TECHNISCHE UNIVERSITÄT MÜNCHEN

Größe: px
Ab Seite anzeigen:

Download "TECHNISCHE UNIVERSITÄT MÜNCHEN"

Transkript

1 TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7 (7. Jui 004 Präsezaufgabe Aufgabe 39. Kritisch. Die folgede Reihe kovergiere. Mit welche Kovergezkriterie ka ma dies jeweils beweise? ( Quotietekriterium Wurzelkriterium Majoratekriterium Leibizkriterium ( Quotietekriterium X Wurzelkriterium X Majoratekriterium X X Leibizkriterium X Die Kovergez der Reihe Für gilt (. Wir wisse scho, dass Die Kovergez der Reihe < ud ( läßt sich mit Majoratekriterium wie folgt beweise: ( (. läßt sich mit Vorlesugsstoff ud Majoratekriterium wie folgt beweise: < (vgl. Blatt4. Aufgabe 40. Kovergezkriterie, die Erste. Welche der folgede Reihe kovergiere? Begrüde Sie! Welche Kovergezkriterie eige sich?.. 3.! ( ( (((3 Bemerkug: I der Vorlesug wurde Majorate-, Quotiete- ud Wurzelkriterium ur für Reihe a mit a 0 für alle N vorgestellt. Für Reihe a mit a R beliebig wedet ma die Kriterie auf die Reihe b mit b a a. Ka ma die Kovergez der Reihe a achweise, so kovergiert die Reihe a sogar absolut. Damit folgt da auch sofort die gewöhliche Kovergez der Reihe a.

2 . Die Reihe! kovergiert (sogar absolut ach dem Quotietekriterium: Es ist a a a a ( (!! ((!!( 0 Somit gilt a a mit β < für hireiched große N.. Die Reihe ( (((3 kovergiert ach dem Leibizkriterium: Die Folge ( (((3 N ist eie mooto fallede Folge, ud für alle N gilt Es ist lim ( (((3 0. ( 6 6 (((3 lim ( lim 0 3 Diese Reihe kovergiert sogar absolut ach dem Majoratekriterium, da ( (((3 ((( Die Reihe ( kovergiert (sogar absolut ach dem Wurzelkriterium: Es ist ( ( Somit gilt z.b. a 3 4 mit β 3 4 < für hireiched große N. Aufgabe 4. Reihe-Folge, Divergez-Kovergez. Zeige Sie:. We die Reihe a kovergiert, da ist die Folge (a N eie Nullfolge. Bemerkug: Dies ist ei eifaches Kriterium zum Nachweis vo Divergez. Warum?. We die Reihe a absolut kovergiert, da kovergiert auch die Reihe a absolut.. Hierzu beutze wir das Cauchy-Kriterium für Reihe: Eie Reihe mk a kovergiert geau da, we es für jedes ε > 0 ei N ε N gibt mit a < ε für alle m m > N ε, k N. Wir wolle zeige, daß die Folge (a N gege Null kovergiert. Sei ε > 0 vorgegebe. Wir wähle N ε so, mk daß a < ε für alle m > N ε, k N, was möglich ist, da usere Reihe ach Voraussetzug kovergiert m ud so das CAUCHY-Kriterium awedbar ist. Isbesodere ist für alle m > N ε ud k 0 die Ugleichug mk a a m < ε erfüllt, was zu zeige war. m We also eie Reihe a gegebe ist, bei der die Folge (a keie Nullfolge ist, so ka die Reihe icht kovergiere.. Die Reihe a kovergiert absolut. Somit kovergiert die Reihe a. Nach Aufgabeteil. ist die Folge ( a N eie Nullfolge. Demach gibt es ei N N, so dass für alle N die Ugleichug a < gilt. Also gilt für alle N auch a < a. D.h. die kovergete Reihe a ist eie Majorate der Reihe a.

