7. Triangulation von einfachen Polygonen

Größe: px
Ab Seite anzeigen:

Download "7. Triangulation von einfachen Polygonen"

Transkript

1 1 7. Triangulation von einfachen Polygonen

2 2 Ziel Bessere Laufzeit als O(n log n) durch schnelleres Berechnen der Trapezzerlegung des Polygons.

3 3 Idee Finde Methode, den Anfangspunkt einer Strecke in der Trapezzerlegung schnell zu lokalisieren. Brauchen also Ersatz für Konfliktlisten.

4 4 Datenstruktur zur Punktlokalisierung l s 1 r s 1 t 1 t 2 l s 1 s 1 r s 1 t 1 t 2 s 1 t 4 t 3 t 4 t 3

5 5 Datenstruktur zur Punktlokalisierung l s 1 r s 1 t 1 t 2 t 1 s 1 t 3 t 2 t 4 t 4 t 3 ls 2 s 2 r s 2

6 6 Datenstruktur zur Punktlokalisierung t 2 l s 1 r s 1 ls 2 s 1 t t 3 1 t 2 t 1 t 4 t 5 t 5 t 4 t 3 r s 2

7 7 Datenstruktur zur Punktlokalisierung l s 1 t 2 ls 2 s 1 r s 1 t 1 t 1 t 2 t 4 t 3 r s 2 t 7 t 5 t 5 t 4 t 3 t 7

8 8 Datenstruktur zur Punktlokalisierung l s 1 t 2 l s 2 s 1 r s 1 r s 2 t 1 t 5 t 7 t 1 t 2 t 4 t 3 t 7 s 2 t 4 t 3 t 5 s 2 t 6 t 6

9 9 Datenstruktur zur Punktlokalisierung l s 1 t 2 l s 2 s 1 r s 1 r s 2 t 1 t 2 t 3 t 1 s 2 t 7 t 5 t 7 s 2 t 4 t 4 t 3 t 5 s 2 t 6 t 6

10 10 Datenstruktur zur Punktlokalisierung l s 1 t 2 l s 2 t 1 t 2 s 1 r s 1 r s 2 t 1 s 2 t 7 s 2 t 4 s 2 t 5 t 7 t 4 t 3 t 5 t 3 s 2 t 6 t 6

11 11 Vorgehen allgemein 1. Linken Endpunkt lokalisieren und Trapez vertikal zerlegen. 2. Rechten Endpunkt lokalisieren und Trapez vertikal zerlegen. 3. Strecke durch die Trapezzerlegung verfolgen und Trapeze horizontal zerlegen.

12 12 Erwarteter Aufwand Verfolgen der Strecke: O(1) pro Trapez Lokalisieren der Endpunkte:???

13 13 Bezeichnungen P s 1,..., s n Menge der n Kanten des Polygons zufällige Permutation der Kanten in P P i = {s 1,..., s i } T P i Trapezzerlegung der ersten i Strecken / Kanten DP i DS zur Punktlokalisierung für die ersten i Strecken

14 14 Kosten der Punktlokalisierung Lemma 1 Der erwartete Aufwand, um einen festen Punkt q mit der Datenstruktur DP i in der Trapezzerlegung T P i zu lokalisieren, beträgt O(log i). Beweis: Sei t j das Trapez in T P j, das q enthält. Angenommen wir kennen t i 1.

15 15 Kosten der Punktlokalisierung Was ist die erwartete Anzahl von Vergleichen, um t i zu finden? 1. Fall: t i = t i 1 Dann sind keine weiteren Vergleiche notwendig. 2. Fall: t i t i 1 Dann ist mindestens eine der Seiten von das Hinzunehmen von entstanden. s i O 1 i Die Wahrscheinlichkeit dafür ist. t i durch

16 16 Kosten der Punktlokalisierung Beispiele zum 2. Fall: q q T P i 1 T P i

17 17 Kosten der Punktlokalisierung Beispiele zum 2. Fall: q q T P i 1 T P i

18 18 Kosten der Punktlokalisierung Beispiele zum 2. Fall: q q T P i 1 T P i

19 19 Kosten der Punktlokalisierung Wir erwarten also O 1 i weitere Vergleiche. Aufsummieren: i l=1 1 l = H i Ologi Gesamtlaufzeit: n i=1 1 logi On n log n = On log n

20 20 Beobachtung Wenn wir für einen festen Punkt q das Trapez t j kennen, dann erwarten wir Vergleiche, um für zu finden. O log k j t k k j Denn: k l= j1 1 l = H k H j O log k j

21 21 Idee Wir lassen den Algorithmus in Phasen ablaufen. Am Ende einer Phase lokalisieren wir jede Polygon Ecke in der aktuellen Trapezzerlegung. Das beschleunigt die Punktlokalisierung in der nächsten Phase! Punkte sind Ecken eines Polygons. => Lokalisierung mittels Wandern durch Trapezzerlegung.

