Mathematik für Naturwissenschaften Aufgaben mit Ergebnissen Differenzialrechnung

Größe: px
Ab Seite anzeigen:

Download "Mathematik für Naturwissenschaften Aufgaben mit Ergebnissen Differenzialrechnung"

Transkript

1 Hans Walser Mathematik für Naturwissenschaften Aufgaben mit sen Differenzialrechnung

2 Differenzialrechnung, Aufgaben ii Inhalt Steigung... Beweis?... 3 Spiel mit Eponenten... 4 Ableitung... 5 Skizze der Ableitung... 6 Umkehrung der Ableitung?... 7 Umkehrung der Ableitung? Mehrfaches Ableiten. Formel von Leibniz Passende Funktionen gesucht Produktregel für mehrere Faktoren...4 Zweimal Sinus...4 Zweimal Kosinus Zusammensetzung von zwei Funktionen, Kettenregel Hyperbelfunktionen cosh und sinh Hyperbolischer Tangens Spiel mit Eponenten Zusammensetzung von drei Funktionen Verallgemeinerte Kettenregel Areafunktionen...9 Artanh /04 Erstausgabe last modified: 6. November 003 Hans Walser Mathematisches Institut, Rheinsprung, 405 Basel hwalser@bluewin.ch

3 Differenzialrechnung, Aufgaben Steigung Was stimmt an dieser Verkehrstafel nicht? Die eingezeichnete Rampe hat einen Steigungswinkel von 30 und daher eine Steigung tan ( 30 ) = % %. Beweis? Es ist ( 4 ) = 4 3. Wie lässt sich dieser Sachverhalt beweisen? Analog Vorlesung 3 Spiel mit Eponenten Gesucht ist je die erste Ableitung: a) f()= t cos t ( ()) 4 b) gt ()= cos 4 t 3 ( sin() ) a) = 4 cos() 3 b) g ( t)= 4 () t () t f t t t cos sin (wie bei a)) c) h ( t)= sin( t 4 ) 4t 3 d) = 6cos sin k t t t t 4 Ableitung Welches ist die erste Ableitung von a) f= ln ( ) = b) g ln ln = c) h ln ln ln () c) ht ()= cos t 4 d) kt ()= cos 4 t 4

4 Differenzialrechnung, Aufgaben a) f ln f = = = ln ln g ( )= ln ( ) b) g ( ) = c) h ln ln ln h = ln ln ( ) ln 5 Skizze der Ableitung Skizzieren Sie (ins gleiche Koordinatensystem) die Ableitungsfunktion der durch den Graphen gegebenen Funktion Umkehrung der Ableitung? Gesucht ist jeweils ein Beispiel einer Funktion f so, dass a) f = 4 b) f = 4 c) f = 4 d) f = ( 4 ) a) f 5 = 5 + C

5 Differenzialrechnung, Aufgaben 3 b) f 6 = + C+ D 30 c) f 7 C = + + D + E 0 d) f 7 C = + + D + E 0 7 Umkehrung der Ableitung? Gesucht ist jeweils ein Beispiel einer Funktion f() t so, dass a) f ()= t sin() t b) f ()= t sin() t c) f ()= t sin() t d) f ()= t si n t a) f()= t cos()+ t C b) f()= t sin()+ t Ct + D c) f t cos t t Dt E C ()= ()+ + + d) f t cos t t Dt E C ()= () Mehrfaches Ableiten. Formel von Leibniz f bedeutet die zweite Ableitung von f, also f = ( f ), entsprechend f die dritte Ableitung, f ( 4) die vierte Ableitung, usw.. (Beispiel: f= 7, f = 7 6, f = 4 5, f = 0 4, f ( 4) = ). Wie lautet die entsprechende Produktregel? a) ( fg )= b) ( fg ) = c) ( fg ) = d) ( fg) ( 4) = e) ( fg) ( 5) = f) Kommentar? () n = ( k ) k= 0 ( n) f) fg n ( k) ( n k) f g (Formel von Leibniz, verwandt mit binomischer Formel) 9 Passende Funktionen gesucht a) Gesucht ist ein Beispiel einer Funktion f so, dass f = f. b) Gesucht sind zwei verschiedene Funktionen f so, dass f = f. c) Gesucht sind drei verschiedene Funktionen f so, dass f ( 4) = f. a) f= ae b) f= acos, f= bsin c) f= acos, f= bsin, f= ce