3 Hausaufgabe Aufgabe 4. Kovergezkriterie, die Zweite. Welche der folgede Reihe kovergiere? Begrüde Sie! Welche Kovergezkriterie eige sich? !, si( 9! (, k k (Hiweis: Beweise ud verwede Sie die Abschätzug! (, ( (Hiweis: Verwede Sie Aufgabe 4.. Bemerkug: I der Vorlesug wurde Majorate-, Quotiete- ud Wurzelkriterium ur für Reihe a mit a 0 für alle N vorgestellt. Für Reihe a mit a R beliebig wedet ma die Kriterie auf die Reihe b mit b a a. Ka ma die Kovergez der Reihe a achweise, so kovergiert die Reihe a sogar absolut. Damit folgt da auch sofort die gewöhliche Kovergez der Reihe a.. Die Reihe kovergiert, da sie ei geometrische Reihe mit q mit q < ist: (. Die Reihe für alle Die Reihe 5! kovergiert absolut. Das Quotietekriterium für a 5! ergibt si( 9! kovergiert (sogar absolut ach dem Wurzelkriterium, uter Verwedug der Ugleichug aus dem Hiweis. Es ist: si( 9!! a a 5! (!5 5 Hiweis (. Somit gilt z.b. a 3 4 mit β 3 4 < für hireiched große N. Wir weise u och die Ugleichug aus dem Hiweis ach: Behauptug: Für alle N, > 0 gilt:! (

4 Beweis: mit vollstädiger Iduktio: Iduktiosafag: : ( Iduktiosschritt : Iduktiosvoraussetzug:! ( Wir wolle (! ( zeige. Dazu bereche wir (! (! I.V. ( ( ( ( (. Die letzte Ugleichug folgt für alle > 0 aus der Biomische Formel für ( 4. Die Reihe ( ( a mit a k ( k k ( k kovergiert ach dem Leibizkriterium. k k ist positiv ud wächst mooto mit. Außerdem ist diese Partialsummefolge ubeschräkt (Aufgabe 0. Somit ist die Folge (a N mooto falled ud hat de Grezwert 0. Die Bediguge des Leibitzkriteriums sid also erfüllt. 5. Die Reihe ( divergiert ach Aufgabe 4, Aufgabeteil., weil die Folge (( N keie Nullfolge ist (Aufgabe 8. Aufgabe 43. Der Satz des PYTHAGORAS ud Biomialkoeffiziete. Es sei R. Wir defiiere die Reihe c( s( ( (!, ( (!.. Zeige Sie mit Hilfe des Quotietekriteriums, dass die Reihe c( ud s( absolut kovergiere. Erierug: Verwede Sie folgedes (erweitertes Quotietekriterium: Es sei a eie Reihe, ud es gebe ei q mit 0 q < ud ei N N, so dass a a < q für alle N gilt. Da kovergiert die Reihe a absolut.. Weise Sie die beide folgede Gleichuge ach: c( c( ud s( s(. 3. Defiitio: (Produkt zweier Reihe Aus zwei absolut kovergete Reihe a, b läßt sich eie eue Reihe c mit c defiiere. Diese eue Reihe heisst CAUCHY-Produkt vo a ud b. a k b k Satz: Für zwei absolut kovergete Reihe a, b kovergiert ihr CAUCHY-Produkt ( c gege de ( Grezwert a b. Nach Aufgabeteil. sid c( ud s( absolut kovergete Reihe. Bereche Sie die die erste vier Reiheglieder der Produktreihe c( c( ud s( s(. (Hierzu rechet ma tatsächlich wie mit uedliche Polyome i der Variable. 4. Was fällt bei Aufgabeteil 3. auf? Versuche Sie, de Satz des PYTHAGORAS s( c( herzuleite. Hiweis: I der Rechug habe sich Biomialkoeffiziete versteckt. Ei paar eileitede Worte zu de Folge c( ud s(: Der Grezwert der Reihe c( ist gleich cos ud der Grezwert der Reihe s( ist gleich si. Somit gebe die Formel eie mögliche Defiitio der Fuktioe Sius ud Cosius.

5 . Für die Reihe c( ( ( Da die Folge 4 6 < < ist. 4 6 N (! ist ( ( ((! ( (! Die Reihe s( ka geauso behadelt werde.. Die erste Gleichug ergibt sich, weil ( ist: (! (! ( (. gege Null kovergiert, gibt es eie Ide N N, so daß für alle N immer c( ( ( (! ( ( (! c(. ( Die zweite Gleichug ergibt sich aufgrud der Recheregel für kovergete Reihe ud der Tatsache ( : 3. Es gilt eierseits c(c( s( (! ( ( (! ( ( ( (! s(. (! ( (! 4 4! 6 6! ±! 4 4! 6 6! ± (! 4 4! ( 6 ( (! ( 4!! 4! ( ( ( 4 4! 4! 4! 6! ± ± (! ( 6 6!