22 22 Bezeichnungen log 0 n = n log h n = loglog h 1 n für h0 N h = n log h n log n = max{h N log h n 1}

23 23 Algorithmus von Seidel (1991) 1. s 1,..., s n zufällige Permutation der Strecken i n P 2. T {s 1 } berechnen 3. Für h = 1 bis log n: { Phase h } 3.1. Für i = N h 11 bis N h: Füge s i i n T P i 1 ein Verfolge Polygonzugdurch T P N h und lokalisiere alle Ecken. 4. Für i = N log n1 bis n: Füge s i i n T P i 1 ein.

24 24 Analyse 1. On 2. O1 N h 3.1. i=n h 11 log i N h 1 N h i=n h 11 log n n log h 1 n N h i=n h 11 log n n log h 1 n N hlog h n On

25 25 Analyse Es gilt : 1 log log n n 2 Damit : N log n= n log log n n n 2 n 2 n 4. i=n log n1 log i n N log n i=1 log 2i n n log2 On Übrig bleibt Schritt 3.2.

26 26 Analyse Lemma 2 Sei R eine zufällig gewählte r Teilmenge von P. Dann ist der Erwartungswert der Anzahl X von Schnittpunkten zwischen Strahlen in der Trapezzerlegung T(R) von R und Strecken in P\R in O(n). Beweis: Für eine Teilmenge M von P und eine Strecke s aus M sei deg(s,t(m)) die Zahl der auf s treffenden Strahlen in T(M).

27 27 Analyse s 1 M = {s 1, s 2, s 3 } s 2 degs 2,T M = 4 degs 1,T M = 0 s 3

28 28 Analyse Für jede Teilmenge M von P gilt: s M degs,t M 4 M E[ X ] = R P R = r 1 n r s P R degs,t R {s } = 1 R' P n R' = r1 r s R' degs,t R ' 1 R' P n R' = r1 r n r1 4r1 = 4r1 n r = 4n r On

29 29 Analyse Zusammenfassung: Pro Phase: O(n) Anzahl Phasen: Olog n Laufzeit: On log n

30 30 Bemerkungen On log n erreicht man auch mit einem Teile und Herrsche Algorithmus nach Clarkson, Cole und Tarjan ('91). On erreichte zuerst ein deterministischer Algorithmus von Chazelle ('90). Dieser ist aber sehr komplex und somit eher von theoretischem Interesse. On erreicht auch ein weniger komplexer randomisierter Algorithmus nach Goodrich, Amato und Ramos ('00).

6. Triangulation von Polygonen

6. Triangulation von Polygonen 1 6. Triangulation von Polygonen 2 Problemstellung 3 Problemstellung 4 Problemstellung 5 Problemstellung 6 Jedes Polygon lässt sich triangulieren. Wir führen einen Induktionsbeweis nach der Anzahl der

Mehr

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 24.05.2011 Motivation Gegeben eine Position p = (p x, p y )

Mehr

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 22.05.2012 Nachtrag: Dynamische Bereichsabfragen Letzte Woche: kd-trees und Range-Trees

Mehr

Die Berechnung der Triangulation eines Polygons in fast-linearer Zeit.

Die Berechnung der Triangulation eines Polygons in fast-linearer Zeit. Die Berechnung der Triangulation eines Polygons in fast-linearer Zeit. Ausarbeitung zum Vortrag von Adrian Polko Anhand des Papers von Raimund Seidel: A Simple and Fast Incremental Randomized Algorithm

Mehr

Klausur. 18. Juli 2008, 10:15-12:15 Uhr. Name:... Matrikelnummer:... Anzahl beschriebener Blätter (ohne Aufgabenblatt):... D(p) : Y = p x X + p y

Klausur. 18. Juli 2008, 10:15-12:15 Uhr. Name:... Matrikelnummer:... Anzahl beschriebener Blätter (ohne Aufgabenblatt):... D(p) : Y = p x X + p y GRUNDZÜGE DER ALGORITHMISCHEN GEOMETRIE Klausur 18. Juli 2008, 10:15-12:15 Uhr Name:................................... Matrikelnummer:................................... Anzahl beschriebener Blätter (ohne

Mehr

Algorithmische Geometrie, SoSe 2005 Skriptmitschrift vom 29. April 2005

Algorithmische Geometrie, SoSe 2005 Skriptmitschrift vom 29. April 2005 Algorithmische Geometrie, SoSe 2005 Skriptmitschrift vom 29. April 2005 Antonia Wittmers Igor Savchenko Konvexe Hüllen Inkrementeller Algorithmus für die konvexe Hülle Dabei heißt inkrementeller Algorithmus,

Mehr

Algorithmische Geometrie: Lineare Optimierung (I)

