Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir?

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir?"

Transkript

1 Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Wo sind wir?

2 Quelle Nachricht Senke Sender Signal Übertragungsmedium Empfänger Quelle Nachricht Senke Primäres Signal Primäres Signal Codierer Nachrichtentechnischer Kanal Dekodierer Eingabesignal Ausgabesignal Physikalisches Medium

3 Nachrichten mit Hilfe der im Kanal darstellbaren Signale codieren Eigenschaften der Codierung: eindeutige Codierung eindeutige Decodierung Zu codieren sei die Himmelsrichtung der Windrose, mit den Werten: Nord, Nord-Ost, Ost, Süd-Ost, Süd, Süd-West, West, Nord-West

4 Wieviel Bit werden benötigt (mind. 8 Möglichkeiten)? 3-Bit-Code: 000 Nord 100 Süd 001 Nord-Ost 101 Süd-West 010 Ost 110 West 011 Süd-Ost 111 Nord-West Quelle Nachricht Senke Primäres Signal Primäres Signal Umformer Nachrichtentechnischer Kanal Rückformer Eingabesignal Ausgabesignal Physikalisches Medium Störquelle

5 bei Übertragung werden ein oder mehrere Bits invertiert Fehler sind beim Empfänger nicht erkennbar Gesendet: 001 (Nord-Ost) empfangen: 101 (Süd-West) Idee: Wiederholungscode: Nachteil: Verdopplung der Datenmenge Eigenschaften der Codierung: eindeutige Codierung eindeutige Decodierung Erweiterung um Fehlererkennung Fehlerkorrektur

6 latein. redundare im Überfluss vorhanden sein bezeichnet Zustand von Überschneidung oder Überfluss bedeutet, dass etwas öfter vorhanden ist, als eigentlich nötig in Bezug auf Hardware: mehrfaches Vorhandensein von Hardware, um Ausfälle abzufangen und damit Stabilität und Sicherheit zu steigern (beispielsweise RAID) in Bezug auf Sprache: Verständlichkeit wird selbst ohne (oder durch Verfälschung) bestimmter Wörter bzw. Buchstaben noch erreicht Lsst mn bsplsws m Txt Vkl wg, blbt r trtzdm lsbr. in Bezug auf Daten: mehr Daten sind vorhanden, als zur Übermittlung bzw. Speicherung der eigentlichen Information notwendig sind Quelle: ( ) Fehler erkennen: Code um eine zusätzliche Stelle erweitern so belegen, dass Anzahl Einsen stets gerade erkennen so Übertragungsfehler, die ein oder drei Bit verändern, aber nicht welche(s) 4-Bit-Code (3 Bit mit Parität): 0000 Nord 1001 Süd 0011 Nord-Ost 1010 Süd-West 0101 Ost 1100 West 0110 Süd-Ost 1111 Nord-West Gesendet: 0011 (Nord-Ost) empfangen: 1011 (ungültiger Code)

7 Codierung - eineindeutige Abbildung der Wortmenge A + über einem Alphabet A (Quellencode/ Information) auf die Wortmenge B + über einem Alphabet B Code - Menge aller Codewörter, d.h. das Bild c(a + ) B + Binärcodes - Codes über dem Alphabet {0, 1} Blockcodes - Codes mit konstanter Codewortlänge Lineare Codes - Summe zweier gültiger Codeworte ist ebenfalls ein gültiges Codewort (Modulo-Arithmetik!) Systematische Codes - Codeworte bestehen aus m Informationsbits gefolgt von n-m Prüfbits Zyklische Codes - durch bitweises Rotieren eines Codewortes entsteht wieder ein gültiges Codewort Bei dem Code mit Paritätsbit im einführenden Beispiel handelt es sich um einen systematischen, linearen, zyklischen Code.

8 Hamming-Abstand dist(u, v) mit u,v in C - Anzahl der Stellen, an denen sich die Codeworte u und v eines Codes C unterscheiden C = {0011,1001,1110) h = 2 (0011,1001) h = 3 (0011,1110) h = 3(1001,1110) minimaler Hamming-Abstand d = min(dist(u, v)) mit u,v in C für alle u!= v C = {0011,1001,1110) h = 2 (0011,1001) h = 3 (0011,1110) h = 3 (1001,1110)

9 Gewicht wt(u) mit u in C - Anzahl der Einsen im Codewort Hinweis Der minimale Hamming-Abstand eines linearen Codes ist das minimale Gewicht aller Codeworte, die ungleich Null sind. C = {0011,1001,1110) G=2, G=2, G=3 um d Fehler zu erkennen, braucht der Code einen min. Hamming-Abstand von d+1 Damit ist es ausgeschlossen, mit d Einzelbitfehlern ein gültiges Codewort zu erhalten. Um d Fehler korrigieren zu können, braucht der Code einen min. Hamming-Abstand von 2d+1. Damit wird sichergestellt, dass das fehlerhafte Codewort bei d Fehlern noch immer näher am originalen Codewort liegt. Beispiel: Code , , , hat Abstand von 5 4 Bitfehler erkennbar und 2 Fehler sicher zu korrigieren Dreifachfehler, z.b kann nicht korrekt korrigiert werden