6 Differenzialrechnung, Aufgaben 4 0 Produktregel für mehrere Faktoren Es ist ( fg ) = fg+ f g. Gesucht ist eine entsprechende Formel für a) ( fgh ) b) ( fghi ) c) ( f 4 ) = ( ffff ) d) ( fgh ) a) ( fgh) = f gh + fg h + fgh b) ( fghi) = f ghi + fg hi + fgh i + fghi 4 3 c) ( f ) = ( ffff ) = 4 f f (Produktregel oder Kettenregel) d) ( fgh) = f gh + fg h + fgh + f g h + f gh + fg h Zweimal Sinus a) Skizzieren Sie den Graphen der Funktion f= sin() tsin () t ; t ππ [, ]. (Erst überlegen, dann im Computer nachsehen!) = () ππ [ ] b) Skizzieren Sie den Graphen der Funktion g sin sin t ; t,. (Erst überlegen, dann im Computer nachsehen!) a) y f t = sin t sin t = sin t -π π - t - b) g t = sin sin t y -π π - t -

7 Differenzialrechnung, Aufgaben 5 Zweimal Kosinus a) Skizzieren Sie den Graphen der Funktion f= cos() tcos () t ; t ππ [, ]. (Erst überlegen, dann im Computer nachsehen!) = () ππ [ ] b) Skizzieren Sie den Graphen der Funktion g cos cos t ; t,. (Erst überlegen, dann im Computer nachsehen!) a) y f t = cos t cos t = cos t -π π - t - b) g t = cos cos t y -π π - t - 3 Zusammensetzung von zwei Funktionen, Kettenregel Es sei: f : und g: sin. Gesucht sind: a) ( g o f ) b) ( f o g) 4 Hyperbelfunktionen Die Funktionen cosh ( cosinus hyperbolicus oder hyperbolischer Kosinus ) und sinh ( sinus hyperbolicus oder hyperbolischer Sinus ) sind wie folgt definiert: cosh= e +e und sinh= e e

8 Differenzialrechnung, Aufgaben 6 a) In der Figur sind die Funktionsgraphen von e und e eingetragen. Skizzieren Sie dazu die beiden Funktionsgraphen von cosh und sinh. Bemerkung: Der Funktionsgraph von cosh wird als Kettenlinie bezeichnet. b) Gesucht sind die Ableitungen cos h und sin h. Kommentar?

9 Differenzialrechnung, Aufgaben a) -5 b) cosh = sinh, sinh = cosh 5 cosh und sinh Die Funktionen cosh und sinh sind wie folgt definiert: cosh( e + e )= und sinh( e e )= Gibt es eine zu cos + sin = entsprechende Formel mit cosh und sinh? cosh sinh = 6 Hyperbolischer Tangens Es ist tanh= sinh cosh. a) Skizze oder Plot des Funktionsgraphen? b) lim tanh=? c) lim tanh=?

10 Differenzialrechnung, Aufgaben 8 d) Ableitung von tanh? a) y = tanh b) lim tanh= c) lim tanh= d) d d tanh tanh cosh = = 7 Spiel mit Eponenten Gesucht ist je die erste Ableitung: a) f()= t cos t ( ()) 4 b) gt ()= cos 4 t () c) ht ()= cos t 4 d) kt ()= cos 4 t 4 8 Zusammensetzung von drei Funktionen Es sei: f=, g = sin und h =. Wie viele Zusammensetzungen dieser drei Funktionen gibt es (Beispiele: h o g o f, g o h o f, )? Listen Sie die Zusammensetzungen auf und geben Sie einen möglichst großen Definitionsbereich an. Es gibt 3! = 6 Zusammensetzungen, nämlich (Definitionsbereiche eemplarisch):