Algorithmische Geometrie: Lineare Optimierung (I) Algorithmische Geometrie: Lineare Optimierung (I) Nico Düvelmeyer WS 2009/2010, 17.11.2009 Überblick 1 Geometrie von Gießformen 2 Durchschnitte von Halbebenen 3 Inkrementeller Algorithmus Überblick 1 Geometrie

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 22.04.2014 Überlagern von Kartenebenen Beispiel: Gegeben zwei verschiedene Kartenebenen,

Mehr

Algorithmische Geometrie: Delaunay Triangulierung (Teil 2)

Algorithmische Geometrie: Delaunay Triangulierung (Teil 2) Algorithmische Geometrie: Delaunay Triangulierung (Teil 2) Nico Düvelmeyer WS 2009/2010, 2.2.2010 Überblick 1 Delaunay Triangulierungen 2 Berechnung der Delaunay Triangulierung Randomisiert inkrementeller

Mehr

Ausleuchtung/Überwachung von polygonalen Flächen

Ausleuchtung/Überwachung von polygonalen Flächen 1 Ausleuchtung/Überwachung von polygonalen Flächen 2 1. Beschreibung der Aufgabenstellung 3 Gegeben ist der Grundriss eines Raumes. 4 In den Ecken des Raumes sollen Geräte platziert werden, die zusammen

Mehr

Polygontriangulierung

Polygontriangulierung Vorlesung Algorithmische Geometrie Polygone triangulieren LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 26.04.2011 Das Kunstgalerie-Problem

Mehr

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer

Mehr

Punkt-in-Polygon-Suche Übersicht

Punkt-in-Polygon-Suche Übersicht Folie 1 von 43 Punkt-in-Polygon-Suche Übersicht! Praxisbeispiel/Problemstellung! Zählen von Schnittpunkten " Schnitt einer Halbgerade mit der Masche " Aufwandsbetrachtung! Streifenkarte " Vorgehen und

Mehr

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 29.05.2011 Das Postamt-Problem b(p, q) = {x R 2 : xp = xq } p q h(p, q) h(q, p) = {x :

Mehr

Geometrische Algorithmen Punkt-in-Polygon-Suche. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Punkt-in-Polygon-Suche

Geometrische Algorithmen Punkt-in-Polygon-Suche. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Punkt-in-Polygon-Suche Folie 1 von 51 Geometrische Algorithmen Punkt-in-Polygon-Suche Folie 2 von 51 Punkt-in-Polygon-Suche Übersicht Praxisbeispiel/Problemstellung Zählen von Schnittpunkten Schnitt einer Halbgerade mit der

Mehr

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 26.06.2012 Prüfung! Termine: 20. Juli 27.

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 24.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei verschiedene Kartenebenen,

Mehr

Punktlokalisation 1. Trapez-Zerlegungen. 2. Eine Suchstruktur. 3. Randomisierter, inkrementeller Algorithmus zur Konstruktion der Trapez-Zerlegung

Punktlokalisation 1. Trapez-Zerlegungen. 2. Eine Suchstruktur. 3. Randomisierter, inkrementeller Algorithmus zur Konstruktion der Trapez-Zerlegung Punktlokalisation 1. Trapez-Zerlegungen 2. Eine Suchstruktur 3. Randomisierter, inkrementeller Algorithmus zur Konstruktion der Trapez-Zerlegung 4. Analyse Punktlokalisation Einteilung in Streifen Anfragezeit:

Mehr

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.06.2014 1 Das Postamt-Problem b(p, q) = {x 2 R 2 : xp = xq } p q h(p, q) h(q, p) = {x

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 24.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei verschiedene Kartenebenen,

Mehr

Algorithmische Geometrie: Schnittpunkte von Strecken

Algorithmische Geometrie: Schnittpunkte von Strecken Algorithmische Geometrie: Schnittpunkte von Strecken Nico Düvelmeyer WS 2009/2010, 3.11.2009 3 Phasen im Algorithmenentwurf 1. Konzentration auf das Hauptproblem 2. Verallgemeinerung auf entartete Eingaben

Mehr

Randomisiert inkrementelle Konstruktion der Trapezzerlegung. Strecken in der Ebene

Randomisiert inkrementelle Konstruktion der Trapezzerlegung. Strecken in der Ebene Randomiiert inkrementelle Kontruktion der Trapezzerlegung einer Menge von Strecken in der Ebene (Literatur: deberg et al., Kapitel 6) Chritian Knauer 1 Problemtellung Gegeben: Eine Menge von n Strecken

Mehr

Übungsblatt 7 - Voronoi Diagramme

Übungsblatt 7 - Voronoi Diagramme Karlsruher Institut für Technologie Algorithmische Geometrie Fakultät für Informatik Sommersemester 2012 ITI Wagner Martin Nöllenburg/Andreas Gemsa Übungsblatt 7 - Voronoi Diagramme 1 Voronoi-Zellen Sei

Mehr

Algorithmische Geometrie 7. Punktsuche (Teil 2)