6 ud adererseits gilt s(s( (! 3 3! 5!!! 5!! ( 3 3! 5! ( 7 7! 5! 7 ( 3 ( 7! ±! 3 3! 5 5! 7 7! ± ( 3 3!! ( 3 5 3! 3! 5!! ( 3 5 3! 5! 5 5! ! 8 ± ( 3 3! ( 7 7!! Hier fällt auf, daß die Summe der Koeffiziete vo i vo c(c( ud s(s( für i, 4, 6 gleich Null sid. Die Vorfaktore sid hier i eier ugekürzte Form agegebe, die scho eie Vermutug für de allgemeie Fall zulässt. 4. Es sei c c(c( mit c Ud es sei s s(s( mit s ( k k (k! } {{ } c ( k ( k. (( k! }{{} c k ( k k (k! } {{ } s ( k ( k. (( k! }{{} s k Um die Gleichug s( c( eizusehe, geügt es zu zeige, daß s c 0 für alle > gilt, da bleibt ämlich bei der kovergete Reihe s( c( ur c 0 übrig. Dazu erier wir us a die Defiitio der Biomialkoeffiziete ( r s r! s!(r s! ud a de biomische Lehrsatz ( y r s y r s. r ( r s0 s Also c s ( k k ( k (k! ( k (( k! ( k k ( k (k! ( k (( k! ( (k!(( k! ( ( ( (! ( ( (! ( ( ( k ( k ( ( ( (! 0. ( k ( k k (k!(( k! (*: Erweiter mit (! ud Verwedug der Biomialkoeffiziete. (**: Umidizierug: Zusammefasse gerader (k ud ugerader (k Werte. (***: Biomischer Lehrsatz.

7 Aufgabe 44. Eis ist icht eizigartig. Warum hat Lius Recht? Wieso ist 0, ? Hiweis: Schaue Sie sich die Dezimaletwicklug als Reihe a. Aus der Vorlesug ist bekat, daß die Dezimaldarstellug eier Zahl 0, a a a 3... mit a i {0,,..., 9} eie Schreibweise für de Grezwert der (kovergete Reihe ( a 0 ist. Hier ist 0, ( ( ( (

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr. A. Müller-Rettkowski Dr. T. Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgabe ud Lösuge Ausarbeitug der Übugsstude zur Vorlesug Aalysis I Witersemester 2008/2009 Übug am 09.2.2008 Übug 8 Eileitug Es soll och eimal auf die agebotee Sprechstude higewiese werde, sowie auf mögliche

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 7..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 5. Übugsblatt Aufgabe

Mehr

Analysis I für M, LaG/M, Ph 4.Übungsblatt

Analysis I für M, LaG/M, Ph 4.Übungsblatt Aalysis I für M, LaG/M, Ph 4.Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr. Robert Haller-Ditelma 05.05.200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergez vo Folge) Beweise Sie:

Mehr

Index. Majorante, 24 Minorante, 23. Partialsumme, 17

Index. Majorante, 24 Minorante, 23. Partialsumme, 17 Folge, Reihe Idex Kovergezkriterie Hauptkriterium, Leibiz-Kriterium, Majoratekriterium, 4 Mioratekriterium, otwediges Kriterium, 0 Quotietekriterium, teleskopierede Summe, Wurzelkriterium, Majorate, 4

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

3 2n = 1 6 (( 2)3 ) n. < 1 ist sie konvergent und hat den Wert = = 1 (n + 1)! 0! 1. und hat den Wert 1. (mit Reihenwert e), also ist auch

3 2n = 1 6 (( 2)3 ) n. < 1 ist sie konvergent und hat den Wert = = 1 (n + 1)! 0! 1. und hat den Wert 1. (mit Reihenwert e), also ist auch Karlsruher Istitut für Techologie KIT Istitut für Aalysis Priv.-Doz. Dr. P. C. Kustma Dr. D. Frey WS 20/2 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zum 5. Übugsblatt Aufgabe 23 a