11 Differenzialrechnung, Aufgaben 9 Definitionsbereich Zusammensetzung [ 0, π] hogo f = sin( ) R R R + 0 = sin = sin = sin [ 0, π] f ohog= sin R + 0 ho f og goho f go f oh = sin f ogoh 9 Verallgemeinerte Kettenregel Es sei: f=, g = sin und h =. Wie viele Zusammensetzungen dieser drei Funktionen gibt es (Beispiele: h o g o f, g o h o f, )? Listen Sie die Zusammensetzungen auf und geben Sie die im Definitionsbereich [ 0, ] gültige Ableitung an. Definitionsbereich Zusammensetzung Ableitung [ 0, ] hogo f = sin( ) cos( ) sin( ) [ 0, ] [ 0, ] [ 0, ] [ 0, ] ho f og= sin goho f = sin go f oh = sin f ohog= sin cos cos cos cos [ 0, ] f = o go h sin sin cos 0 Areafunktionen a) arcosh ( area cosinus hyperbolicus ) ist die Umkehrfunktion von cosh. Gesucht ist arcosh ( ). b) Was ist arsinh ( )?

12 Differenzialrechnung, Aufgaben 0 a) arcosh = b) arsinh = + Artanh artanh ( area tangens hyperbolicus ) ist die Umkehrfunktion von tanh. Gesucht ist artanh ( ). artanh =

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften 3 3 4 4 5 5 6 6 7 Modul 03 Differenzialrechnung Lernumgebung Hans Walser: Modul 03, Differenzialrechnung, Lernumgebung ii Modul 03 für die Lehrveranstaltung

Mehr

1. ( e -x + e -(- x) 1. . ( e x + e - x ) . ( e x - e - x 2. Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Analysis Übung 15 Folie 1

1. ( e -x + e -(- x) 1. . ( e x + e - x ) . ( e x - e - x 2. Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Analysis Übung 15 Folie 1 04.03.04 Übung 5a Analysis, Abschnitt.5, Folie Definition der hyperbolischen Funktionen: sinus hyperbolicus: sinh( ). ( e - e - ) cosinus hyperbolicus: cosh( ). ( e + e - ) tangens hyperbolicus: sinh(

Mehr

Beweise zum Ableiten weiterer Funktionen

Beweise zum Ableiten weiterer Funktionen Arbeitsblatt A: Eponentialfunktionen Satz (Ableitung von Eponentialfunktionen) Für alle gilt: () f () = e f ' () = e () f () = a f ' () = a ln (a) mit a + f() = e grafisches Differenzieren: Ergänze die

Mehr

Formelsammlung spezieller Funktionen

Formelsammlung spezieller Funktionen Lehrstuhl A für Mathematik Aachen, en 70700 Prof Dr E Görlich Formelsammlung spezieller Funktionen Logarithmus, Eponential- un Potenzfunktionen Natürlicher Logarithmus Der Logarithmus ist auf (0, ) efiniert

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die

Mehr

Elementare Funktionen. Analysis I November 28, / 101

Elementare Funktionen. Analysis I November 28, / 101 Elementare Funktionen Analysis I November 28, 2017 76 / 101 Exponentialfunktion Buch Kap. 2.3 Exponentialfunktionen f(x) = a x, a > 0, D = R. Ist a = e (Eulerzahl e = 2, 71828...), sprechen wir von der

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

24 Partialbruchzerlegung und elementare Stammfunktionen

24 Partialbruchzerlegung und elementare Stammfunktionen 4 Partialbruchzerlegung und elementare Stammfunktionen 4 Partialbruchzerlegung und elementare Stammfunktionen Aufgabe: Versuchen Sie, 0 d und 4 0 d 6 und zu berechnen. 4. Rationale Funktionen. a) uotienten

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. Dezember 2011)

Mehr

19. Weitere elementare Funktionen

19. Weitere elementare Funktionen 19. Weitere elementare Funktionen 1. Der Arcussinus Die Sinusfunktion y = f(x) = sin x (mit y = cos x) ist im Intervall [ π, π ] streng monoton wachsend und somit existiert dort eine Umkehrfunktion. f

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 2.0. - Freitag 2.0. Vorlesung 5 Elementare Funktionen Kai Rothe Technische Universität Hamburg Dienstag 9.0. 0 Brückenkurs Mathematik, c K.Rothe, Vorlesung 5 Umkehrfunktion........................

Mehr

HM I Tutorium 8. Lucas Kunz. 12. Dezember 2018

HM I Tutorium 8. Lucas Kunz. 12. Dezember 2018 HM I Tutorium 8 Lucas Kunz. Dezember 08 Inhaltsverzeichnis Theorie. Stetigkeit und Grenzwerte............................ Sinus und Cosinus.................................3 Tangens und Cotangens............................