Algorithmische Geometrie 7. Punktsuche (Teil 2) Algorithmische Geometrie 7. Punktsuche (Teil 2) JProf. Dr. Heike Leitte Computergraphik und Visualisierung Inhaltsverzeichnis 1. Einführung 2. Konvexe Hülle 3. Schnitte von Liniensegmenten 4. Schnitte

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 17. Vorlesung Nächstes Paar Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Problem: Gegeben: Menge P von n Punkten in der Ebene, jeder Punkt

Mehr

Übersicht. Begriffserklärung Motivation / Anwendungen Drei Algorithmen Zusammenfassung Fragen Quellen. Triangulierung von Steffen Ernst 2

Übersicht. Begriffserklärung Motivation / Anwendungen Drei Algorithmen Zusammenfassung Fragen Quellen. Triangulierung von Steffen Ernst 2 Triangulierung Übersicht Begriffserklärung Motivation / Anwendungen Drei Algorithmen Zusammenfassung Fragen Quellen Triangulierung von Steffen Ernst 2 Begriffserklärung Ein Graph ist trianguliert, wenn

Mehr

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1}

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1} 1. Berechne für jeden Knoten i in BFS-Art eine Liste S i von von i aus erreichbaren Knoten, so dass (i) oder (ii) gilt: (i) S i < n 2 + 1 und Si enthält alle von i aus erreichbaren Knoten (ii) S i = n

Mehr

Algorithmen für schwierige Probleme

Algorithmen für schwierige Probleme Algorithmen für schwierige Probleme Britta Dorn Wintersemester 2011/12 24. November 2011 Farbkodierung Beispiel Longest Path Longest Path gegeben: G = (V, E) und k N. Frage: Gibt es einen einfachen Pfad

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Kapitel 1 Markus Lohrey Universität Leipzig http://www.informatik.uni-leipzig.de/~lohrey/rand WS 2005/2006 Markus Lohrey (Universität Leipzig) Randomisierte Algorithmen WS 2005/2006

Mehr

Polygontriangulierung

Polygontriangulierung Vorlesung Algorithmische Geometrie Polygone triangulieren INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2012 Das Kunstgalerie-Problem Aufgabe: Installiere ein Kamerasystem

Mehr

Punkt-in-Polygon-Suche Übersicht

Punkt-in-Polygon-Suche Übersicht Folie 1 von 19 Punkt-in-Polygon-Suche Übersicht Praxisbeispiel/Problemstellung Zählen von Schnittpunkten Schnitt einer Halbgerade mit der Masche Aufwandsbetrachtung Streifenkarte Vorgehen und Eigenschaften

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am..03 Randomisierte Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Algorithmische Geometrie: Arrangements und

Algorithmische Geometrie: Arrangements und Algorithmische Geometrie: Arrangements und Dualität Nico Düvelmeyer WS 2009/2010, 19.1.2010 Überblick 1 Strahlenverfolgung und Diskrepanz 2 Dualität Dualitäts-Abbildung Transformation des Problems zur

Mehr

Durchschnitte und Sichtbarkeit

Durchschnitte und Sichtbarkeit Durchschnitte und Sichtbarkeit Elmar Langetepe University of Bonn Algorithmische Geometrie Durchschnitte 11.05.15 c Elmar Langetepe SS 15 1 Durchschnitt von Halbgeraden/Konvexe Hülle Algorithmische Geometrie

Mehr

2.2. Schnitte von Liniensegmenten

2.2. Schnitte von Liniensegmenten Wir wenden uns nun dem Problem (2) aus 1 zu. F15 Aus zwei Mengen S1, S2 von Liniensegmenten möchten wir alle Schnittpunkte der Segmente aus S1 mit denen aus S2 ermitteln. Wir legen fest, dass sich zwei

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Weitere Grundlagen Maike Buchin 20.4.2017 Wiederholung wir interessieren uns für effizienten Algorithmen und Datenstrukturen Laufzeiten messen wir asymptotisch in der Oh-Notation

Mehr

Algorithmische Geometrie: Delaunay Triangulierung (Teil 1)

Algorithmische Geometrie: Delaunay Triangulierung (Teil 1) Algorithmische Geometrie: Delaunay Triangulierung (Teil 1) Nico Düvelmeyer WS 2009/2010, 26.1.2010 Überblick 1 Motivation Interpolation von Höhendaten 2 Triangulierungen von ebenen Punktmengen 3 Delaunay

Mehr

Geometrische Algorithmen

Geometrische Algorithmen Geometrische Algorithmen Thomas Röfer Motivation Scan-line-Prinzip Konvexe Hülle Distanzprobleme Voronoi-Diagramm Rückblick Manipulation von Mengen Vorrangwarteschlange Heap HeapSort swap(a, 0, 4) 1 5

Mehr

Algorithmische Geometrie 3. Schnitte von Liniensegmenten

Algorithmische Geometrie 3. Schnitte von Liniensegmenten Algorithmische Geometrie 3. Schnitte von Liniensegmenten JProf. Dr. Heike Leitte Computergraphik und Visualisierung Inhaltsverzeichnis 1. Einführung 2. Konvexe Hülle 3. Schnitte von Liniensegmenten 4.