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I Aufgabe ud Lösuge Weihachtsgescheke zur Vorlesug Aalysis I Der Witersemester 008/009 Übug am 4.., 5..008 sowie 0.0.009 Aufgabe. Folge Aufgabe Ma bestimme, ob die Folge (a ) mit a = + 3 + 4 kovergiert ud

Mehr

Übungen zum Ferienkurs Analysis 1, Vorlesung 2

Übungen zum Ferienkurs Analysis 1, Vorlesung 2 F. Hafer, T. Baldauf c Techische Uiversität Müche Übuge zum Feriekurs Aalysis, Vorlesug Witersemester 06/07. Richtig oder Falsch? Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche

Mehr

Analysis I für M, LaG/M, Ph 8.Übungsblatt

Analysis I für M, LaG/M, Ph 8.Übungsblatt Aalysis I für M, LaG/M, Ph 8Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr Robert Haller-Ditelma 0206200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergezkriterie/Kovergezradie) (a)

Mehr

KAPITEL 3. Zahlenreihen. 3.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen... 80

KAPITEL 3. Zahlenreihen. 3.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen... 80 KAPITEL 3 Zahlereihe 3. Geometrische Reihe......................... 7 3.2 Kovergezkriterie......................... 72 3.3 Absolut kovergete Reihe.................... 80 Lerziele 3 Eigeschafte der geometrische

Mehr

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen. Reihen reeller Zahlen

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen. Reihen reeller Zahlen Höhere Mathematik für techische Studiegäge Vorereitugsaufgae für die Üuge Reihe reeller Zahle. Utersuche Sie die folgede Reihe mit Hilfe geeigeter Kovergezkriterie otwediges Kovergezkriterium, Quotiete-,

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr A Müller-Rettkowski Dr T Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum 4. Übugsblatt

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

Musterlösung der Klausur. Analysis I WS 2012/13

Musterlösung der Klausur. Analysis I WS 2012/13 Musterlösug der Klausur Aalysis I WS 202/3 Aufgabe (C) Die Folge ( ) 2N 2 R N sei durch : (2 + 32 )( + 2) 2 3 + 2 2 gegebe Ma utersuche mittels der Recheregel für Kovergez, ob ( ) 2N kovergiert ud bereche

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1

( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1 Kapitel 8 Aufgabe Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe 8. Gegebe ist eie Folge

Mehr

4. Übungsblatt Aufgaben mit Lösungen

4. Übungsblatt Aufgaben mit Lösungen 4. Übugsblatt Aufgabe mit Lösuge Aufgabe 6: Bestimme Sie alle Häufugspukte der Folge mit de Folgeglieder a) a 2 + cosπ), b) b i) i j, ud gebe Sie jeweils eie Teilfolge a, die gege diese Häufugspukte kovergiert.

Mehr

Lösungen 7.Übungsblatt

Lösungen 7.Übungsblatt Karlsruher Istitut für Techologie (KIT) WS 20/202 Istitut für Aalysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math.tech. Raier Madel Lösuge 7.Übugsblatt Aufgabe 25 (K) Bestimme Sie de Kovergezradius der folgede

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

Reihen. Konvergenz. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a 2 +..

Reihen. Konvergenz. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a 2 +.. 6 Reihe Folge besoderer Art sid uedliche Summe a k = a + a 2 +... reeller oder komplexer Zahle, dee wir bereits i eiige Beispiele des Abschitts 5.4 begeget sid. Da ma icht sämtliche Glieder eier Folge

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 Aufgabe zu Kapitel 8 Aufgabe zu Kapitel 8 Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe

Mehr

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung Feriekurs Seite Techische Uiversität Müche Feriekurs Aalysis Haah Schamoi Folge, Reihe, Potezreihe, Expoetialfuktio Musterlösug 0.0.0. Folge I Utersuche Sie die Folge a N auf Kovergez bzw. Divergez ud

Mehr

Kapitel 9. Aufgaben. Verständnisfragen

Kapitel 9. Aufgaben. Verständnisfragen Kapitel 9 Aufgabe Verstädisfrage Aufgabe 9. Hadelt es sich bei de folgede für z C defiierte Reihe um Potezreihe? Falls ja, wie lautet die Koeffizietefolge ud wie der Etwicklugspukt? a c 3! j0 x! j x j

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 Aufgabe zu Kapitel 9 Aufgabe zu Kapitel 9 Verstädisfrage Aufgabe 9. Hadelt es sich bei de folgede für z C defiierte Reihe um Potezreihe? Falls ja, wie lautet die Koeffizietefolge ud wie der Etwicklugspukt?