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Moul 0 Einführung Lernumgebung Teil 2 Hans Walser: Moul 0, Einführung. Lernumgebung Teil 2 ii Inhalt Where is the flaw?... 2 Intervalle... 3 Frage er Grenzen...2

Mehr

3. Übung zur Analysis II

3. Übung zur Analysis II Universität Augsburg Sommersemester 207 3. Übung zur Analysis II Prof. Dr. Marc Nieper-Wißkirchen Caren Schinko, M. Sc. 8. Mai 207 3. (a) m. Die Dirichletsche Reihe. In Abschnitt 5.8 haben wir bereits

Mehr

2. Umkehrfunktionen und ihre Ableitung, Hyperbelfunktionen 2.1. Höhere Ableitungen. Die Ableitung der Ableitung von f bezeichnet man, x 2, fur x < 0,

2. Umkehrfunktionen und ihre Ableitung, Hyperbelfunktionen 2.1. Höhere Ableitungen. Die Ableitung der Ableitung von f bezeichnet man, x 2, fur x < 0, . Umkehrfunktionen un ihre Ableitung, Hyperbelfunktionen.. Höhere Ableitungen. Die Ableitung er Ableitung von f bezeichnet man, falls sie existiert, mit f x) oer f ) x) oer fx)) oer fx) bzw. allgemein

Mehr

Spiralen DEMO. Text Nr Stand 9. März 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Spiralen DEMO. Text Nr Stand 9. März 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Spiralen Text Nr. 5435 Stand 9. März 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 5435 Spiralen Vorwort Es gibt eine ganze Reihe von spiralähnlichen Kurven. Einige davon habe ich für diesen

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 04/05 0..04 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 7. Übungsblatt

Mehr

23 Elementare Stammfunktionen

23 Elementare Stammfunktionen 3 Elementare Stammfunktionen 3 Elementare Stammfunktionen 07 Lernziele: Konzept: Elementare Funktion Resultat: Rationale Funktionen besitzen elementare Stammfunktionen Methoden: Partialbruchzerlegung,

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 05 TAYLOR Lernumgebung Teil Hans Walser: Modul 05, TAYLOR. Lernumgebung Teil ii Modul 05 für die Lehrveranstaltung Mathematik für Naturwissenschaften

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

HM I Tutorium 9. Lucas Kunz. 22. Dezember 2017

HM I Tutorium 9. Lucas Kunz. 22. Dezember 2017 HM I Tutorium 9 Lucas Kunz. Dezember 017 Inhaltsverzeichnis 1 Theorie 1.1 Exponentialfunktion.............................. 1. Sinus und Cosinus................................ 1.3 Tangens und Cotangens............................

Mehr

TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN

TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN Zusammenfassung. Wir listen die wichtigsten Grundtatsachen trigonometrischer und hyperbolischer Funktionen auf... Sinus.. Trigonometrische Funktionen analytische

Mehr

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115 5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 5 Satz 5.5.2 (Ableitung der Umkehrfunktion einer Winkelfunktionen) Die Umkehrfunktionen der trigonometrischen Funktionen sind nach Satz 5.2.3 auf den

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul Lineare Abbildungen. Eigenwerte Lernumgebung. Teil Hans Walser: Modul, Lineare Abbildungen. Eigenwerte. Lernumgebung. Teil ii Inhalt Lineare Abbildung

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 0 Funktionen, Folgen, Grenzwerte Lernumgebung Teil Hans Walser: Modul 0, Funktionen, Folgen, Grenzwerte. Lernumgebung. Teil ii Modul 0 für die Lehrveranstaltung

Mehr

Trigonometrische und hyperbolische Funktionen

Trigonometrische und hyperbolische Funktionen Trigonometrische und hyperbolische Funktionen Üben und Vertiefen durch Analogien Thilo Steinkrauß Herder-Gymnasium Berlin 9.09.203 / 22 Felix Klein 2 Kreis: Sinus und Cosinus Hyperbel: Sinus hyperbolicus

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 016/17 Dr. K. Rothe Analsis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 3 Gegeben sei eine Funktion f :

Mehr

Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag

Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 4 Blatt 5.6.4 Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag 37. Wir bestimmen zunächst die Schnittpunkte

Mehr

Serie 4: Flächeninhalt und Integration

Serie 4: Flächeninhalt und Integration D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt

Mehr

Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter)

Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Hyperbelfunktionen Simone kopp Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Die Hyperbelfunktionen sind Funktionen, die von ihrer

Mehr

Definition von Sinus und Cosinus

Definition von Sinus und Cosinus Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,

Mehr

Lösung: Serie 7 - Hyperbelfunktionen Newton-Verfahren

Lösung: Serie 7 - Hyperbelfunktionen Newton-Verfahren a Lösung: Serie 7 - Hyperbelfunktionen Newton-Verfahren y ex +e x e x ye x + 0 e x y ± y Da y ist, ist die Wurzel auf der rechten Seite immer reell Wir interessieren uns nur für nichtnegative x Der Logarithmus

Mehr

MAI-Übungsaufgaben im SS02

MAI-Übungsaufgaben im SS02 MAI-Übungsaufgaben im SS02 Prof. Dr. Th. Risse SS 2002 Knappe Rückmeldungen zu den jeweiligen Übungsaufgaben (wie soll man sonst aus Fehlern lernen?) mit einer Bewertungstabelle ganz am Ende! 1 Übungsaufgaben,

Mehr

Geometrie für Geodäsie und Geoinformation MA9506 Vorlesung von PD Dr. Carsten Lange an der Technischen Universität München im Sommersemester 2018

Geometrie für Geodäsie und Geoinformation MA9506 Vorlesung von PD Dr. Carsten Lange an der Technischen Universität München im Sommersemester 2018 Geometrie für Geodäsie und Geoinformation MA9506 Vorlesung von PD Dr. Carsten Lange an der Technischen Universität München im Sommersemester 2018 1 Übersicht Kleine Vorlesung: 3 Semesterwochenstunden mit

Mehr

6.4 Stetige Funktionen

6.4 Stetige Funktionen 6.4 Stetige Funktionen Eine Funktion f heißt stetig im Punkt a, falls sie dort definiert ist und folgende Gleichung erfüllt: lim /a f = f a Ist dies für alle Punkte des Definitionsbereichs A erfüllt, so

Mehr

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung Beispiel. Die Reihe log + x) = ) k k + xk+ für < x < konvergiert auch für x = +. Somit ist nach em Abelschen Grenzwertsatz insbesonere ie Gleichung log + ) = gültig. Daraus folgt ie Darstellung log2) =

Mehr

Lösung zur Übung für Analysis einer Variablen WS 2016/17. f 1(x) = ln x + 1 (1) k=0. dx ee ln x = x xx (x x 1 + x x (1 + ln x) ln x) (3)

Lösung zur Übung für Analysis einer Variablen WS 2016/17. f 1(x) = ln x + 1 (1) k=0. dx ee ln x = x xx (x x 1 + x x (1 + ln x) ln x) (3) Blatt Nr. Prof. F. Merkl Lösung zur Übung für Analysis einer Variablen WS 06/7 Aufgabe Die Ableitungen der Funktionen in Frage sind: a): b): c): d): f () ln + () f () d n k0 k d n! n! ( k) () n n l0 k0

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 9. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 4 M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 6. Gegeben ist

Mehr

8.2. Integrationsregeln

8.2. Integrationsregeln 8.. Integrationsregeln Jeder Differentiationsregel entspricht wegen der Beziehung F ( x ) f( x ) F( x ) + C f( x ) dx eine Integrationsregel. Wir kennen schon die Additionsregel c f( x ) + d g( x )

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Vorkurs Mathematik-Physik, Teil 2 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 2 c 2016 A. Kersch Differentialrechnung. Definition Vorkurs Mathematik-Physik, Teil c 06 A. Kersch Geometrische Interpretation Die Ableitung einer Funktion f() an einer Stelle = 0 ist über den Grenzwert des Differenzenquotienten

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 7. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 9. Potential mittels

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 0 Einführung Hans Walser: Modul 0, Einführung ii Inhalt Zahlen.... Natürliche Zahlen.... Ganze Zahlen.... Rationale Zahlen.... Reelle Zahlen... Smbole....

Mehr

100 und (a) Wie gross ist die Konzentration des Medikaments zu Beginn des Experiments (für t = 0), bzw. nach 5 Stunden (für t = 5)?