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Liniensegmentschnitt. Doppelt verkettete Kantenliste. Überlagerung von 2 ebenen Graphen. Boolsche Operatoren für einfache Polygone (LEDA)

Liniensegmentschnitt. Doppelt verkettete Kantenliste. Überlagerung von 2 ebenen Graphen. Boolsche Operatoren für einfache Polygone (LEDA) Liniensegmentschnitt Motivation, Überlagerung von Karten, Problemformulierung Ein einfaches Problem und dessen Lösung mit Hilfe des Sweep-Line Prinzips Output-sensitiver Liniensegmentschnittalgorithmus

Mehr

Abschnitt 19: Sortierverfahren

Abschnitt 19: Sortierverfahren Abschnitt 19: Sortierverfahren 19. Sortierverfahren 19.1 Allgemeines 19.2 Einfache Sortierverfahren 19.3 Effizientes Sortieren: Quicksort 19.4 Zusammenfassung 19 Sortierverfahren Informatik 2 (SS 07) 758

Mehr

Sichtbarkeitsgraphen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Sichtbarkeitsgraphen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.07.2011 Bewegungslanung für Roboter Ideen?? Problem: Gegeben

Mehr

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.07.2012 Objekttypen in Bereichsabfragen y0 y0 y x x0 Bisher

Mehr

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 20.05.2014 Objekttypen in Bereichsabfragen y0 y0 y x x0 Bisher betrachteter Fall Eingabe:

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen Lerneinheit : Kürzeste Pfade in Graphen Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 016.6.01 Einleitung Diese Lerneinheit beschäftigt

Mehr

Algorithmische Techniken für Geometrische Probleme

Algorithmische Techniken für Geometrische Probleme Algorithmische Techniken für Geometrische Probleme Berthold Vöcking 14. Juni 2007 Inhaltsverzeichnis 1 Die Sweepline-Technik 2 1.1 Schnitte orthogonaler Liniensegmente............... 2 1.2 Schnitte beliebiger

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 03.12.2013 Algorithmische Geometrie: Schnitte von Strecken Sweep-Line INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Geometrische Algorithmen Einige einfache Definitionen: Ist ein Punkt in einem Polygon? Punkt-in-Polygon-Problem. Das Punkt-in-Polygon-Problem

Geometrische Algorithmen Einige einfache Definitionen: Ist ein Punkt in einem Polygon? Punkt-in-Polygon-Problem. Das Punkt-in-Polygon-Problem Geometrische Algorithmen Einige einfache Definitionen: Punkt: im n-dimensionalen Raum ist ein n-tupel (n Koordinaten) Gerade: definiert durch zwei beliebige Punkte auf ihr Strecke: definiert durch ihre

Mehr

Anwendungen der WSPD & Sichtbarkeitsgraphen

Anwendungen der WSPD & Sichtbarkeitsgraphen Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 08.07.2014 1 Wdh.: Well-Separated Pair Decomposition Def.: Ein Paar disjunkter Punktmengen

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!

Mehr

Das Divide - and - Conquer Prinzip. Quicksort Formulierung und Analyse des Prinzips Geometrisches Divide and Conquer - Closest-Pair - Segmentschnitt

Das Divide - and - Conquer Prinzip. Quicksort Formulierung und Analyse des Prinzips Geometrisches Divide and Conquer - Closest-Pair - Segmentschnitt Divide and Conquer Das Divide - and - Conquer Prinzip Quicksort Formulierung und Analyse des Prinzips Geometrisches Divide and Conquer - Closest-Pair - Segmentschnitt 2 Quicksort: Sortieren durch Teilen

Mehr

Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n i =.

Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n i =. 2. Der Blum-Floyd-Pratt-Rivest-Tarjan Selektions-Algorithmus Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n

Mehr

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.07.2012 Objekttypen in Bereichsabfragen y0 y x x0 Bisher

Mehr

2. Triangulation ebener Punktmengen. 3. Definition und Eigenschaften der Delaunay Triangulation

2. Triangulation ebener Punktmengen. 3. Definition und Eigenschaften der Delaunay Triangulation Delaunay Triangulation 1. Motivation 2. Triangulation ebener Punktmengen 3. Definition und Eigenschaften der Delaunay Triangulation 4. Berechnung der Delaunay Triangulation (randomisiert, inkrementell)

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 07..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Vorlesung Algorithmische Geometrie Konvexe Hülle in R 3

Vorlesung Algorithmische Geometrie Konvexe Hülle in R 3 Vorlesung Algorithmische Geometrie Konvexe Hülle in R 3 INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 15.07.2014 1 Wdh: Konvexe Hülle in R 2 (VL1) Def: Eine Menge S R 2

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

6 Quicksort. die mittlere Laufzeit Θ(n log n) beträgt und. die in der asymptotischen Notation verborgenen Konstanten sehr klein sind.

