werden. Näheres zu beiden Aussagen ist u. a. im Lehrbuch Tragwerke 2 von Krätzig (Kapitel.3.3 nachzulesen). 3. GRUNDGEDANKE Das System ist statisch unbestimmt (-fach statisch unbestimmt). Somit kann sich das System unter der gegeben Belastung nicht frei verformen, da beide Lager als Festlager angegeben sind (Zwei- Gelenk-Rahmen). Es kommt daher zu Zwang bzw. zu Zwangsschnittgrößen, die sich gerade eben aus dieser Verformungsbehinderung ergeben. Im Gegensatz dazu können sich statisch bestimmte Systeme (vgl. TM I und TM II) frei und ohne Zwang verformen und es existieren daher keine Zwangsschnittgrößen. Anhand von zwei unterschiedlichen Rechenwegen soll in erster Linie das Verständnis für die Berechnung näher erläutert werden.

2 FACHBEREICH 0 BAUINGENIEURWESEN Arbeitsblätter 2 4. VORGEHENSWEISE FÜR DAS BERECHNUNGSBEISPIEL 4. Statisch bestimmtes Hauptsystem Zunächst muss das statisch bestimmte Hauptsystem gewählt werden. q= 20 kn / m C 2 B X A Es wird am Lager A die horizontale Auflagerkraft als äußere, virtuelle, statisch unbestimmte Kraftgröße angesetzt. Das Festlager A wird somit zu einem verschieblichen Lager modifiziert. Das System ist nun statisch bestimmt (analog zum Einfeldträger) und es kann sich frei und ohne Zwang verformen. Genauer gesagt kann sich das Tragwerk am Lager A horizontal verschieben. Aufgrund der gegebenen äußeren Belastung wird sich eine horizontale Verschiebung nach links einstellen. Die Verträglichkeit des Systems ist somit nicht mehr gegeben. Diese Verschiebung ist jedoch am ursprünglichen, statisch unbestimmten System aufgrund des Festlagers nicht zulässig und muss mit Hilfe der virtuellen, statisch unbestimmten Kraftgröße wieder rückgängig gemacht werden. Dies erfolgt mit Hilfe des Arbeitssatzes (PvK). 4.2 Schnittgrößen im Nullzustand M 0 [ knm] 0 90 Dies ist die Momentenlinie infolge der äußeren Belastung am statisch bestimmten Hauptsystem. Durch die fehlende horizontale Auflagerkraft im Punkt A ergibt sich die quadratische Parabel.

3 FACHBEREICH 0 BAUINGENIEURWESEN 4.3 Schnittgrößen im Einheitszustand Arbeitsblätter 3 4 M [ knm] X = Dies ist die Momentenlinie infolge der virtuellen, statisch unbestimmten Kraftgröße am statisch bestimmten Hauptsystem. 4.4 Arbeitssatz Mit Hilfe des Arbeitssatzes (PvK) wird nun genau die erforderliche Größe der virtuellen, statisch unbestimmten Kraftgröße X bestimmt, damit sich die horizontale Verschiebung am Lager A zu Null ergibt. Prinzipiell wird hier der Reduktionssatz (2. Art) angewendet δ 0 - Zahl Als erstes wird die horizontale Verschiebung (δ 0 ) bestimmt, die sich aufgrund der äußeren Belastung ergibt. Wie aus der TM II und Baustatik I bekannt ist, werden Verformungen mit Hilfe des PvK, also der -Kraftgröße, berechnet. Dazu werden die Endschnittgrößen des statisch bestimmten Systems mit den Schnittgrößen überlagert, die aus der -Kraftgröße resultieren. Beide Schnittgrößenverläufe sind oben schon dargestellt. Dies ist also nichts anderes als die Anwendung des Reduktionssatzes (2. Art) und es ergibt sich: EI δ0 = ( 4) 90 6 = Man erhält die virtuelle EI-fache horizontale Verschiebung des Punktes A. Wie oben schon erwähnt ergibt sich das negative Vorzeichen, also eine horizontale Verschiebung nach links δ Zahl Für das statisch bestimmte Hauptsystem wurde angenommen, dass keine horizontale Auflagerreaktion vorhanden ist, im ursprünglichen, statisch unbestimmten System ist jedoch eine horizontale Auflagerkraft vorhanden. Sie wurde zunächst durch eine Einheitskraftgröße als virtuelle, äußere, statisch Unbestimmte angesetzt. Diese Einheitskraftgröße erzeugt ebenfalls eine horizontale Verschiebung, die mit Hilfe des Reduktionssatzes (2. Art) bestimmt werden muss. Es müssen also die Schnittgrößenverläufe bestimmt werden, die sich aus der angenommenen virtuellen äußeren Belastung und aus der -Kraftgröße ergeben. Dies sind die Schnittgrößen des Einheitszustandes, die natürlich aufgrund des gleichen Lastfalls übereinstimmen. Aufgrund der angesetzten Richtung muss sich eine Verschiebung nach rechts einstellen und es ergibt sich: EI δ = ( 4) ( 4) 4 ( 4) ( 4) 6 = 53, Man erhält die virtuelle EI-fache horizontale Verschiebung des Punktes A. Wie oben schon erwähnt ergibt sich das positive Vorzeichen, also eine horizontale Verschiebung nach rechts.