100 und (a) Wie gross ist die Konzentration des Medikaments zu Beginn des Experiments (für t = 0), bzw. nach 5 Stunden (für t = 5)? Mathematik I für Naturwissenschaften Dr. Christine Zehrt 18.10.18 Übung 5 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 22. Oktober 2018 in den Übungsstunden Sei f() = 1 f(1+h) f(1) und g(h)

Mehr

Aufgaben zu Kapitel 4

Aufgaben zu Kapitel 4 Aufgaben zu Kapitel 4 Aufgaben zu Kapitel 4 Verständnisfragen Aufgabe 4. Bestimmen Sie ein Polynom vom Grad 3, das die folgenden Werte annimmt 0 p) 3 3 Aufgabe 4. Jede Nullstelle ˆ eines Polynoms p mit

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Motivation. Inhalt. Einführung in die Mathematik für Wirtschaftswissenschaften. Vorlesung im Wintersemester Kurt Frischmuth WS 2017

Motivation. Inhalt. Einführung in die Mathematik für Wirtschaftswissenschaften. Vorlesung im Wintersemester Kurt Frischmuth WS 2017 Inhalt 1 Motivation Einführung in die Mathematik für Wirtschaftswissenschaften Vorlesung im Wintersemester 2017 Kurt Frischmuth Institut für Mathematik, Universität Rostock WS 2017 2 Grundlagen Begriffe

Mehr

Differentialrechnung

Differentialrechnung Katharina Brazda 5. März 007 Inhaltsverzeichnis Motivation. Das Tangentenproblem................................... Das Problem der Momentangeschwindigkeit.......................3 Differenzenquotient und

Mehr

Fibonacci, Kreisfunktionen und hyperbolische Funktionen Spezielle verallgemeinerte Fibonacci-Rekursionen führen auf Kreis- und Hyberbelfunktionen.

Fibonacci, Kreisfunktionen und hyperbolische Funktionen Spezielle verallgemeinerte Fibonacci-Rekursionen führen auf Kreis- und Hyberbelfunktionen. Hans Walser, [0090411a] Fibonacci, Kreisfunktionen und hyperbolische Funktionen Spezielle verallgemeinerte Fibonacci-Rekursionen führen auf Kreis- und Hyberbelfunktionen. 1 Fibonacci und Kreisfunktionen

Mehr

Kapitel 4. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 4. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 4 Aufgaben Verständnisfragen Aufgabe 4. Bestimmen Sie ein Polynom vom Grad 3, das die folgenden Werte annimmt 0 p) 3 3 Aufgabe 4. Jede Nullstelle ˆ eines Polynoms p mit p) = a 0 + a +...+ a n n

Mehr

10 Differenzierbare Funktionen

10 Differenzierbare Funktionen 10 Differenzierbare Funktionen 10.1 Definition: Es sei S R, x 0 S Häufungspunkt von S. Eine Funktion f : S R heißt im Punkt x 0 differenzierbar, wenn der Grenzwert f (x 0 ) := f(x 0 + h) f(x 0 ) lim h

Mehr

Einführung in die Mathematik für Wirtschaftswissenschaften.

Einführung in die Mathematik für Wirtschaftswissenschaften. Einführung in die Mathematik für Wirtschaftswissenschaften. Mathias Sawall Institut für Mathematik, Universität Rostock WS 2018/2019 Mathias Sawall Einführung in die Mathematik für Wirtschaftswissenschaften

Mehr

31. Kurven in Ebene und Raum

31. Kurven in Ebene und Raum 31. Kurven in Ebene und Raum Für ebene Kurven (also Kurven im R gibt es mehrere Darstellungsmöglichkeiten: implizite Darstellung : F (x, y = explizite Darstellung : y = f(x oder x = g(y Parameterdarstellung

Mehr

Lösung zur Übung 7. Leiten Sie die Ableitung der Tangensfunktion aus dem Grenzwert des Differenzenquotienten unter Verwendung des Additionstheorems

Lösung zur Übung 7. Leiten Sie die Ableitung der Tangensfunktion aus dem Grenzwert des Differenzenquotienten unter Verwendung des Additionstheorems Lösung zur Übung 7 Aufgabe 25) Leiten Sie die Ableitung der Tangensfunktion aus dem Grenzwert des Differenzenquotienten unter Verwendung des Additionstheorems her. tan(α + β) tan(α) + tan(β) tan(α) tan(β)