6 Quicksort. die mittlere Laufzeit Θ(n log n) beträgt und. die in der asymptotischen Notation verborgenen Konstanten sehr klein sind. Algorithmen und Datenstrukturen 132 6 Quicksort In diesem Abschnitt wird Quicksort, ein weiterer Sortieralgorithmus, vorgestellt. Trotz einer eher langsamen Worst-Case Laufzeit von Θ(n 2 ) ist Quicksort

Mehr

Randomisierte Datenstrukturen

Randomisierte Datenstrukturen Seminar über Algorithmen DozentInnen: Helmut Alt, Claudia Klost Randomisierte Datenstrukturen Ralph Schäfermeier 13. 2. 2007 Das Verwalten von Mengen, so dass ein schneller Zugriff auf deren Elemente gewährleistet

Mehr

Sichtbarkeitsgraph. Andreas Gemsa Übung Algorithmische Geometrie

Sichtbarkeitsgraph. Andreas Gemsa Übung Algorithmische Geometrie Übung Algorithmische Geometrie Sichtbarkeitsgraph LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 19.07.2012 Ablauf Nachtrag Sichtbarkeitsgraph WSPD

Mehr

Seminar. Algorithmische Geometrie

Seminar. Algorithmische Geometrie Seminar Algorithmische Geometrie WS 2000/2001 Thema: Konvexe Hülle Mirko Dennler 21439 Inhaltsverzeichnis Konvexe Hülle 1. Problemstellung 3 2. GRAHAMS SCAN 4-5 3. JARVIS' MARCH 5-6 4. QUICK HULL 6-7 5.

Mehr

Datenstrukturen und Algorithmen SS07

Datenstrukturen und Algorithmen SS07 Datenstrukturen und Algorithmen SS0 Datum:.6.200 Michael Belfrage mbe@student.ethz.ch belfrage.net/eth Programm von Heute Minimaler Spannbaum (MST) Challenge der Woche Fibonacci Heap Minimaler Spannbaum

Mehr

Geometrische Algorithmen Voronoi-Diagramme. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Voronoi-Diagramme

Geometrische Algorithmen Voronoi-Diagramme. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Voronoi-Diagramme Folie 1 von 32 Geometrische Algorithmen Voronoi-Diagramme Folie 2 von 32 Voronoi-Diagramme Übersicht Problemstellung Animation zur Konstruktion eines Voronoi-Diagramms Definition, Eigenschaften eines Voronoi-Diagramms

Mehr

9 Arrangements und Dualität

9 Arrangements und Dualität 9 Arrangements und Dualität 9.1 Strahlenverfolgung und Diskrepanz Wir betrachten eine Anwendung aus der Computergraphik: realistische Bilder von 3D- Szenen lassen sich durch ray tracing berechnen. Für

Mehr

Voronoi Diagrams. Christian Wellenbrock. December 1, 2009

Voronoi Diagrams. Christian Wellenbrock. December 1, 2009 December 1, 2009 Das Voronoi Diagramm Problemstellung Gegeben: Menge der Zentren P = {p 1,..., p n } R 2 Das Voronoi Diagramm Problemstellung Gegeben: Menge der Zentren P = {p 1,..., p n } R 2 Gesucht:

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke

Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Distanzprobleme in der Ebene

Distanzprobleme in der Ebene Distanzprobleme in der Ebene (Literatur: deberg et al., Kapitel 7,9) Christian Knauer 1 Motivation: Alle nächsten Nachbarn Gegeben: Eine Menge von Punkten P in der Ebene Berechne: Zu jedem Punkt aus P

Mehr

Vorlesung 15 ABSCHLUSS UND ZUSAMMENFASSUNG

Vorlesung 15 ABSCHLUSS UND ZUSAMMENFASSUNG Vorlesung 15 ABSCHLUSS UND ZUSAMMENFASSUNG 431 Wiederholung! Größen im Zusammenhang mit Fluss:! Energie des Flusses! Duale Energie: Lagrange-Potential! Dualitätslücke! Zyklusaktualisierung in Form von

Mehr

Beweis: Annahme: T (n) c n, wobei c = c(m) konstant ist. Die Annahme ist ok, falls T (n)

Beweis: Annahme: T (n) c n, wobei c = c(m) konstant ist. Die Annahme ist ok, falls T (n) Beweis: Annahme: T (n) c n, wobei c = c(m) konstant ist. Die Annahme ist ok, falls T (n) ( ( ) n 3 T + T m ) 4 n n 3 c + m 4 n c + n n + C m + cn; dies gilt, falls m 2 n m C m + n 2 (bis auf, ) c m + 3