Mehr

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Aalysis I 5. Übugsstude Steve Battilaa steveb@studet.ethz.ch battilaa.uk/teachig March 9, 07 Erierug Satz. Quotietekriterium (bei!,,...) Das Quotietekriterium zeigt absolute Kovergez. lim a +

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

13. Übungsblatt zur Vorlesung Mathematik I für Informatik

13. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sve Herrma Dipl.-Math. Susae Pape 3. Übugsblatt zur Vorlesug Mathematik I für Iformatik Witersemester 009/00 6./7. Jauar 00 Gruppeübug Aufgabe G (Reihe)

Mehr

Probeklausur zur Analysis I WS 11/12 Prof. Dr. G. Wang Dr. A. Magni. Beginn: 8:15 Uhr. Name:...Vorname:... Matr.Nr.:...Studiengang:...

Probeklausur zur Analysis I WS 11/12 Prof. Dr. G. Wang Dr. A. Magni. Beginn: 8:15 Uhr. Name:...Vorname:... Matr.Nr.:...Studiengang:... Probeklausur zur Aalysis I WS / Prof. Dr. G. Wag 3.. Dr. A. Magi Begi: 8:5 Uhr Ede: Name:..........................Vorame:............................ Matr.Nr.:........................Studiegag:.........................

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz WS 04/05 0..04 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 4. Übugsblatt

Mehr

Kapitel VI. Reihen. VI.1 Definitionen und Beispiele. Definition VI.1. Sei (a n ) n=1 K N eine Zahlenfolge. Dann heißt die Folge (s m ) m=1 K N, mit

Kapitel VI. Reihen. VI.1 Definitionen und Beispiele. Definition VI.1. Sei (a n ) n=1 K N eine Zahlenfolge. Dann heißt die Folge (s m ) m=1 K N, mit Kapitel VI Reihe VI.1 Defiitioe ud Beispiele Defiitio VI.1. Sei (a K N eie Zahlefolge. Da heißt die Folge (s m K N, mit m s m : a, (VI.1 Reihe i K. Ist (s m koverget, so schreibe wir { a : lim {s m m}

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel.

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel. Uiversität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dr. D. Zimmerma MSc. J. Köller MSc. R. Marczizik FDSA 4 Höhere Mathematik II 30.04.2014 el, kyb, mecha, phys 1 Kovergezkriterie

Mehr

Tutorium Mathematik I, M Lösungen

Tutorium Mathematik I, M Lösungen Tutorium Mathematik I, M Lösuge 16. November 2012 *Aufgabe 1. Ma utersuche die folgede Reihe auf Kovergez (a) ( 1) (1 ) (b) ( ) 2 +1 (c) (!) 3 10 (3)! (d) (e) (f) 2 +3 3 2 +1 3 ( 2 +1) 2 + 3 ( 2 +3) (g)

Mehr

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen KAPITEL 8 Zahlereihe 8. Geometrische Reihe................................. 53 8.2 Kovergezkriterie................................. 54 8.3 Absolut kovergete Reihe............................ 64 Lerziele

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 8 Defiitioe ud Beispiele für Folge Defiitio Eie

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 1

Technische Universität München Zentrum Mathematik. Übungsblatt 1 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09 Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. Köig Dr. M. Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Z8.. Kriterie für strege Mootoie Mathematik für Physiker 2 (Aalysis ) MA9202 Witersem. 207/8 Lösugsblatt 8

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathemati PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Iformatier I Witersemester 2003/2004 Aufgabeblatt 8 12 Dezember

Mehr

Analysis Übungen Hausaufgaben für 4. April

Analysis Übungen Hausaufgaben für 4. April Aalysis Übuge Hausaufgabe für 4. April Reihe sg 1. AN 8.2. c), AN 8.9. a). 2. Beweise die otwedige Bedigug für die Kovergez eier Reihe: we a koverget ist, da lim a = 0. (I der Praxis: we lim a 0, da ist

Mehr

Analysis I - Zweite Klausur

Analysis I - Zweite Klausur Aalysis I - Zweite Klausur Witersemester 2004-2005 Vorame: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Aufgabe 4 Pukte Bestimme Sie (mit Beweis)