10 soll Information nicht verschlüsseln (im Sinne vom Geheimhaltung), sonder Sicherstellen, dass Übertragung keine Fehler enthält Codes der Länge n, mit k Info-Bits und r=n-k Prüf-Bits c c 1 c 2 c k c k1 cn k Infobits (nk) Pr üfbits n Bits Vorteil: Information ist auch direkt (ohne Dekodierschritt) ablesbar k wird als Dimension des Codes bezeichnet hat Code Länge n und Dimension k [n, k]-code [n, k]-code mit Minimalabstand d [n, k, d]-code Prinzip der Kodierfunktion Die zu codierende Information wird als Zeilenvektor x T = (x 1,...,x k ) interpretiert und mit einer Generatormatrix G multipliziert. c = x T G Aufbau der Generatormatrix a a G (I,A) I ak,k 1 a 1,k1 1,n k k I k - Einheitsmatrix der Dimension k k,n

11 3 Informationsbits (k), 3 Prüfbits a a 1,k1 1,n k k G (I,A) I ak,k 1 a k,n Prüf-Bits Datenbits (Info + Prüf-Bits) : : : N 100 S 001 NO 101 SW 010 O 110 W 011 SO 111 NW Alle Operationen werden in modulo-2-arithmetik ausgeführt (z.b = 1, = 0) 001 * : : : =

12 Alle Operationen werden in modulo-2-arithmetik ausgeführt (z.b = 1, = 0) ??? XYZ * : : : Info = 001 Code = Addition zweier Codewörter ergibt wieder Codewort ( = ) Minimale Hamming-Abstand - Code mit alles 0 ignorieren - Code mit kleinster Anzahl Einsen suchen - Gewicht bestimmen

13 Prinzip der Dekodierung/ Fehlererkennung Die zu prüfende Information wird als Spaltenvektor c interpretiert und mit einer Prüfmatrix P multipliziert. s = P c Ergebnis der Multiplikation wird Syndrom genannt im Falle einer Fehlerfreien Übertragung gilt s = 0 Aufbau der Prüfmatrix a1,k 1 a k,k1 T P (A,I nk) Ink a1,n a k,n 3 Informationsbits (k), 3 Prüfbits Generatormatrix: : : : Prüfmatrix: : : : 0 0 1

14 Codewort: : : : * = 000 Handelt es sich bei und um gültige Codeworte des vorgestellen Codes? P = : : : 0 0 1

15 8 Codewörter, 56 falsche Codewörter (durch Codewort + Vektor entsteht Nebenklasse) Fehler beheben: - Syndrom suchen - Klasse bestimmen - Nebenklassenführer bestimmen - Empfangene Nachricht + NK-Führer = Korrektur (Addition)

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen Übungen zur Vorlesung Grundlagen der Rechnernetze Zusätzliche Übungen Hamming-Abstand d Der Hamming-Abstand d zwischen zwei Codewörtern c1 und c2 ist die Anzahl der Bits, in denen sich die beiden Codewörter

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Rechnernetze Übung 6 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

Die Mathematik in der CD

Die Mathematik in der CD Lehrstuhl D für Mathematik RWTH Aachen Lehrstuhl D für Mathematik RWTH Aachen St.-Michael-Gymnasium Monschau 14. 09. 2006 Codes: Definition und Aufgaben Ein Code ist eine künstliche Sprache zum Speichern

Mehr

Fehlerschutz durch Hamming-Codierung

Fehlerschutz durch Hamming-Codierung Versuch.. Grundlagen und Begriffe Wesentliche Eigenschaften der Hamming-Codes für die Anwendung sind: der gleichmäßige Fehlerschutz für alle Stellen des Codewortes und die einfache Bildung des Codewortes

Mehr

Codierungstheorie Teil 1: Fehlererkennung und -behebung

Codierungstheorie Teil 1: Fehlererkennung und -behebung Codierungstheorie Teil 1: Fehlererkennung und -behebung von Manuel Sprock 1 Einleitung Eine Codierung ist eine injektive Abbildung von Wortmengen aus einem Alphabet A in über einem Alphabet B. Jedem Wort

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

Grundlagen der Technischen Informatik. 2. Übung

Grundlagen der Technischen Informatik. 2. Übung Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Organisatorisches Übungsblätter zuhause vorbereiten! In der Übung an der Tafel vorrechnen! Bei

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

Übung 14: Block-Codierung

Übung 14: Block-Codierung ZHW, NTM, 26/6, Rur Übung 4: Block-Codierung Aufgabe : Datenübertragung über BSC. Betrachten Sie die folgende binäre Datenübertragung über einen BSC. Encoder.97.3.3.97 Decoder Für den Fehlerschutz stehen

Mehr

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 1. Das Problem 1.1. Kanalcodierung und Fehlerkorrektur. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder 1 übertragen kann, schicken.