Mehr

Minimalpolynome und Implikanten

Minimalpolynome und Implikanten Kapitel 3 Minimalpolynome und Implikanten Wir haben bisher gezeigt, daß jede Boolesche Funktion durch einfache Grundfunktionen dargestellt werden kann. Dabei können jedoch sehr lange Ausdrücke enstehen,

Mehr

Geometrie 2. Julian Fischer Julian Fischer Geometrie / 30

Geometrie 2. Julian Fischer Julian Fischer Geometrie / 30 Geometrie 2 Julian Fischer 6.7.2009 Julian Fischer Geometrie 2 6.7.2009 1 / 30 Themen 1 Bereichssuche und kd-bäume 1 Bereichssuche 2 kd-bäume 2 Divide and Conquer 1 Closest pair 2 Beispiel: Points (IOI

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I 10.5.17 Sascha Witt sascha.witt@kit.edu (Mit Folien von Lukas Barth, Julian Arz, Timo Bingmann, Sebastian Schlag und Christoph Striecks) Roadmap Listen Skip List Hotlist Amortisierte

Mehr

Anwendungen der WSPD & Sichtbarkeitsgraphen

Anwendungen der WSPD & Sichtbarkeitsgraphen Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 10.07.2012 Wdh.: Well-Separated Pair Decomposition Def.: Ein Paar disjunkter Punktmengen

Mehr

Kap. 3: Sortieren (3)

Kap. 3: Sortieren (3) Kap. 3: Sortieren (3) Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund 6. VO DAP2 SS 2009 30. April 2009 Überblick Quick-Sort Analyse von Quick-Sort Quick-Sort

Mehr

Geometrische Algorithmen

Geometrische Algorithmen Geometrische Algorithmen Bin Hu Algorithmen und Datenstrukturen 2 Arbeitsbereich für Algorithmen und Datenstrukturen Institut für Computergraphik und Algorithmen Technische Universität Wien Einführung

Mehr

Auswählen nach Rang (Selektion)

Auswählen nach Rang (Selektion) Auswählen nach Rang (Selektion) Geg.: Folge X von n Schlüsseln, eine Zahl k mit k n Ges.: ein k-kleinster Schlüssel von X, also den Schlüssel x k für X sortiert als x x 2 L x n trivial lösbar in Zeit O(kn)

Mehr

Uberblick 1. Problemstellung 2. Kongurationsraum 3. Bewegungsplanung fur einen Punktroboter 4. Minkowski Summen 5. Pseudo-Scheiben 6. Bewegungsplanung

Uberblick 1. Problemstellung 2. Kongurationsraum 3. Bewegungsplanung fur einen Punktroboter 4. Minkowski Summen 5. Pseudo-Scheiben 6. Bewegungsplanung Vorlesung Geometrische Algorithmen Bewegungsplanung fur Roboter (Robot Motion Planning) Sven Schuierer Uberblick 1. Problemstellung 2. Kongurationsraum 3. Bewegungsplanung fur einen Punktroboter 4. Minkowski

Mehr

Parallele Algorithmen in der Bildverarbeitung

Parallele Algorithmen in der Bildverarbeitung Seminar über Algorithmen - SoSe 2009 Parallele Algorithmen in der Bildverarbeitung von Christopher Keiner 1 Allgemeines 1.1 Einleitung Parallele Algorithmen gewinnen immer stärker an Bedeutung. Es existieren

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Elemente, Buch I Stefan Witzel Vierecke Vier Punkte P, Q, R, S bilden ein Viereck PQRS, wenn sich weder die Segmente PQ und RS noch die Segmente

Mehr

Schematisierung von Karten

Schematisierung von Karten Vorlesung Algorithmische Kartografie Schematisierung von (Straßen-)Karten LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 30.04.2013 Schematische

Mehr

Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale Roboter 1

Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale Roboter 1 Vorlesung Geometrische Algorithmen Sichtbarkeitsgraphen und kurzeste Wege Sven Schuierer Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Kap. 4.7 Skiplisten. 15./16. VO DAP2 SS /10. Juni 2008

Kap. 4.7 Skiplisten. 15./16. VO DAP2 SS /10. Juni 2008 Kap. 4.7 Skiplisten Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 15./16. VO DAP2 SS 2008 5./10. Juni 2008 1 Proseminare WS 2008/09 Anmeldefrist: Montag 16.06.

Mehr

Kap. 4.7 Skiplisten. 14./15. VO DAP2 SS /16. Juni 2009

Kap. 4.7 Skiplisten. 14./15. VO DAP2 SS /16. Juni 2009 Kap. 4.7 Skiplisten Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 14./15. VO DAP2 SS 2008 9./16. Juni 2009 1 2. Übungstest Termin: Di 16. Juni 2009 im AudiMax,

Mehr

Triangulierung von Polygonen und das Museumsproblem

Triangulierung von Polygonen und das Museumsproblem Triangulierung von Polygonen und das Museumsproblem (Literatur: deberg et al., Kapitel 3) 1 Motivation: Das Museumsproblem ein Museum soll durch Kameras überwacht werden wie viele Kameras werden benötigt?