4 FACHBEREICH 0 BAUINGENIEURWESEN Bestimmung der statisch unbekannten Kraftgröße Arbeitsblätter 4 Beide virtuellen horizontalen Verschiebungen sind nun bestimmt, jedoch gilt die Verschiebung des Einheitszustandes nur für eine Einheitskraftgröße. Sie muss jetzt mit einem Faktor so multipliziert werden, dass die Summe beider horizontalen Verschiebungen Null ergibt. Das ist zulässig, da das linear-elastische Materialgesetz (Hooke sche Gesetz) gilt und eine Superposition erlaubt. Addition beider virtuellen Verschiebungen: EI δ X EI δ = 0 Verschiebung muss Null werden 0 ( EI δ ) ( 720) 0 X = = = EI δ 53,333 3,50 kn Es ist also eine horizontale Auflagerkraft vom Betrag 3,50 kn in der angegebenen Richtung erforderlich, damit die horizontale Verschiebung am Lager A zu Null wird. Nun kann durch eine Superposition von Nullzustand und Einheitszustand jede Schnittgröße bestimmt werden. M = M X M Q Q X Q N = N X N oder aus der M Linie bestimmen Auflager Auflager X Auflager 0 = 0 0 = 0 Zwangsschnittgrößen

5 FACHBEREICH 0 BAUINGENIEURWESEN Arbeitsblätter 5 5. VORGEHENSWEISE FÜR DAS BERECHNUNGSBEISPIEL 2 5. Statisch bestimmtes Hauptsystem Zunächst muss das statisch bestimmte Hauptsystem gewählt werden. q= 20 kn / m X C 2 B A Es wird am Punkt C ein Gelenk eingefügt. Somit ist im statisch bestimmten System das Moment am Punkt C Null. Es existiert jedoch im statisch unbestimmten System ein Moment am Punkt C. Dieses Moment muss somit als äußere, virtuelle, statisch unbestimmte Kraftgröße angesetzt. Man erhält durch das Einfügen des Gelenkes zwei Einfeldträger (sehr günstig). Das System ist nun statisch bestimmt (analog zum Drei-Gelenk-Rahmen) und es kann sich nun frei und ohne Zwang verformen. Genauer gesagt wird sich am Punkt C eine gegenseitige Verdrehung einstellen (am M-Gelenk existieren zwei unterschiedliche Verdrehungen). Die Verträglichkeit des Systems ist somit nicht mehr gegeben. Diese gegenseitige Verdrehung ist jedoch am ursprünglichen, statisch unbestimmten System aufgrund der biegesteifen Rahmenecke nicht zulässig und muss mit Hilfe der virtuellen, statisch unbestimmten Kraftgröße wieder rückgängig gemacht werden. Dies erfolgt mit Hilfe des Arbeitssatzes (PvK). 5.2 Schnittgrößen im Nullzustand M 0 [ knm] 0 90 Dies ist die Momentenlinie infolge der äußeren Belastung am statisch bestimmten Hauptsystem. Durch das eingefügte Gelenk ergibt sich die quadratische Parabel.