Mehr

Grundlagen der Technischen Informatik. Hamming-Codes. Kapitel 4.3

Grundlagen der Technischen Informatik. Hamming-Codes. Kapitel 4.3 Hamming-Codes Kapitel 4.3 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Inhalt Welche Eigenschaften müssen Codes haben, um Mehrfachfehler erkennen und sogar korrigieren zu können?

Mehr

Codes (6) Fehlererkennende (EDC) bzw. fehlerkorrigierende Codes (ECC)

Codes (6) Fehlererkennende (EDC) bzw. fehlerkorrigierende Codes (ECC) Codes (6) Fehlererkennende (EDC) bzw. fehlerkorrigierende Codes (ECC) Definitionen: Codewort:= mit zusätzlichen (redundanten) Kontrollbits versehenes Quellwort m:= Länge des Quellwortes (Anzahl der Nutzdatenbits)

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 Modul Diskrete Mathematik WiSe / Ergänzungsskript zum Kapitel 3.4. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung besuchen

Mehr

Einführung in die Codierungstheorie

Einführung in die Codierungstheorie Einführung in die Codierungstheorie Monika König 11.12.2007 Inhaltsverzeichnis 1 Einführung und Definitionen 2 2 Fehlererkennende Codes 3 2.1 Paritycheck - Code............................... 3 2.2 Prüfziffersysteme................................

Mehr

Error detection and correction

Error detection and correction Referat Error detection and correction im Proseminar Computer Science Unplugged Dozent Prof. M. Hofmann Referent Pinto Raul, 48005464 Datum 19.11.2004 Error detection and correction 1. Fehlererkennung

Mehr

Zyklische Codes Rechnernetze Übung SS2010

Zyklische Codes Rechnernetze Übung SS2010 Zyklische Codes Binärcodes Blockcodes Lineare Codes Nichtlineare Codes Zyklische Codes Systematische Codes Binärcodes Blockcodes Lineare Codes Nichtlineare Codes Zyklische Codes Systematische Codes Durch

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Darstellung von Zeichen und

Mehr

Übungsblatt Nr. 7. Lösungsvorschlag

Übungsblatt Nr. 7. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Nico Döttling Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 7 svorschlag Aufgabe (K)

Mehr

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2 AUFGABEN KANALCODIERUNG Aufgabe Wir betrachten den Hamming-Code mit m = 5 Prüfbits. a) Wie gross ist die Blocklänge n dieses Codes? b) Wie viele gültige Codewörter umfasst dieser Code? c) Leiten Sie die

Mehr

Formelsammlung Kanalcodierung

Formelsammlung Kanalcodierung Formelsammlung Kanalcodierung Allgemeines Codewortlänge: N Anzahl der Informationsstellen: K Coderate: R = K/N Hamming-Distanz: D( x i, x j ) = w( x i xj ) Codedistanz: d = min D( x i, x j ); i j Fehlerkorrektur:

Mehr

Themen. Sicherungsschicht. Rahmenbildung. Häufig bereitgestellte Dienste. Fehlererkennung. Stefan Szalowski Rechnernetze Sicherungsschicht

Themen. Sicherungsschicht. Rahmenbildung. Häufig bereitgestellte Dienste. Fehlererkennung. Stefan Szalowski Rechnernetze Sicherungsschicht Themen Sicherungsschicht Rahmenbildung Häufig bereitgestellte Dienste Fehlererkennung OSI-Modell: Data Link Layer TCP/IP-Modell: Netzwerk, Host-zu-Netz Aufgaben: Dienste für Verbindungsschicht bereitstellen

Mehr

(Prüfungs-)Aufgaben zur Codierungstheorie

(Prüfungs-)Aufgaben zur Codierungstheorie (Prüfungs-)Aufgaben zur Codierungstheorie 1) Gegeben sei die folgende CCITT2-Codierung der Dezimalziffern: Dezimal CCITT2 0 0 1 1 0 1 1 1 1 1 0 1 2 1 1 0 0 1 3 1 0 0 0 0 4 0 1 0 1 0 5 0 0 0 0 1 6 1 0 1

Mehr

6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke. 6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238

6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke. 6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238 6 Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 6 Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238 Erinnerung: Der Vektorraum F n 2 Schreiben {0, 1} n als F n 2 Definition

Mehr

Einführung in die Codierungstheorie

Einführung in die Codierungstheorie 11. Dezember 2007 Ausblick Einführung und Definitionen 1 Einführung und Definitionen 2 3 Einführung und Definitionen Code: eindeutige Zuordnung von x i X = {x 1,.., x k } und y j Y = {y 1,..., y n } Sender

Mehr

Klausur Informationstheorie und Codierung

Klausur Informationstheorie und Codierung Klausur Informationstheorie und Codierung WS 2013/2014 23.01.2014 Name: Vorname: Matr.Nr: Ich fühle mich gesundheitlich in der Lage, die Klausur zu schreiben Unterschrift: Aufgabe A1 A2 A3 Summe Max. Punkte