Mehr

Kapitel 6: Algorithmen der Computer-Geometrie

Kapitel 6: Algorithmen der Computer-Geometrie LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Kapitel 6: Algorithmen der Computer-Geometrie Skript zur Vorlesung Geo-Informationssysteme Wintersemester 2015/16 Ludwig-Maximilians-Universität

Mehr

4 Probabilistische Analyse und randomisierte Algorithmen

4 Probabilistische Analyse und randomisierte Algorithmen Algorithmen und Datenstrukturen 96 4 Probabilistische Analyse und randomisierte Algorithmen Bei der Algorithmenanalyse ist es sehr hilfreich, Aspekte berücksichtigen zu können, die vom Zufall abhängen.

Mehr

PRIMES is in P. Ein Vortrag von Holger Szillat.

PRIMES is in P. Ein Vortrag von Holger Szillat. PRIMES is in P Ein Vortrag von Holger Szillat szillat@informatik.uni-tuebingen.de Übersicht Geschichte Notationen und Definitionen Der Agrawal-Kayal-Saxena-Algorithmus Korrektheit und Aufwand Fazit Geschichte

Mehr

Vorlesung 14 FORTSETZUNG: LÖSER FÜR LAPLACE-GLEICHUNGSSYSTEME

Vorlesung 14 FORTSETZUNG: LÖSER FÜR LAPLACE-GLEICHUNGSSYSTEME Vorlesung 4 FORTSETZUNG: LÖSER FÜR LAPLACE-GLEICHUNGSSYSTEME 49 Wdh.: Bedingung an optimalen Fluss! Wdh.: Stromfluss f ij zwischen Knoten i und j: (v i v j )w ij! Also: f ij / w ij = v i - v j bzw. f opt

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 45 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Distanzen zwischen allen Knotenpaaren (APD)! Viele Anwendungen:! Navis! Netzwerkrouting!...

Mehr

Berechnung approximierter Voronoi-Zellen auf geometrischen Datenströmen

Berechnung approximierter Voronoi-Zellen auf geometrischen Datenströmen Definition Berechnung approximierter Voronoi-Zellen auf geometrischen Datenströmen Seminar über Algorithmen WS 2005/2006 Vorgetragen von Oliver Rieger und Patrick-Thomas Chmielewski basierend auf der Arbeit

Mehr

6. Algorithmen der Computer-Geometrie

6. Algorithmen der Computer-Geometrie 6. Algorithmen der Computer-Geometrie 1. Einführung 2. Schnitt von zwei Strecken 3. Punkt-in-Polygon-Test 4. Schnitt orthogonaler Strecken 5. Punkteinschlussproblem Geo-Informationssysteme 146 6.1 Computer-Geometrie

Mehr

Algorithmische Geometrie: Rest Lokalisierung von Punkten; Voronoi Diagramme (1/2)

Algorithmische Geometrie: Rest Lokalisierung von Punkten; Voronoi Diagramme (1/2) Algorithmische Geometrie: Rest Lokalisierung von Punkten; Voronoi Diagramme (1/2) Nico Düvelmeyer WS 2009/2010, 22.12.2009 Überblick 1 Fertigstellung Kapitel 7 2 Definition Voronoi Diagramm 3 Grundlegende

Mehr

Vereinfachung und Schematisierung von Polygonen

Vereinfachung und Schematisierung von Polygonen Vorlesung Algorithmische Kartografie Vereinfachung und Schematisierung von Polygonen INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann Martin Nöllenburg 28.04.2015 1 Übersicht

Mehr

Graphalgorithmen Minimale Spannbäume. Kruskal: Minimaler Spannbaum

Graphalgorithmen Minimale Spannbäume. Kruskal: Minimaler Spannbaum Kruskal: Minimaler Spannbaum (Folie 414, Seite 78 im Skript) 4 6 2 3 1 2 5 3 7 1 4 Kruskals Algorithmus Implementierung (Folie 415, Seite 78 im Skript) Algorithmus function Kruskal(G, w) : A := ; for each

Mehr

Ein sortiertes Feld kann in O(log n) durchsucht werden, z.b. mit Binärsuche. Der Algorithmus 1 gibt den Pseudocode der binären Suche an.

Ein sortiertes Feld kann in O(log n) durchsucht werden, z.b. mit Binärsuche. Der Algorithmus 1 gibt den Pseudocode der binären Suche an. 2.5 Suchen Eine Menge S will nach einem Element durchsucht werden. Die Menge S ist statisch und S = n. S ist Teilmenge eines Universums auf dem eine lineare Ordnung definiert ist und soll so gespeichert

Mehr