6 FACHBEREICH 0 BAUINGENIEURWESEN 5.3 Schnittgrößen im Einheitszustand Arbeitsblätter 6 X = M [ knm] Dies ist die Momentenlinie infolge der virtuellen, statisch unbestimmten Kraftgröße am statisch bestimmten Hauptsystem. 5.4 Arbeitssatz Mit Hilfe des Arbeitssatzes (PvK) wird nun genau die erforderliche Größe der virtuellen, statisch unbestimmten Kraftgröße X bestimmt, damit sich die gegenseitige Verdrehung am Punkt C zu Null ergibt. Prinzipiell wird hier der Reduktionssatz (2. Art) angewendet δ 0 - Zahl Als erstes wird die gegenseitige Verdrehung (δ 0 ) bestimmt, die sich aufgrund der äußeren Belastung ergibt. Wie aus der TM II und Baustatik I bekannt ist, werden Verformungen mit Hilfe des PvK, also der -Kraftgröße, berechnet. Dazu werden die Endschnittgrößen des statisch bestimmten Systems mit den Schnittgrößen überlagert, die aus der -Kraftgröße resultieren. Beide Schnittgrößenverläufe sind oben schon dargestellt. Dies ist also nichts anderes als die Anwendung des Reduktionssatzes (2. Art) und es ergibt sich: EI δ0 = 90 6 = 80 3 Man erhält die virtuelle EI-fache gegenseitige Verdrehung am Punkt C δ Zahl Für das statisch bestimmte Hauptsystem wurde angenommen, dass das Moment am Punkt C Null ist, im ursprünglichen, statisch unbestimmten System ist jedoch ein Moment vorhanden. Das Moment wurde zunächst durch eine Einheitskraftgröße als virtuelle, äußere, statisch Unbestimmte angesetzt. Diese Einheitskraftgröße erzeugt ebenfalls eine gegenseitige Verdrehung am Punkt C, die mit Hilfe des Reduktionssatzes (2. Art) bestimmt werden muss. Es müssen also die Schnittgrößenverläufe bestimmt werden, die sich aus der angenommenen äußeren Belastung und aus der -Kraftgröße ergeben. Das sind die Schnittgrößen des Einheitszustandes, die natürlich aufgrund des gleichen Lastfalls übereinstimmen. Es ergibt sich: EI δ = 4 6 = 3, Man erhält die virtuelle EI-fache gegenseitige Verdrehung am Punkt C.

7 FACHBEREICH 0 BAUINGENIEURWESEN Bestimmung der statisch unbekannten Kraftgröße Arbeitsblätter 7 Beide virtuellen gegenseitigen Verdrehungen sind nun bestimmt, jedoch gilt die gegenseitige Verdrehung des Einheitszustandes nur für eine Kraftgröße von. Sie muss jetzt mit einem Faktor so multipliziert werden, dass die Summe beider gegenseitigen Verdrehungen Null ergibt. Das ist zulässig, da das linear-elastische Materialgesetz (Hooke sche Gesetz) gilt und eine Superposition erlaubt. Addition der beiden virtuellen gegenseitigen Verdrehungen: EI δ X EI δ = 0 gegenseitige Verdrehung muss Null werden 0 ( EI δ ) 80 0 X = = = EI δ 3,333 54,00 knm Es ist also ein Moment vom Betrag -54,00 knm in der angegebenen Richtung erforderlich, damit die gegenseitige Verdrehung am Punkt C zu Null wird. Nun kann durch eine Superposition von Nullzustand und Einheitszustand jede Größe bestimmt werden (s. o.). 6. BEMERKUNG Besitzt ein System einen höherwertigen Grad der statischen Unbestimmtheit (a 2), so müssen alle einzelnen Verformungen bestimmt werden, die sich aus der äußeren Belastung und den virtuellen, statisch unbestimmten Kraftgrößen ergeben. Dabei ergeben sich auch innerhalb der Einheitszustände entsprechende Verformungen (δ ik -Zahlen), die bestimmt werden müssen. Da beim Kraftgrößenverfahren die Verträglichkeit für das Gesamttragwerk erfüllt sein muss erhält man das bekannte lineare Gleichungssystem in der folgenden Form: δ δ2 δ a δ2 δ22 δ2a δa δa2 δaa X δ0 X 2 δ 20 = X a δa0 Systemnachgiebigkeitsmatrix

8 FACHBEREICH 0 BAUINGENIEURWESEN Arbeitsblätter 8 7. ENDSCHNITTGRÖßEN UND AUFLAGERREAKTIONEN 54 M [ knm] 2,55 m M max = 65, 03 5 Q [ kn] 3, , 50 3, N [ kn] Auflager 3,50 69

Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen

Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen www.statik-lernen.de Beispiele Zweifeldträger Seite Auf den folgenden Seiten wird das 'Kraftgrößenverfahren' (X A -Methode) zur Berechnung der Schnittkräfte statischer Systeme am Beispiel eines -fach statisch

Mehr

Baustatik & Festigkeitslehre Vorlesung & Übung

Baustatik & Festigkeitslehre Vorlesung & Übung Baustatik & Festigkeitslehre Vorlesung & Übung Vortragender: O.Univ.Prof. DI Dr. Dr. Konrad Bergmeister Kraftgrößenverfahren Wenn statisch unbestimmte Systeme berechnet werden sollen, müssen zusätzliche

Mehr

Arbeitsunterlagen. Statik 2

Arbeitsunterlagen. Statik 2 Arbeitsunterlagen Statik 2 WS 2014/15 Stand 07.10.2014 Inhalt 1. Vertiefung KGV 1.1 Eingeprägte Auflagerverformungen 1.2 Vorspannung 1.3 Systeme mit elastischer Lagerung 1.4 Ermittlung von Federsteifigkeiten