Mehr

( 1) n 1 n n n + 1. n=1

( 1) n 1 n n n + 1. n=1 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmud Musterlösug zum 6. Übugsblatt zur Höhere Mathematik I P/ET/AI/IT/IKT/MP) WS 20/2 Aufgabe mittels Zeige Sie die Kovergez der Reihe )

Mehr

Kapitel 6. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 6. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 6 Aufgabe Verstädisfrage Aufgabe 6. Gegebe sei die Folge (x ) 2 mit x ( 2)/( + ) für 2. Bestimme Sie eie Zahl N N so, dass x ε für alle N gilt, we (a) ε 0, (b) ε 00 ist. Aufgabe 6.2 Stelle Sie

Mehr

6 Grenzwerte von Zahlenfolgen

6 Grenzwerte von Zahlenfolgen 6 Grezwerte vo Zahlefolge Ei zetraler Begriff der Aalysis ist der des Grezwertes. Wir begie mit der Betrachtug vo Grezwerte vo Zahlefolge. 6. Zahlefolge 6.. Grudbegriffe Defiitio 6... Eie Fuktio f : Z

Mehr

KAPITEL 2. Zahlenfolgen

KAPITEL 2. Zahlenfolgen KAPITEL Zahlefolge. Kovergete Zahlefolge...................... 35. Grezwertbestimmug....................... 38.3 Grezwertbestimmug durch Abschätzug............. 4.4 Mootoe Folge..........................

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo suge zu Blatt 0 Kleigruppe zur Service-Verastaltug Mathematik I fu r Igeieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 9.. Theme: Kovergez vo Folge Aufgabe P (i) Sei a : k kk.

Mehr

Aufgaben zu Kapitel 6

Aufgaben zu Kapitel 6 Aufgabe zu Kapitel 6 Aufgabe zu Kapitel 6 Verstädisfrage Aufgabe 6. Gegebe sei die Folge x ) 2 mit x 2)/ + ) für 2. Bestimme Sie eie Zahl N N so, dass x ε für alle N gilt, we a) ε 0, b) ε 00 ist. Aufgabe

Mehr

Höhere Mathematik I für die Fachrichtung Physik. Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtung Physik. Lösungsvorschläge zum 5. Übungsblatt Istitut für Aalsis WS206/7 PD Dr Peer Christia Kustma 8206 Dipl-Math Leoid Chaicheets Johaa Richter, MSc Tobias Schmid, MSc Höhere Mathematik I für die Fachrichtug Phsik Lösugsvorschläge zum 5 Übugsblatt

Mehr

5.7. Aufgaben zu Folgen

5.7. Aufgaben zu Folgen 5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx Übuge zur Ifiitesimalrechug, H.-C. Im Hof 9. März Blatt 4 Abgabe: 6. März, Nachmittag Aufgabe. Zeige e x dx π. Beweis. Wir bemerke als erstes, dass e x dx e x dx + e x dx e x dx formal sieht ma dies per

Mehr

Dann ist die Zahl auf der linken Seite gerade und die auf der rechten Seite ungerade. Also sind sie nicht gleich.

Dann ist die Zahl auf der linken Seite gerade und die auf der rechten Seite ungerade. Also sind sie nicht gleich. Lösuge. Es gibt drei Lösuge.. Lösug: Ato ist traurig ud er trikt keie Likör. Bruo isst Torte ud ist besorgt. Christa ist icht übel ud sie macht Purzelbäume.. Lösug: Ato ist traurig ud trikt keie Likör.

Mehr

Lösungsvorschlag zu den Hausaufgaben der 1. Übung

Lösungsvorschlag zu den Hausaufgaben der 1. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Patrizio Neff Christia Thiel 4.04.04 Lösugsvorschlag zu de Hausaufgabe der. Übug Aufgabe : (6 Pukte Bereche Sie für die Fuktio f : R R, f( : ep( a der Stelle 0 0 das Taylorpolyom

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch Ma zeige, daß IR, d i ), i,, metrische Räume sid, we für x x,, x ), y y,, y ) IR die Abstadsfuktioe durch d x, y) x y, d x, y) x y ), d x, y) max x y gegebe sid Lösug: Ma muß für alle drei Fuktio d i x,