Mehr

Spezielle Klassen von Funktionen

Spezielle Klassen von Funktionen Spezielle Klassen von Funktionen 1. Ganzrationale Funktionen Eine Funktion f : R R mit f (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, n N 0 und a 0, a 1,, a n R, (a n 0) heißt ganzrationale Funktion n

Mehr

Beispiel zu Umkehrfunktionen des Sinus

Beispiel zu Umkehrfunktionen des Sinus Beispiel zu Umkehrfunktionen des Sinus Die Funktion f : [ π, π ] [, ], x sin(x) besitzt die Umkehrfunktion f Arcsin (Hauptzweig des Arcussinus). Wir betrachten die beiden Funktionen g : [ 3 π, 5 π] [,

Mehr

Differenzialrechnung Einführung 1

Differenzialrechnung Einführung 1 0.0.06 Änderungstendenz einer Funktion Differenzialrechnung Einführung Eines der wichtigsten Merkmale einer Funktion ist die Änderungstendenz, womit angegeben wird, wie stark die Funktionswerte f() zu-

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Auffrischungskurs Mathematik WS 2017/18 7 Differentialrechnung 1 / 75 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrechnung f = f 0 + f 0 = f 0 0 heißt Differenzenquotient an der Stelle 0., Sekante 0, f 0 f 0 Josef Leydold Auffrischungskurs

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 25.06.2018 20. Juni 2018 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler 20. Juni 2018 Konvergenz

Mehr

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich

Mehr

Abitur 2012 Mathematik Infinitesimalrechnung I

Abitur 2012 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 212 Mathematik Infinitesimalrechnung I Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Universität Heielberg Mathematischer Vorkurs zum Stuium er Physik Übungen Aufgaben zu Kapitel 5 aus: K. Hefft, Mathematischer Vorkurs zum Stuium er Physik, sowie Ergänzungen Aufgabe 5.: Differenzierbarkeit

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 3 Funktionen mehrerer Variablen Hans Walser: Modul 3, Funktionen mehrerer Variablen ii Modul 3 für die Lehrveranstaltung Mathematik für Naturwissenschaften

Mehr

Serie 1: Repetition von elementaren Funktionen

Serie 1: Repetition von elementaren Funktionen D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 1: Repetition von elementaren Funktionen Bemerkung: Die Aufgaben der Serie 1 bilden den Fokus der Übungsgruppen in der zweiten Semesterwoche

Mehr

Musterlösung zu Blatt 12 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 12 der Vorlesung Analysis I WS08/09 Musterlösung zu Blatt 1 der Vorlesung Analysis I WS08/09 Schriftliche Aufgaben Aufgabe 1. Beweisskizze a): Wir benutzen die Stetigkeit von sin und cos und sin π/) = 1, sinπ/) = 1, cos π/) = cosπ/) = 0,

Mehr

I 1. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (d) 4cosxdx (e) 3e x dx (f) ( e x + x 2) dx

I 1. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (d) 4cosxdx (e) 3e x dx (f) ( e x + x 2) dx Integralrechnung: I. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (a) y =,5 (b) y = + (c) y = 5 (d) y = 3 (e) y = (f) y = (g) y = 3 (h) y = (i) y = 3 4 4 (j) y = 6 + 3 (k) y = 3 + 4 (l)

Mehr

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens

Mehr

Musterlösungen zu Serie 6

Musterlösungen zu Serie 6 D-ERDW, D-HEST, D-USYS Mathematik II FS 3 Dr. Ana Cannas da Silva Musterlösungen zu Serie 6. Die Bogenlänge des Graphen einer differenzierbaren Funktion b f : [a, b] R ist durch + (f (x)) dx gegeben. Insbesondere

Mehr

Münchner Volkshochschule. Planung. Tag 09

Münchner Volkshochschule. Planung. Tag 09 Planung Tag 09 Prof.Dr. Nils Mahnke Mathematischer Vorkurs Folie: 26 Funktionen einer reellen Veränderlichen Sei f: D f R R eine Funktion und D f R symmetrisch bezüglich 0, d.h. x D f x D f Dann definiert

Mehr

Ableitung der Umkehrfunktion

Ableitung der Umkehrfunktion Ableitung der Umkehrfunktion Ist eine Funktion y = f (x) stetig differenzierbar mit f (x) 0, so ist f in einer Umgebung von x invertierbar, und für die Umkehrfunktion f 1 gilt (f 1 ) (y) = f (x) 1, bzw.