Mehr

Fehlererkennende und fehlerkorrigierende Codes

Fehlererkennende und fehlerkorrigierende Codes Fehlererkennende und fehlerkorrigierende Codes Claudiu-Vlad URSACHE, 5AHITN Inhalt 1. Codes... 2 2. Hammingdistanz... 3 3. Fehlererkennende Codes... 4 4. Fehlerkorrigierende Codes... 5 1. Codes a 2 a 00

Mehr

Grundbegrie der Codierungstheorie

Grundbegrie der Codierungstheorie Grundbegrie der Codierungstheorie Pia Lackamp 12. Juni 2017 Inhaltsverzeichnis 1 Einleitung 2 2 Hauptteil 3 2.1 Blockcodes............................ 3 2.1.1 Beispiele.......................... 3 2.2

Mehr

Single Parity check Codes (1)

Single Parity check Codes (1) Single Parity check Codes (1) Der Single Parity check Code (SPC) fügt zu dem Informationsblock u = (u 1, u 2,..., u k ) ein Prüfbit (englisch: Parity) p hinzu: Die Grafik zeigt drei Beispiele solcher Codes

Mehr

6 Fehlerkorrigierende Codes

6 Fehlerkorrigierende Codes R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.

Mehr

Die Größe A(n, d) und optimale Codes

Die Größe A(n, d) und optimale Codes Die Größe A(n, d) und optimale Codes Definition Optimaler Code Wir definieren A(n, d) = max{m binärer (n, M, d) Code} Ein (n, M, d)-code heißt optimal, falls M = A(n, d). Bestimmung von A(n, d) ist offenes

Mehr

4.0.2 Beispiel (Einfacher Wiederholungscode). Im einfachsten Fall wird die Nachricht einfach wiederholt. D.h. man verwendet die Generatorabbildung

4.0.2 Beispiel (Einfacher Wiederholungscode). Im einfachsten Fall wird die Nachricht einfach wiederholt. D.h. man verwendet die Generatorabbildung Wir beschäftigen uns mit dem Problem, Nachrichten über einen störungsanfälligen Kanal (z.b. Internet, Satelliten, Schall, Speichermedium) zu übertragen. Wichtigste Aufgabe in diesem Zusammenhang ist es,

Mehr

7. Woche Extra-Material: - Beispiele von Codes. 7. Woche: Beispiele von Codes 144/ 238

7. Woche Extra-Material: - Beispiele von Codes. 7. Woche: Beispiele von Codes 144/ 238 7 Woche Extra-Material: - Beispiele von Codes 7 Woche: Beispiele von Codes 144/ 238 Hamming-Matrix H(h) und Hammingcode H(h) Wir definieren nun eine Parity-Check Matrix H(h) von einem neuen Code: Parametrisiert

Mehr

Dekohärenz und Grundprinzip der Quantenfehlerkorrektur

Dekohärenz und Grundprinzip der Quantenfehlerkorrektur Dekohärenz und Grundprinzip der Quantenfehlerkorrektur Bachelorarbeit Gregor Wurm, Betreuer: Prof. E. Arrigoni Institut für Theoretische Physik der Technischen Universiät Graz 24. Sept. 2010 Übersicht

Mehr

Notation und Einführung

Notation und Einführung Skriptteil zur Vorlesung: Proinformatik - Funktionale Programmierung Dr. Marco Block-Berlitz 30.Juli 2009 Notation und Einführung Der folgende Abschnitt gibt eine kurze Einführung in die Codierungstheorie.

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Anton Malevich Einführung in die Kodierungstheorie Skript zu einer im Februar 2013 gehaltenen Kurzvorlesung Fakultät für Mechanik und Mathematik Belorussische Staatliche Universität Institut für Algebra

Mehr

Die Hamming-Distanz definiert eine Metrik.

Die Hamming-Distanz definiert eine Metrik. Die Hamming-Distanz definiert eine Metrik. Satz Metrik Hamming-Distanz Die Hamming-Distanz ist eine Metrik auf {0, 1} n, d.h. für alle x, y, z {0, 1} n gilt: 1 Positivität: d(x, y) 0, Gleichheit gdw x

Mehr

, 2016W Übungstermin: Fr.,

, 2016W Übungstermin: Fr., VU Technische Grundlagen der Informatik Übung 2: Numerik, Codierungstheorie 183.579, 2016W Übungstermin: Fr., 28.10.2016 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

, 2015W Übungstermin: Do.,

, 2015W Übungstermin: Do., VU Technische Grundlagen der Informatik Übung 2: Numerik, Codierungstheorie 183.579, 2015W Übungstermin: Do., 29.10.2015 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

Gegeben ist ein systematischer (7,3)-Cod. Die drei seiner Codewörter lauten:

Gegeben ist ein systematischer (7,3)-Cod. Die drei seiner Codewörter lauten: Prof. Dr.-Ing. H.G. Musmann INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 67 Hannover Gegeben ist ein systematischer (7,)-Cod. Die drei seiner

Mehr

Verschlüsselungs- und Codierungstheorie PD Dr. Thomas Timmermann Westfälische Wilhelms-Universität Münster Sommersemester 2017

Verschlüsselungs- und Codierungstheorie PD Dr. Thomas Timmermann Westfälische Wilhelms-Universität Münster Sommersemester 2017 Verschlüsselungs- und Codierungstheorie PD Dr. Thomas Timmermann Westfälische Wilhelms-Universität Münster Sommersemester 2017 Lineare Codes (Ausarbeitung von Benjamin Demes) 1) Was sind lineare Codes

Mehr

13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN?