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

Ubungen zur Analysis 1. Prof. Dr. Kohnen. Dr. O. Delzeith

Ubungen zur Analysis 1. Prof. Dr. Kohnen. Dr. O. Delzeith Ubuge zur Aalysis 1 Prof. Dr. Kohe Dr. O. Delzeith SS 1996 1. Beweise Sie uter Beutzug der i der Vorlesug geate vier Axiome fur N : Sid m; ; p; q 2 N ud gilt m > sowie p > q, so gilt mp > q. (3 Pukte)

Mehr

Musterlösungen zur Klausur Analysis I Verständnisteil

Musterlösungen zur Klausur Analysis I Verständnisteil WS 2008/2009 Prof. Dr. Scheider Musterlösuge zur Klausur Aalysis I Verstädisteil 04.02.2009. a A ist ach Defiitio abzählbar, falls A edlich ist, oder falls carda = cardn gilt. b Ei Pukt x A ist ei ierer

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Tutorial zum Grenzwert reeller Zahlenfolgen

Tutorial zum Grenzwert reeller Zahlenfolgen MAE Mathematik: Aalysis für Igeieure Herbstsemester 206 Dr. Christoph Kirsch ZHAW Witerthur Tutorial zum Grezwert reeller Zahlefolge I diesem Tutorial lere Sie, die logische Aussage i der Defiitio des

Mehr

Reihen. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a

Reihen. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a 6 Reihe Folge besoderer Art sid uedliche Summe a k = a + a 2 +... reeller oder komplexer Zahle, dee wir bereits i eiige Beispiele des Abschitts 5-d begeget sid. Da ma icht sämtliche Glieder eier Folge

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 3..05 Höhere Mathemati für die Fachrichtug Physi Lösugsvorschläge zum 3. Übugsblatt Vorbemerug

Mehr

Lösungen zur Präsenzübung 6

Lösungen zur Präsenzübung 6 Lösuge zur Präsezübug 6 Mirko Getzi Uiversität Bielefeld Fakultät für Mathematik. Dezember 203 Ich gebe keie Gewähr auf eie vollstädige Richtigkeit der Lösuge zu de Übugsaufgabe. Das Dokumet hat jedoch

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

II Analysis Folgen Konvergenz von Folgen. a 2. a 4. a C " a " a 1. c D lim. R. Plato 27

II Analysis Folgen Konvergenz von Folgen. a 2. a 4. a C  a  a 1. c D lim. R. Plato 27 R. Plato 7 II Aalysis 4 Folge 4. Kovergez vo Folge Differeziatio ud Itegratio sid grudlegede mathematische Kozepte, dee ifiitesimale Prozesse zu Grude liege. Die geaue Beschreibug solcher Prozesse erfordert

Mehr

Repetitorium Analysis 1 für Physiker WS08/09 Montag - Folgen und Reihen Musterlösung

Repetitorium Analysis 1 für Physiker WS08/09 Montag - Folgen und Reihen Musterlösung Repetitorium Aalysis für Physier WS08/09 Motag - Folge ud Reihe Musterlösug. Verstädisfrage Thomas Blasi a Sid folgede Aussage richtig oder falsch: Jede overgete Folge hat eie Grezwert. Richtig. i Der

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37 Reelle Folge Der Begriff der Folge ist ei grudlegeder Baustei der Aalysis, weil damit u.a. Grezprozesse defiiert werde köe. Er beschreibt de Sachverhalt eier Abfolge vo Elemete, wobei die Reihefolge bzw.

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,

Mehr

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen 26 Gleichmäßige Kovergez ud Potezreihe 129 26 Gleichmäßige Kovergez ud Potezreihe Lerziele: Kozepte: Puktweise ud gleichmäßige Kovergez Resultate: Vertauschbarkeit vo Grezprozesse, Kovergezverhalte vo

Mehr

4-1 Elementare Zahlentheorie

4-1 Elementare Zahlentheorie 4-1 Elemetare Zahletheorie 4. Dirichlet s Satz über Primzahle i arithmetische Progressioe. Satz (Dirichlet 1837). Seie a, k atürliche Zahle. Sid die Zahle a, k teilerfremd, so gibt es uedlich viele Primzahle

Mehr

Lösungen der Übungsaufgaben von Kapitel 2

Lösungen der Übungsaufgaben von Kapitel 2 Aalysis I Ei Lerbuch für de safte Wechsel vo der Schule zur Ui Lösuge der Übugsaufgabe vo Kapitel zu... Ma zeige: Jede Teilfolge eier Umordug eier Folge ka als Umordug eier Teilfolge geschriebe werde.