Mehr

Münchner Volkshochschule. Themen

Münchner Volkshochschule. Themen Themen Logik und Mengenlehre Zahlensysteme und Arithmetik Gleichungen und Ungleichungen Lin. Gleichungssysteme und spez. Anwendungen Geometrie und Trigonometrie Vektoren in der Ebene und Punktemengen Funktionen

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 07 Fixpunkte Hans Walser: Modul 07, Fixpunkte ii Inhalt Fixpunkte.... Worum es geht....2 Geometrische Beispiele von Fixpunkten....2. Stadtplan....2.2

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Informatier II (Sommersemester 00) Lösungen zu Aufgabenblatt

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Differentialrechung Ableitungen der Sinus-, Kosinus- und Tangensfunktion

Differentialrechung Ableitungen der Sinus-, Kosinus- und Tangensfunktion Differentialrechung Ableitungen er Sinus-, Kosinus- un Tangensfunktion Aufgabe a Gegeben ist ie Funktion f( mit IR. Gesucht ist ie Ableitungsfunktion. Bestimmen Sie ie Ableitungsfunktion graphisch mithilfe

Mehr

Merkblatt zur Integration (1)

Merkblatt zur Integration (1) Als erstes sollte man sich anschauen Merkblatt zur Integration () ) was die Integrationsvariable ist B.: ( y ) d y + C, da y eine KONSTANTE ist y Analog: ( y ) dy + C, da hier eine KONSTANTE ist ) ob es

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 7

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 7 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieur Innen WS 018/019 Übung 7 Aufgabe 1 : Etremwerte Der Ellipse + y = 1 ist ein Rechteck mit Seitenlängen p, q, dessen Seiten parallel

Mehr

Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 6

Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 6 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieure WS 015/016 Übung 6 Aufgabe 1 : Differentialrechnung (a Berechnen Sie die Ableitung nachstehender Funktionen an der Stelle 0 und

Mehr

11 Stetige Funktionen

11 Stetige Funktionen $Id: stetig.tex,v 1.26 2015/02/02 05:27:33 hk Exp $ $Id: diffb.tex,v 1.16 2015/02/02 11:00:31 hk Exp $ 11 Stetige Funktionen 11.5 Einführung der Grundfunktionen Am Ende der letzten Sitzung hatten wir die

Mehr

Analysis I. Partielle Integration. f (t)g(t)dt =

Analysis I. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück WS 3/4 Anlysis I Vorlesung 5 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

Mathematik II. Partielle Integration. f (t)g(t)dt =

Mathematik II. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 33 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Lösung zur Übung 8 vom

Lösung zur Übung 8 vom Lösung zur Übung 8 vom 02.2.204 Aufgabe 29 Leiten Sie die nachfolgenden Funktionen ab: a) y(x) = cos(x) c) y(x) = cos 3 (x) e) y(x) = x3 b) y(x) = cos 2 (x)e x d) y(x) = tanh(x) f) y(x) = cos(x) + tan(x)

Mehr

b) Definieren Sie den Begriff Cauchy-Folge. c) Geben Sie zwei Beispiele für konvergente Folgen und deren jeweilige Grenzwerte an.

b) Definieren Sie den Begriff Cauchy-Folge. c) Geben Sie zwei Beispiele für konvergente Folgen und deren jeweilige Grenzwerte an. Repetitorium zur Ingenieur-Mathematik I, WS 00/ Aufgabe : Bestimmen Sie das quadratische Polynom, auf dessen Graph die Punkte (, 4), (0, ), (, 7) liegen. Aufgabe : a) Wann ist eine Folge konvergent (Definition)?

Mehr

3 Stetigkeit und Grenzwerte von Funktionen

3 Stetigkeit und Grenzwerte von Funktionen 54 3 STETIGKEIT UND GRENZWERTE VON FUNKTIONEN = q + q+ = q. 3 Stetigkeit und Grenzwerte von Funktionen 3. Stetigkeit Definition 3.. Seien M, N C und sei f : M N eine Funktion. Sei ξ M. Dann heißt f stetig

Mehr