13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN? 13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN? Autor Alexander Souza, Universität Freiburg Schon faszinierend, was man so alles mit Algorithmen machen kann: CDs schnell in Regalen

Mehr

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise)

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise) Datensicherung Bei der digitalen Signalübertragung kann es durch verschiedene Einflüsse, wie induktive und kapazitive Einkopplung oder wechselnde Potentialdifferenzen zwischen Sender und Empfänger zu einer

Mehr

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2. Codewörter. Codewörter. Strukturierte Codes

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2. Codewörter. Codewörter. Strukturierte Codes Codewörter Grundlagen der Technischen Informatik Codierung und Fehlerkorrektur Kapitel 4.2 Allgemein: Code ist Vorschrift für eindeutige Zuordnung (Codierung) Die Zuordnung muss nicht umkehrbar eindeutig

Mehr

Übung zu Drahtlose Kommunikation. 1. Übung

Übung zu Drahtlose Kommunikation. 1. Übung Übung zu Drahtlose Kommunikation 1. Übung 22.10.2012 Termine Übungen wöchentlich, Montags 15 Uhr (s.t.), Raum B 016 Jede Woche 1 Übungsblatt http://userpages.uni-koblenz.de/~vnuml/drako/uebung/ Bearbeitung

Mehr

Fehlererkennung. Fehlererkennung

Fehlererkennung. Fehlererkennung Fehlererkennung Seite 1 Prof. Dr. W. Kowalk Datenübertragung über physikalische Signale mehr oder minder hohe Anfälligkeit gegen Verfälschung der Signale Empfänger interpretiert Signal anders als von Sender

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 06.03.09 2-1 Heutige große Übung Allgemeines

Mehr

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Lineare Codes Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Codes Ein Code ist eine eindeutige Zuordnung von Zeichen

Mehr

Prof. Dr. Jürgen Dassow Otto-von-Guericke-Universität Magdeburg. Codierungstheorie und Kryptographie

Prof. Dr. Jürgen Dassow Otto-von-Guericke-Universität Magdeburg. Codierungstheorie und Kryptographie Prof. Dr. Jürgen Dassow Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Codierungstheorie und Kryptographie Wintersemester 2008 1 2 Inhaltsverzeichnis 1 Definition und Charakterisierung

Mehr

Angewandte Informationstechnik

Angewandte Informationstechnik Angewandte Informationstechnik im Bachelorstudiengang Angewandte Medienwissenschaft (AMW) Fehlererkennung und -korrektur Dr.-Ing. Alexander Ihlow Fakultät für Elektrotechnik und Informationstechnik FG

Mehr

Fehlererkennung und Fehlerkorrektur in Codes

Fehlererkennung und Fehlerkorrektur in Codes Fehlererkennung und Fehlerkorrektur in Codes Blockcodes und Hamming Abstand Untersuchungen zu Codierungen von Informationen, die über einen Nachrichtenkanal übertragen werden sollen, konzentrieren sich

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de

Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de Informationstheorie und Codierung Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de Inhaltsverzeichnis 3. Kanalcodierung 3.1 Nachrichtentheorie für gestörte Kanäle 3.1.1 Transinformation 3.1.2 Kanalkapazität

Mehr

Trellis Diagramme und Viterbi-Decoder

Trellis Diagramme und Viterbi-Decoder Trellis Diagramme und Viterbi-Decoder Michael Dienert. März Fehlertolerante Datenübertragung bei Gigabit-Ethernet Um MBit/s auf Kat Kupferkabeln übertragen zu können, sind eine Reihe technischer Kunstgriffe

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informationstheorie und Codierung Prof. Dr. Lilia Lajmi Juni 25 Ostfalia Hochschule für angewandte Wissenschaften Hochschule Braunschweig/Wolfenbüttel Postanschrift: Salzdahlumer Str.

Mehr

Warum darf sich der Laser irren? Vortrag von Ralph-Hardo Schulz Sommeruniversität an der FU Berlin,

Warum darf sich der Laser irren? Vortrag von Ralph-Hardo Schulz Sommeruniversität an der FU Berlin, Warum darf sich der Laser irren? Vortrag von Ralph-Hardo Schulz Sommeruniversität an der FU Berlin, 28724 1 Prüfzeichensysteme zur Fehlererkennung 11 Europäische Artikel Nummer (EAN) Die EAN ist eine 13

Mehr

3 Der Hamming-Code. Hamming-Codes

3 Der Hamming-Code. Hamming-Codes 3 Der Hamming-Code Hamming-Codes Ein binärer Code C heißt ein Hamming-Code Ha s, wenn seine Kontrollmatrix H als Spalten alle Elemente in Z 2 s je einmal hat. Die Parameter eines n-k-hamming-codes sind:

Mehr

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2 Codierung und Fehlerkorrektur Kapitel 4.2 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Technische Informatik - Meilensteine Informationstheorie Claude Elwood Shannon (geb. 1916)

Mehr

Grundlagen Digitaler Systeme (GDS)

Grundlagen Digitaler Systeme (GDS) Grundlagen Digitaler Systeme (GDS) Prof. Dr. Sven-Hendrik Voß Sommersemester 2015 Technische Informatik (Bachelor), Semester 1 Termin 10, Donnerstag, 18.06.2015 Seite 2 Binär-Codes Grundlagen digitaler

Mehr

Erzeugendensystem und Basis

Erzeugendensystem und Basis Erzeugendensystem und Basis Definition Erzeugendensystem und Basis eines Unterraums Sei S F n 2 ein Unterraum. Eine Menge G = {g 1,..., g k } S heißt Erzeugendensystem von S, falls jedes x S als Linearkombination

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung 8 Dirk Achenbach 7. Februar 2013 I NSTITUT FÜR K RYPTOGRAPHIE UND S ICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Vorlesung Theoretische Grundlagen

Vorlesung Theoretische Grundlagen Vorlesung Theoretische Grundlagen Fehlerkorrigierende Jörn Müller-Quade 4. Februar 2010 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Grundbegriffe der Informatik Tutorium 3

Grundbegriffe der Informatik Tutorium 3 Grundbegriffe der Informatik Tutorium 3 Tutorium Nr. 16 Philipp Oppermann 18. November 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Prof. Dr. Stefan Weinzierl Audiosymbole mit einer Länge von 8 bit werden mit einem Paritätsbit zur Fehlererkennung kodiert.

Prof. Dr. Stefan Weinzierl Audiosymbole mit einer Länge von 8 bit werden mit einem Paritätsbit zur Fehlererkennung kodiert. Audiotechnik II Digitale Audiotechnik: 8. Tutorium Prof. Dr. Stefan Weinzierl 9.2.23 Musterlösung: 9. Dezember 23, 8:34 Fehlerkorrektur II Audiosymbole mit einer Länge von 8 bit werden mit einem Paritätsbit

Mehr

Kommunikationstechnik II Wintersemester 08/09

Kommunikationstechnik II Wintersemester 08/09 Kommunikationstechnik II Wintersemester 8/9 Prof. Dr. Stefan Weinzierl Musterlösung: 8. Aufgabenblatt Lösung in der Rechenübung am 9.1.9 1. Aufgabe: Fehlererkennung/-korrektur Audio Symbole mit einer Länge

Mehr

Rechnernetze 1 Vorlesung im SS 07

Rechnernetze 1 Vorlesung im SS 07 Rechnernetze 1 Vorlesung im SS 07 Roland Wismüller roland.wismueller@uni-siegen.de Tel.: 740-4050, H-B 8404 Zusammenfassung: Protokollhierarchie Schichten, Protokolle und Dienste ISO-OSI Referenzmodell

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

Fehlerkorrektur. Einzelfehler besitze die Wahrscheinlichkeit p. Es gelte Unabhängigkeit der Fehlereinflüsse Für ein Wort der Länge n gelte noch:

Fehlerkorrektur. Einzelfehler besitze die Wahrscheinlichkeit p. Es gelte Unabhängigkeit der Fehlereinflüsse Für ein Wort der Länge n gelte noch: Gliederung Kanalstörungen Einfache Verfahren Hamming-Abstand Technische Schaltungen Binäre Arithmetik Matrizenrechnung Typische Codes Fehlerkorrektur Fehlertypen Merksätze: Alle Fehler sind statistisch

Mehr

Algebraische Codierungstheorie

Algebraische Codierungstheorie Algebraische Codierungstheorie Grundeigenschaften der Codes und ihre wichtigsten Parameterschranken Iryna Feurstein Inhaltsverzeichnis 1 Gegenstand und Aufgabe der Codierungstheorie 1 2 Blockcode 1 2.1

Mehr

Codes on Graphs: Normal Realizations

Codes on Graphs: Normal Realizations Codes on Graphs: Normal Realizations Autor: G. David Forney Seminarvortrag von Madeleine Leidheiser und Melanie Reuter 1 Inhaltsverzeichnis: 1. Einführung 3 1.1 Motivation 3 1.2 Einleitung 3 2. Graphendarstellungen

Mehr

Thema: Hamming-Codes. Titelblatt anonymisiert

Thema: Hamming-Codes. Titelblatt anonymisiert Thema: Hamming-Codes Titelblatt anonymisiert Hamming-Codes.Einführung in die Kodierungstheorie... 3. Grundlegendes über Codewörter... 3. Matrizen... 4.3 Die maßgebliche Stelle... 5.Grundlegende Ideen...5

Mehr

28 4. DIE MATHEMATIK HINTER DER COMPACT DISC. Abbildung 4.1: Selbstkorrigierende Codes

28 4. DIE MATHEMATIK HINTER DER COMPACT DISC. Abbildung 4.1: Selbstkorrigierende Codes 8 4. DIE MATHEMATIK HINTER DER COMPACT DISC y1 1 4 3 y3 y Abbildung 4.1: Selbstkorrigierende Codes 4. Die Mathematik hinter der Compact Disc 4.1. Selbstkorrigierende Codes Wenn wir eine Reihe von 0 und

Mehr

Hauptdiplomklausur Informatik. September 2000: Rechnernetze

Hauptdiplomklausur Informatik. September 2000: Rechnernetze Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Prof. Dr. W. Effelsberg Hauptdiplomklausur Informatik September 2000: Rechnernetze Name:... Vorname:...