Mehr

Grundfachklausur Teil 2 / Statik II

Grundfachklausur Teil 2 / Statik II Technische Universität Darmstadt Institut für Werkstoffe und Mechanik im Bauwesen Fachgebiet Statik Prof. Dr.-Ing. Jens Schneider Grundfachklausur Teil 2 / Statik II im Sommersemester 204, am 08.09.204

Mehr

Berechnung statisch unbestimmter Systeme mit Hilfe des Kraftgrößenverfahrens

Berechnung statisch unbestimmter Systeme mit Hilfe des Kraftgrößenverfahrens Berechnung statisch unbestimmter Systeme mit Hilfe des Kraftgrößenverfahrens Bachelorprojekt eingereicht am Institut für Baustatik der Technischen Universität Graz im Wintersemester 2009/20 Verfasser:

Mehr

Kontrolle von Beispielen zum Kraftgrößenverfahren mit RuckZuck

Kontrolle von Beispielen zum Kraftgrößenverfahren mit RuckZuck Kontrolle von Beispielen zum Kraftgrößenverfahren mit RuckZuck Bachelor Projekt eingereicht am Institut für Baustatik der Technischen Universität Graz im November 2009 Verfasser: Betreuer: Mario Jackisch

Mehr

Fachhochschule München Fachbereich 02 BI 4. Semester Name:... 1. und 2. Studienarbeit aus Baustatik II

Fachhochschule München Fachbereich 02 BI 4. Semester Name:... 1. und 2. Studienarbeit aus Baustatik II Fachbereich 02 BI 4. Semester 1. und 2. Studienarbeit aus Baustatik II 1. Aufgabe: Bestimmen Sie mit Hilfe des Drehwinkelverfahrens die Schnittgrößen des obigen Tragwerkes und stellen Sie deren Verlauf

Mehr

Berechnung von Trägerrosten mittels Kraftgrößenmethode

Berechnung von Trägerrosten mittels Kraftgrößenmethode Berechnung von Trägerrosten mittels Kraftgrößenmethode Bachelor Projekt eingereicht am Institut für Baustatik der Technischen Universität Graz im Oktober 2010 Verfasser: Betreuer: Novak Friedrich Dipl.-Ing.

Mehr

Modul 13. Baustatik I und II. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben)

Modul 13. Baustatik I und II. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) Bachelorprüfung Winter 2011 Modul 13 Baustatik I und II Klausur am 15.01.2011 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig!) Aufgabe 1 2 3 4 5 6 7 Summe mögliche Punkte 30 22 18

Mehr

www.statik-lernen.de Inhaltsverzeichnis Kräfte und Kraftarten Äußere und innere Kräfte Das zentrale Kräftesystem Momente Auflager Zustandslinien

www.statik-lernen.de Inhaltsverzeichnis Kräfte und Kraftarten Äußere und innere Kräfte Das zentrale Kräftesystem Momente Auflager Zustandslinien www.statik-lernen.de Grundlagen Inhaltsverzeichnis Kräfte und Kraftarten o Bestimmung von Kräften... Seite 1 o Graphische Darstellung... Seite 1 o Einheit der Kraft... Seite 1 o Kräftegleichgewicht...

Mehr

POS: 001 Bezeichnung: Hallendach Thermodachelemente System M 1 : 75 1 2 3 45 9.10 BAUSTOFF : S 355 E-Modul E = 21000 kn/cm2 γm = 1.10 spez. Gewicht : 7.85 kg/dm3 QUERSCHNITTSWERTE Quersch. Profil I A Aq

Mehr

Stabwerkslehre - WS 11/12 Prof. Dr. Colling

Stabwerkslehre - WS 11/12 Prof. Dr. Colling Fachhochschule Augsburg Studiengang Bauingenieurwesen Stabwerkslehre - WS 11/12 Name: Prof. Dr. Colling Arbeitszeit: Hilfsmittel: 90 min. alle, außer Rechenprogrammen 1. Aufgabe (ca. 5 min) Gegeben: Statisches

Mehr

Statisch Unbestimmte Systeme

Statisch Unbestimmte Systeme 3. Semester Seite 1/13 Statisch Unbestimmte Systeme 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. Begriffe 2 3. Grundlagen 2 4. Freischneiden 2 4.1 Darstellung des Verfahrens am Zweifeldträger 2 4.2 Verallgemeinerte

Mehr

6) DIE EINFACHSTEN STATISCH BESTIMMTEN TRAEGER

6) DIE EINFACHSTEN STATISCH BESTIMMTEN TRAEGER BAULEITER HOCHBAU S T A T I K / F E S T I G K E I T S L E H R E 6) DIE EINFACHSTEN STATISCH BESTIMMTEN TRAEGER 1) Definition für statisch bestimmte Systeme 2) Auflagerreaktionen beim einfachen Balken 3)

Mehr

1. Einfache ebene Tragwerke

1. Einfache ebene Tragwerke Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse

Mehr

Dreigelenkrahmen unter vertikalen und horizontalen Einzellasten sowie horizontaler Streckenlast

Dreigelenkrahmen unter vertikalen und horizontalen Einzellasten sowie horizontaler Streckenlast www.statik-lernen.de Beispiele Dreigelenkrahmen Seite 1 Auf den folgenden Seiten wird das Knotenschnittverfahren zur Berechnung statisch bestimmter Systeme am Beispiel eines Dreigelenkrahmens veranschaulicht.

Mehr

Inhalt 1 Einführung 2 Wirkung der Kräfte 3 Bestimmung von Schwerpunkten

Inhalt 1 Einführung 2 Wirkung der Kräfte 3 Bestimmung von Schwerpunkten Inhalt (Abschnitte, die mit * gekennzeichnet sind, enthalten Übungsaufgaben) 1 Einführung... 1 1.1 Begriffe und Aufgaben der Statik... 2 1.1.1 Allgemeine Begriffe 1.1.2 Begriffe für Einwirkungen... 4 1.1.3

Mehr

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1.

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. Der Satz von Betti oder warum Statik nicht statisch ist. Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. (1) Bevor

Mehr

2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen

2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen Inhaltsverzeichnis 1 Einleitung... 1 1.1 Aufgaben der Elastostatik.... 1 1.2 Einige Meilensteine in der Geschichte der Elastostatik... 4 1.3 Methodisches Vorgehen zur Erarbeitung der vier Grundlastfälle...

Mehr

Technische Mechanik. Statik

Technische Mechanik. Statik Hans Albert Richard Manuela Sander Technische Mechanik. Statik Lehrbuch mit Praxisbeispielen, Klausuraufgaben und Lösungen 4., überarbeitete und erweiterte Auflage Mit 263 Abbildungen ^ Springer Vieweg

Mehr

Bestimmen Sie für den dargestellten Balken die Auflagerkräfte sowie die N-, Q- und M-Linie (ausgezeichnete Werte sind anzugeben).

Bestimmen Sie für den dargestellten Balken die Auflagerkräfte sowie die N-, Q- und M-Linie (ausgezeichnete Werte sind anzugeben). Technische Universität Darmstadt Technische Mechanik I B 13, G Kontinuumsmechanik Wintersemester 007/008 Prof. Dr.-Ing. Ch. Tsakmakis 9. Lösungsblatt Dr. rer. nat. P. Grammenoudis 07. Januar 008 Dipl.-Ing.

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden

Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden 47 8 achwerke achwerke sind Tragwerkstrukturen aus geraden Stäben. Sie finden ihren Einsatz überall dort, wo große Distanzen zu überbrücken sind. Durch ihren Aufbau vermeiden sie Momentenbelastungen und

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Grundlagen der Integralrechnung: Übungsaufgaben zur Berechnung unbestimmter und bestimmter Integrale Das komplette Material finden

Mehr

Einführung in die linearen Funktionen. Autor: Benedikt Menne

Einführung in die linearen Funktionen. Autor: Benedikt Menne Einführung in die linearen Funktionen Autor: Benedikt Menne Inhaltsverzeichnis Vorwort... 3 Allgemeine Definition... 3 3 Bestimmung der Steigung einer linearen Funktion... 4 3. Bestimmung der Steigung

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Statik- und Festigkeitslehre I

Statik- und Festigkeitslehre I 05.04.2012 Statik- und Festigkeitslehre I Prüfungsklausur 2 WS 2011/12 Hinweise: Dauer der Klausur: Anzahl erreichbarer Punkte: 120 Minuten 60 Punkte Beschriften Sie bitte alle Seiten mit und Matrikelnummer.

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik Kapitel : Berechnungsverfahren für Netzwerke Berechnungsverfahren für Netzwerken. Überlagerungsprinzip. Maschenstromverfahren. Knotenpotentialverfahren 6. Zweipoltheorie 7.5

Mehr

1 Technische Mechanik 2 Festigkeitslehre

1 Technische Mechanik 2 Festigkeitslehre Russell C. Hibbeler 1 Technische Mechanik 2 Festigkeitslehre 5., überarbeitete und erweiterte Auflage Übersetzung aus dem Amerikanischen: Nicoleta Radu-Jürgens, Frank Jürgens Fachliche Betreuung und Erweiterungen:

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Einleitung Ebener Druckstab Ebene Stabsysteme Räumliche Systeme. Stabilitätsfragen. Theorie II. Ordnung. Dr.-Ing. Jürgen Priebe

Einleitung Ebener Druckstab Ebene Stabsysteme Räumliche Systeme. Stabilitätsfragen. Theorie II. Ordnung. Dr.-Ing. Jürgen Priebe Stabilitätsfragen Theorie II. Ordnung Wintersemester 2012/2013 Stabilitätsfragen 1 / 36 Einleitung Begriffe (aus Wikipedia) Theorie I. Ordnung Die Berechnung der Kräfte an unverformten Tragwerken nennt

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Spezialgebiet Mathematik(Christian Behon ) 1. Matrizen. Kapitel 1 Definitionen und Herleitung von Matrizen. Kapitel 2 Matrizenoperation

Spezialgebiet Mathematik(Christian Behon ) 1. Matrizen. Kapitel 1 Definitionen und Herleitung von Matrizen. Kapitel 2 Matrizenoperation . Inhaltsverzeichnis.............. Spezialgebiet Mathematik(Christian Behon ) 1 Matrizen Kapitel 1 Definitionen und Herleitung von Matrizen 1.1 Was sind Matrizen 1.2 Arten von Matrizen Kapitel 2 Matrizenoperation

Mehr

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte. Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische

Mehr

5. Tragsysteme. Vorlesung und Übungen 1. Semester BA Architektur.

5. Tragsysteme. Vorlesung und Übungen 1. Semester BA Architektur. 5. Tragsysteme Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu BI - I Tragsysteme

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

7.2 Dachverband Achse Pos A1

7.2 Dachverband Achse Pos A1 7.2 Dachverband Achse 1 + 2 Pos A1 Dieser neukonstruierte Dachverband ersetzt den vorhandenen alten Verband. Um die Geschosshöhe der Etage über der Zwischendecke einhalten zu können, wird er auf dem Untergurt

Mehr

22M Ziegelsturz, -Wärmedämmsturz

22M Ziegelsturz, -Wärmedämmsturz Programmvertriebsgesellschaft mbh Lange Wender 1 34246 Vellmar BTS STATIK-Beschreibung - Bauteil: 22M -Ziegel,-Dämmsturz Seite 1 22M Ziegelsturz, -Wärmedämmsturz Das Programm dient der Bemessung von Ziegel-

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr

Sessionsprüfung Stahlbeton I+II. Sommer Donnerstag, 22. August 2013, Uhr, HIL F61

Sessionsprüfung Stahlbeton I+II. Sommer Donnerstag, 22. August 2013, Uhr, HIL F61 Sessionsprüfung Stahlbeton I+II Sommer 2013 Donnerstag, 22. August 2013, 14.00 17.00 Uhr, HIL F61 Name, Vorname : Studenten-Nr. : Bemerkungen 1. Für die Raumlast von Stahlbeton ist 25 kn/m 3 anzunehmen.

Mehr

Überbestimmte lineare Gleichungssysteme

Überbestimmte lineare Gleichungssysteme Überbestimmte lineare Gleichungssysteme Fakultät Grundlagen September 2009 Fakultät Grundlagen Überbestimmte lineare Gleichungssysteme Übersicht 1 2 Fakultät Grundlagen Überbestimmte lineare Gleichungssysteme

Mehr

Statisch bestimmte Tragsysteme

Statisch bestimmte Tragsysteme Statisch bestimmte Tragsysteme Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Statisch

Mehr

Klaus Palme Tel. +49 (0) Fax Nr. +49 (0)

Klaus Palme Tel. +49 (0) Fax Nr. +49 (0) Datum 06.12.2011 Bericht Auftraggeber 2011/016-B-5 / Kurzbericht Palme Solar GmbH Klaus Palme Tel. +49 (0) 73 24-98 96-433 Fax Nr. +49 (0) 73 24-98 96-435 info@palme-solar.de Bestellungsnummer 7 Auftragnehmer

Mehr

TI-89. Gleichungssysteme

TI-89. Gleichungssysteme TI-89 Gleichungssysteme Hans Berger 005 Lineare Gleichungssysteme Der TI-89 kann beliebige Objekte in Variable speichern, auch ganze Gleichungen. Man kann somit beliebige Gleichungen z.b. in g1, g, g3,

Mehr

Mathematik 1, Teil B. Inhalt:

Mathematik 1, Teil B. Inhalt: FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Inhaltsverzeichnis 1 Matrizenrechnung 2 Grundgleichungen der Elastizitätstheorie 3 Finite-Element-Methode für Stabwerke

Inhaltsverzeichnis 1 Matrizenrechnung 2 Grundgleichungen der Elastizitätstheorie 3 Finite-Element-Methode für Stabwerke IX Inhaltsverzeichnis 1 Matrizenrechnung... 1 1.1 Matrizen und Vektoren... 1 1.2 Matrizenalgebra... 3 1.2.1 Addition und Subtraktion... 3 1.2.2 Multiplikation... 4 1.2.3 Matrizeninversion... 6 1.3 Gleichungssysteme...