Mehr

12. Übungsblatt zur Vorlesung Mathematik I für Informatik

12. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Se Herrma Dipl.-Math. Susae Pape. Übugsblatt zur Vorlesug Mathematik I für Iformatik Witersemester 009/00 9./0. Jauar 00 Gruppeübug Aufgabe G (Logarithmus-Fuktio)

Mehr

Lösungen zur Übungsserie 10

Lösungen zur Übungsserie 10 Aalysis Herbstsemester 08 Prof Peter Josse Motag, 3 Dezember Lösuge zur Übugsserie 0 Aufgabe,,4,,6,8,9,,,3,4 Aufgabe Sei V der R-Vektorraum der stetige Fuktioe auf dem Itervall [0, ], ud sei d 0 eie gaze

Mehr

Modulabschlussprüfung Analysis Musterlösung

Modulabschlussprüfung Analysis Musterlösung Bergische Uiversität Wuppertal Fachbereich C Mathematik ud Naturwisseschafte Prof. Dr. N. Shcherbia SoSe 204 Modulabschlussprüfug Aalysis 2.07.204 Musterlösug. Utersuche Sie folgede Reihe auf Kovergez

Mehr

Scheinklausur Analysis 1 WS 2007 /

Scheinklausur Analysis 1 WS 2007 / Scheiklausur Aalysis 1 WS 2007 / 2008 08.02.2008 Es gibt 11 Aufgabe ud 1 Zusatzaufgabe. Die jeweilige Puktzahl steht am like Rad. Die Gesamtpuktzahl ist 40 Pukte plus 4 Zusatzpukte. Zum Bestehe der Klausur

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Folge ud Reihe INHALTSVERZEICHNIS 1. EINFÜHRUNG... 3. DARSTELLUNG EINER FOLGE... 3 3. BEISPIELE... 4 4. ENDLICHE REIHE... 4 5. ARITHMETISCHE FOLGEN UND REIHEN... 4 6. GEOMETRISCHE

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

Kapitel 6 Differenzierbarkeit

Kapitel 6 Differenzierbarkeit Kapitel 6 Differezierbarkeit Ihalt 6.1 6.1Die Defiitio 6.2 6.2Die Eigeschafte 6.3 6.3Extremwerte Seite 2 Was heißt differezierbar? Differezierbare Fuktioe sid sid glatte Fuktioe. Wir Wir beschreibe diese

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 4

Zusatzmaterial zur Mathematik I für E-Techniker Übung 4 Mathemati I für E-Techier C. Erdma WS 0/, Uiversität Rostoc, 4. Vorlesugswoche Zusatzmaterial zur Mathemati I für E-Techier Übug 4 Wiederholug - Theorie: Reihe Zu jeder Folge {a } b Die Reihe eier zugehörige

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1 ANALYSIS WS 08/09 Vorlesug: Prof. Dr. P. Ullrich Übuge: Dr. I. Kharif/ Dr. M. Steihauer 9. ÜBUNGSBLATT- LÖSUNGSHINWEISE/Ergebisse Die folgede Bearbeituge sid - zum Teil - keie ausführliche Musterlösuge,

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8 Übugsblatt Aufgabe mit Lösuge Aufgabe : a Bestimme Sie de Kovergezradius der Reihe!! x b Für welche x R overgiere die folgede Potezreihe? i x, ii 3 x3 Lösug : a Wir wede das Quotieteriterium a: [!] x

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 14

Technische Universität München Zentrum Mathematik. Übungsblatt 14 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt 4 Hausaufgabe Aufgabe 4. Sie sid 0 Miute zu spät i die Vorlesug gekomme ud stelle

Mehr

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0 Kompaktheit ud gleichgradige Stetigkeit Vortrag zum Prosemiar zur Aalysis, 14.06.2010 Mao Wiescherma Matthias Klupsch Dieser Vortrag beschäftigt sich mit Kompaktheit vo Teilräume vom Raum der stetige Abbilduge

Mehr