Mehr

Fehlerkorrektur. Gliederung Kanalstörungen Einfache Verfahren Hamming-Abstand Technische Schaltungen Binäre Arithmetik Matrizenrechnung Typische Codes

Fehlerkorrektur. Gliederung Kanalstörungen Einfache Verfahren Hamming-Abstand Technische Schaltungen Binäre Arithmetik Matrizenrechnung Typische Codes Gliederung Kanalstörungen Einfache Verfahren Hamming-Abstand Technische Schaltungen Binäre Arithmetik Matrizenrechnung Typische Codes Fehlerkorrektur Fehlertypen Merksätze: Alle Fehler sind statistisch

Mehr

Lösungsvorschlag 3. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 3. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 3. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 3.1: Codierungen a) Vervollständigen Sie folge Tabelle,

Mehr

Übungsblatt 8. Aufgabe 1 Datentransferrate und Latenz

Übungsblatt 8. Aufgabe 1 Datentransferrate und Latenz Übungsblatt 8 Abgabe: 15.12.2011 Aufgabe 1 Datentransferrate und Latenz Der Preußische optische Telegraf (1832-1849) war ein telegrafisches Kommunikationssystem zwischen Berlin und Koblenz in der Rheinprovinz.

Mehr

Kapitel 3 Kanalcodierung

Kapitel 3 Kanalcodierung Kapitel 3 Kanalcodierung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Übersicht Quelle Senke Kompression Huffman-, Arithmetische-, Lempel-Ziv

Mehr

Praktische Informatik II FSS 2012 Programmierklausur

Praktische Informatik II FSS 2012 Programmierklausur Praktische Informatik II FSS 2012 Programmierklausur Prof. Dr. Heiner Stuckenschmidt 20.04.2012 Name, Vorname: Matrikelnummer: CVS-Username: CVS-Password: automatisch generierter Benutzername automatisch

Mehr

Fehlerkorrigierende Codes

Fehlerkorrigierende Codes Fehlerkorrigierende Codes 2016S Gerhard Dorfer 1 2 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführende Beispiele 4 2 Mathematische Grundlagen 6 3 Fehlererkennung und Fehlerkorrektur für Blockcodes 9 4

Mehr

Informationsdarstellung 2.2

Informationsdarstellung 2.2 Beispiele für die Gleitkommadarstellung (mit Basis b = 2): 0,5 = 0,5 2 0-17,0 = - 0,53125 2 5 1,024 = 0,512 2 1-0,001 = - 0,512 2-9 3,141592... = 0,785398... 2 2 n = +/- m 2 e Codierung in m Codierung

Mehr

Einführung in die Informatik II Aus der Informationstheorie: Datenkompression

Einführung in die Informatik II Aus der Informationstheorie: Datenkompression Einführung in die Informatik II Aus der Informationstheorie: Datenkompression Prof. Bernd Brügge, Ph.D Institut für Informatik Technische Universität München Sommersemester 2 2. Juli 2 Copyright 2 Bernd

Mehr

Fehlererkennung und -behandlung. Paritätsverfahren

Fehlererkennung und -behandlung. Paritätsverfahren Fehlererkennung und -behandlung Gründe Thermische Elektronenbewegung in Halbleitern oder Leitungen Elektromagnetische Einstrahlung (Motoren, Blitze, benachbarte Leitungen) Bitfehlerrate ist die Wahrscheinlichkeit,

Mehr

Codierung. Codierung. EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land. Ziffer 2 bis 12 codieren Händler und Ware

Codierung. Codierung. EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land. Ziffer 2 bis 12 codieren Händler und Ware Codierung Codierung Haydn: Streichquartett op 54.3 aus Largo, Violine I 1 2 Ziffern 1 und 2 codieren das Hersteller-Land Ziffer 2 bis 12 codieren Händler und Ware Die letzte Ziffer ist eine Prüfziffer

Mehr

Grundbegriffe der Informatik Tutorium 5

Grundbegriffe der Informatik Tutorium 5 Grundbegriffe der Informatik Tutorium 5 Tutorium Nr. 32 Philipp Oppermann 13. Januar 2015 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Übung 15: Faltungscodierung

Übung 15: Faltungscodierung ZHW, NTM, 26/6, Rur Übung 5: Faltungscodierung Aufgabe : R=/2, M=, Faltungscode. Gegeben ist der folgende R=/2, M= Faltungsencoder: x[2n] u[n] T b u[n-] x[.] x[2n+] a) Zeichnen Sie das Zustandsdiagramm