Mehr

Ruckzuck Symbolleisten

Ruckzuck Symbolleisten Ruckzuck Symbolleisten Automatische Berechnung Theorie I. Ordnung, II. Ordn., Stabilität, Dyynamik, Knicklänge Bemessung,.., N, Q, M, Biegelinie, Auflagerkräfte, Stabergebnis, min/max. je Stab, Knotenwerte

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

4) ZUSAMMENSETZEN UND ZERLEGEN VON KRAEFTEN IN DER EBENE

4) ZUSAMMENSETZEN UND ZERLEGEN VON KRAEFTEN IN DER EBENE BAULEITER HOCHBAU S T A T I K / F E S T I G K E I T S L E H R E 4) ZUSAMMENSETZEN UND ZERLEGEN VON KRAEFTEN IN DER EBENE 1) Kräfte greifen in einem Punkt an a) Zusammensetzen (Reduktion) von Kräften -

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

1. Gleichstrom 1.4 Berechnungsverfahren für die Netzwerke Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie

1. Gleichstrom 1.4 Berechnungsverfahren für die Netzwerke Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie 1 Überlagerungsprinzip (Superposition) Vorgehensweise: Jede Energiequelle wird getrennt betrachtet Resultierende Gesamtwirkung

Mehr

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=%

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Basistext Lineare Gleichungssysteme Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Mit zwei Unbekannten gibt es die allgemeine Form:! #+% '=( Gelten mehrere dieser Gleichungen

Mehr

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Regina Gellrich Carsten Gellrich Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen

Mehr

Draufsicht - Aufprall auf Poller 1:50

Draufsicht - Aufprall auf Poller 1:50 Draufsicht - Aufprall auf Poller Draufsicht - Aufprall auf Poller mit Schutzplanke VdTÜV-Merkblatt 965 Teil 2, Stand: 18.03.2011 Bild 1 - Poller, Zapfsäule vor dem Behälter Draufsicht Draufsicht VdTÜV-Merkblatt

Mehr

Ebene algebraische Kurven

Ebene algebraische Kurven Ebene algebraische Kurven Tangenten und Singularitäten Meyrer Claudine 4. November 010 Inhaltsverzeichnis 1 Lokale Eigenschaften an-algebraischer Kurven (in C ) 1.1 Denitionen..............................

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Bei freien Schwingungen greifen keine zeitlich veränderlichen äußeren Kräfte am schwingenden System an. Das System wird nach einer anfänglichen Störung sich selbst überlassen. Die

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

Aufgaben zu Kapitel 14

Aufgaben zu Kapitel 14 Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Poelchau-Oberschule Berlin A. Mentzendorff September 2007 Lineare Gleichungssysteme Inhaltsverzeichnis 1 Grundlagen 2 2 Das Lösungsverfahren von Gauß 4 3 Kurzschreibweise und Zeilensummenkontrolle 6 4

Mehr

Ingenieurholzbau I, WS 2005/06

Ingenieurholzbau I, WS 2005/06 Fachhochschule Augsburg Studiengang Bauingenieurwesen Name:... Ingenieurholzbau I, WS 2005/06 Prüfungstag: 03.02.2006 Arbeitszeit: 90 Minuten Hilfsmittel: Formelsammlung, Bemessungstabellen Aufgabe 1 (ca.

Mehr

Energie und Energieerhaltung

Energie und Energieerhaltung Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Algorithmen zur Integer-Multiplikation

Algorithmen zur Integer-Multiplikation Algorithmen zur Integer-Multiplikation Multiplikation zweier n-bit Zahlen ist zurückführbar auf wiederholte bedingte Additionen und Schiebeoperationen (in einfachen Prozessoren wird daher oft auf Multiplizierwerke

Mehr

Otto Bruhns. Aufgabensammlung Technische Mechanik 1. Statik für Bauingenieure und Maschinenbauer

Otto Bruhns. Aufgabensammlung Technische Mechanik 1. Statik für Bauingenieure und Maschinenbauer Otto Bruhns Aufgabensammlung Technische Mechanik 1 Statik für Bauingenieure und Maschinenbauer Otto Bruhns Aufgabensammlung Technische Mechanik 1 Statik für Bauingenieure und Maschinenbauer Mit 321 Abbildungen.

Mehr

Ergänzende Informationen zum Praktikum

Ergänzende Informationen zum Praktikum Philipps-Universität Marburg Medipraktikum Ergänzende Informationen zum Praktikum Assistent: Markus Dörr E-mail: markusdoerr@hotmail.de Wintersemester 10/11 Inhaltsverzeichnis Inhaltsverzeichnis 1 Allgemeine

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften W. Kippels 10. April 2016 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Prinzipielle Vorgehensweise.......................... 2 1.2 Lösungsrezepte................................

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Kapitel I. Lineare Gleichungssysteme

Kapitel I. Lineare Gleichungssysteme Kapitel I Lineare Gleichungsssteme Lineare Gleichungen in zwei Unbestimmten Die Grundaufgabe der linearen Algebra ist das Lösen von linearen Gleichungssstemen Beispiel : Gesucht sind alle Lösungen des

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. ausmultiplizieren. Anwenden von Potenzgesetzen, Wurzelgesetzen, Logarithmengesetzen

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. ausmultiplizieren. Anwenden von Potenzgesetzen, Wurzelgesetzen, Logarithmengesetzen 3. Algebraische Grundlagen 3.1. Termumformungen Begriff Term: mathematischer Ausdruck, der aus Zahlen, Variablen, Rechenzeichen oder Klammern besteht Termumformungen dienen der Vereinfachung von komplexen

Mehr

8 Tangenten an Quadriken

8 Tangenten an Quadriken 8 Tangenten an Quadriken A Geraden auf Quadriken: Sei A 0 eine symmetrische n n Matri und Q : t A + b t + c = 0 eine nicht leere Quadrik im R n, b R n, c R. g = p + R v R n ist die Gerade durch p mit Richtung

Mehr

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden: Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009

Mehr

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufgabe 1 Ein Polynom 3. Grades hat eine Nullstelle bei x 0 = 0 und einen Wendepunkt bei x w = 1. Die Gleichung der Wendetangente lautet

Mehr

Beispiel 1: Querschnittstragfähigkeit

Beispiel 1: Querschnittstragfähigkeit Titel: Querschnittstragfähigkeit Blatt: Seite 1 von 10 Beispiel 1: Querschnittstragfähigkeit Belastung: M y,ed = 190 knm N Ed = 700 kn V z,ed = 100 kn Material: S 235 Nachweis des Querschnitts nach DIN-EN

Mehr

Topologische Räume und stetige Abbildungen Teil 2

Topologische Räume und stetige Abbildungen Teil 2 TU Dortmund Mathematik Fakultät Proseminar zur Linearen Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Teil 2 Anna Kwasniok Dozent: Prof. Dr. L. Schwachhöfer Vorstellung des

Mehr

Lineare Funktionen Geraden zeichnen Lage von Geraden Geradengleichung aufstellen

Lineare Funktionen Geraden zeichnen Lage von Geraden Geradengleichung aufstellen Geradengleichungen und lineare Funktionen Lese- und Lerntext für Anfänger Lineare Funktionen Geraden zeichnen Lage von Geraden Geradengleichung aufstellen Geraden schneiden Auch über lineare Gleichungssystem

Mehr

STATISCHE BERECHNUNG vom 20.04.2012

STATISCHE BERECHNUNG vom 20.04.2012 Projekt : 1020-12 Frank Blasek Beratender Ingenieur Heinestraße 1 D-33142 Büren Tel. +49 2951-937 582-0 Fax +49 2951-937 582-7 info@ifb-blasek.de Ingenieurbüro Frank Blasek Beratender Ingenieur Heinestraße

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis. 3

Inhaltsverzeichnis. Inhaltsverzeichnis.  3 Inhaltsverzeichnis Inhaltsverzeichnis Vorwort 4 1 Der Taschenrechner 5 1.1 Erste Rechnungen.................................. 5 1.2 Bearbeiten und Löschen der Eingaben....................... 7 1.3 Mehrere

Mehr

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen R. Brinkmann http://brinkmann-du.de Seite.0.0 Aufstellen der Funktionsgleichung aus gegebenen Bedingungen Drei unterschiedliche Punkte, die alle auf einer Parabel liegen sollen sind gegeben. Daraus soll

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Brückenkurs Elementarmathematik

Brückenkurs Elementarmathematik Brückenkurs Elementarmathematik IV. Ungleichungen November 13, 2013 Inhalt 1 Ungleichungen 2 Umformungen von Ungleichungen 2.1 Äquivalenzumformungen 2.2 Addition und Multiplikation von Ungleichungen 3

Mehr