Mehr

5. Woche Perfekte und Optimale Codes, Schranken. 5. Woche: Perfekte und Optimale Codes, Schranken 88/ 142

5. Woche Perfekte und Optimale Codes, Schranken. 5. Woche: Perfekte und Optimale Codes, Schranken 88/ 142 5 Woche Perfekte und Optimale Codes, Schranken 5 Woche: Perfekte und Optimale Codes, Schranken 88/ 142 Packradius eines Codes (Wiederholung) Definition Packradius eines Codes Sei C ein (n, M, d)-code Der

Mehr

Fehlerkorrigierende Codes

Fehlerkorrigierende Codes Fehlerkorrigierende Codes SS 2013 Gerhard Dorfer 2 Inhaltsverzeichnis 1 Fehlerkorrigierende Codes 4 1.1 Einführende Beispiele................................. 4 1.2 Mathematische Grundlagen..............................

Mehr

Theorie der Programmiersprachen

Theorie der Programmiersprachen slide 1 Vorlesung Theorie der Programmiersprachen Prof. Dr. Ulrich Ultes-Nitsche Forschungsgruppe Departement für Informatik Universität Freiburg slide 2 Heute Komponenten eines Computers Speicher Die

Mehr

Kodierungstheorie: Lineare Kodes

Kodierungstheorie: Lineare Kodes Kodierungstheorie: Lineare Kodes Seminararbeit Sommersemester 2015 Bearbeitet von: Sebastian Gombocz (Matrikelnummer: 48947) Christian Löhle (Matrikelnummer: 48913) Betreuer: Prof. Dr. Thomas Thierauf

Mehr

Die Digitalisierung von Musik

Die Digitalisierung von Musik Die Digitalisierung von Musik 1 Analoges Speichern Speicherung von Musik auf einer LP Die Daten sind analog gespeichert Analysis 2 Digitale Datenerfassung 1.Sampling Das (akustische) elektrische Signal

Mehr

Kodierung. Kodierung von Zeichen mit dem ASCII-Code

Kodierung. Kodierung von Zeichen mit dem ASCII-Code Kodierung Kodierung von Zeichen mit dem ASCII-Code Weiterführende Aspekte zur Kodierung: Speicherplatzsparende Codes Fehlererkennende und -korrigierende Codes Verschlüsselnde Codes Spezielle Codes, Beispiel

Mehr

Übungen zu Architektur Eingebetteter Systeme. Teil 1: Grundlagen. Blatt : Grundlagen des Cyclic redundancy code (CRC)

Übungen zu Architektur Eingebetteter Systeme. Teil 1: Grundlagen. Blatt : Grundlagen des Cyclic redundancy code (CRC) Übungen zu Architektur Eingebetteter Systeme Blatt 4 22.05.2009 Teil 1: Grundlagen 1.1: Grundlagen des Cyclic redundancy code (CRC) Im Gegensatz zum Parity-Check, der nur einfache Bit-Fehler erkennen kann,

Mehr

31 Polynomringe Motivation Definition: Polynomringe

31 Polynomringe Motivation Definition: Polynomringe 31 Polynomringe 31.1 Motivation Polynome spielen eine wichtige Rolle in vielen Berechnungen, einerseits weil oftmals funktionale Zusammenhänge durch Polynome beschrieben werden, andererseits weil Polynome

Mehr

Ι. Einführung in die Codierungstheorie

Ι. Einführung in die Codierungstheorie 1. Allgemeines Ι. Einführung in die Codierungstheorie Codierung: Sicherung von Daten und Nachrichten gegen zufällige Fehler bei der Übertragung oder Speicherung. Ziel der Codierung: Möglichst viele bei

Mehr

Information und Codierung

Information und Codierung Richard W. Hamming Information und Codierung Technische Universität Darmstadt FACHBEREICH INFORMATIK BIBLIOTHEK Invantar-Nr.: Sachgebiete:. Standort: VCH Inhalt Vorwort zur 1. Auflage der Originalausgabe

Mehr

Kommunikationstechnik II Wintersemester 07/08

Kommunikationstechnik II Wintersemester 07/08 Kommunikationstechnik II Wintersemester 07/08 Prof. Dr. Stefan Weinzierl Musterlösung: 5. Aufgabenblatt 1. Aufgabe: Kanalkodierung Zweck der Kanalcodierung: - Abbildung der information bits des Quellkodes

Mehr

3 Codierung ... 3.3 Code-Sicherung. 3.3.1 Stellendistanz und Hamming-Distanz. 60 3 Codierung

3 Codierung ... 3.3 Code-Sicherung. 3.3.1 Stellendistanz und Hamming-Distanz. 60 3 Codierung 60 3 Codierung 3 Codierung... 3.3 Code-Sicherung Oft wählt man absichtlich eine redundante Codierung, so dass sich die Code-Wörter zweier Zeichen (Nutzwörter) durch möglichst viele binäre Stellen von allen

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr