Computerviren, Waldbrände und Seuchen - ein stochastisches Modell für die Reichweite einer Epidemie

Größe: px
Ab Seite anzeigen:

Download "Computerviren, Waldbrände und Seuchen - ein stochastisches Modell für die Reichweite einer Epidemie"

Transkript

1 Computerviren, Waldbrände und Seuchen - ein stochastisches für die Reichweite einer Epidemie Universität Hildesheim Schüler-Universität der Universität Hildesheim,

2 Warum Mathematik? Fragen zum Thema Mathematik: Ist es notwendig, dass Mathematik so abstrakt ist? Ist Mathematik spannend? Ist Mathematik überhaupt für irgendetwas relevant? Hat Schul-Mathematik viel mit Mathe an der Uni zu tun? Was macht eigentlich ein hauptberuflicher Mathematiker?

3 Code Red-Wurm Code Red Text HELLO! Welcome to Hacked By Chinese! am in 14 Stunden Server infiziert Verbreitung: Kopien an zufällig erzeugte Internet-Adressen Ziel: Angriff auf den Web Server des Weißen Hauses

4 Waldbrand Ursache: i.d.r. vorsätzliche oder fahrlässige Brandstiftung Ausbreitung als Lauffeuer oder Wipfelfeuer Barrieren: Straßen, Bäche,...

5 Schweinegrippe Schweinegrippe-Pandemie 2009/2010 Erreger: Variante des Influenza-A-Virus H1N1 Ausbreitung durch Tröpfcheninfektion Letalitätsrate ca. 0, 4% mehr als gemeldete Infektionen mehr als gemeldete Tote

6 Poröser Stein Ausbreitung von Wasser durch Hohlräume Struktur der Poren: zufällig Durchlässigkeit des Steins? percolare = lat. durchsickern

7 Abstraktion Zutaten in jedem Beispiel: Menge der betrachteten Objekte Menge anfänglich infizierter Objekte Potentielle Infektionswege: benachbarte Objekte Tatsächliche Infektionswege vom Zufall bestimmt Frage: Wie weit breitet sich die Infektion aus? Ignoriere: Zeitlicher Verlauf Genesung bzw. Tod Auswirkung von Gegenmaßnahmen

8 : Graph Graph Menge von Knoten (betrachtete Objekte) Menge von Kanten zwischen Knoten (Nachbarn) Die Kanten spiegeln nicht den tatsächlichen Abstand der Objekte wieder, sondern stehen nur für benachbart in einem abstrakten Sinn.

9 : Stochastik Jede Kante k des Graphen erhält eine Wahrscheinlichkeit p k : Mit Wahrscheinlichkeit p k ist k offen für Infektionen. Ansonsten ist k geschlossen für Infektionen. p k [0, 1] mit 0% := 0 und 100% := 1 Infektionszustand von Kanten: unabhängig voneinander 0,9 Graph mit Infektionswahrscheinlichkeiten: 0,3 0,8 0,5

10 : Stochastik Jede Kante k des Graphen erhält eine Wahrscheinlichkeit p k : Mit Wahrscheinlichkeit p k ist k offen für Infektionen. Ansonsten ist k geschlossen für Infektionen. p k [0, 1] mit 0% := 0 und 100% := 1 Infektionszustand von Kanten: unabhängig voneinander 0,9 Graph mit Infektionswahrscheinlichkeiten: 0,3 0,8 0,5 Unabhängigkeit: Multiplikation von Wahrscheinlichkeiten.

11 Beispiel Graph mit Infektionswahrscheinlichkeiten: 0,3 0,9 0, = 2 4 = 16 Möglichkeiten: 0,5 0,7% 0,7% 2,8% 6,3% 0,3% 2,8% 6,3% 0,3% 25% 1,2% 2,7% 25% 1,2% 2,7% 11% 11%

12 Beispiel: Infektion von links unten nach rechts oben Graph mit Infektionswahrscheinlichkeiten: 0,3 0,9 0, = 2 4 = 16 Möglichkeiten: 0,5 0,7% 0,7% 2,8% 6,3% 0,3% 2,8% 6,3% 0,3% 25% 1,2% 2,7% 25% 1,2% 2,7% 11% 11% Gesamt: 56%

13 Cluster Schreibweisen: x y: y kann von x aus infiziert werden C(x) := {y : x y}: Infektionscluster von x Frage: Wie groß ist C(x)? (Hängt vom Zufall ab!) Beispiel für einen Graph (mit gegebenen p k ), eine mögliche Realisierung und das Infektionscluster. y y y x Hier ist C(x) = 3 und x y. x x

14 Analyse Im Allgemeinen hat man große Graphen, z.b.: 50 Personen (isoliert vom Rest der Welt) jeder: Kontakt mit 10 anderen Anzahl der Kanten:

15 Analyse Im Allgemeinen hat man große Graphen, z.b.: 50 Personen (isoliert vom Rest der Welt) jeder: Kontakt mit 10 anderen Anzahl der Kanten: = 250 Anzahl der möglichen Realisierungen:

16 Analyse Im Allgemeinen hat man große Graphen, z.b.: 50 Personen (isoliert vom Rest der Welt) jeder: Kontakt mit 10 anderen Anzahl der Kanten: = 250 Anzahl der möglichen Realisierungen: Exakte Analyse nicht ohne weiteres möglich - stattdessen:

17 Analyse Im Allgemeinen hat man große Graphen, z.b.: 50 Personen (isoliert vom Rest der Welt) jeder: Kontakt mit 10 anderen Anzahl der Kanten: = 250 Anzahl der möglichen Realisierungen: Exakte Analyse nicht ohne weiteres möglich - stattdessen: Computergestützte Simulation, n Mal (z.b. n = 10000) Statistische Auswertung Gesetz der großen Zahl: Simulationen mit x y n P(x y).

18 Vereinfachung Für theoretische Analyse weitere Vereinfachungen des s: Graph ist ein regelmäßiges Gitter, z.b. Quadratgitter Gleiche Wahrscheinlichkeiten: p k = p für alle Kanten.

19 Phasenübergang Typische Realisierungen für verschiedene Werte von p Beobachtung: Dramatische Veränderung bei p 0.5: Für p < 0.5 alle Cluster realtiv klein Für p > 0.5 auftreten riesiger Cluster Phasenübergang

20 Präzisierung Statt sehr viele Objekte: unendlich viele Objekte Betrachte: θ x (p) = P p ( C(x) = ) θ(p) = P p ( C(x) = für irgendein x) Satz über die kritische Wahrscheinlichkeit Es gibt ein kritischen Wert p c [0, 1], so dass θ x (p) θ(p) 1 1 p c 1 p p c 1 p

21 Fragen Einiges ist bekannt, vieles aber (noch) nicht: Kann es mehr als ein unendliches Cluster geben? (Nein, entweder keines oder genau eines!) Kann man p c genau bestimmen? (Für d = 2 ja, für d = 3 unbekannt) Gibt es bei p = p c ein unendliches Cluster? (Für d = 2 nein, für d = 3 unbekannt) Inwieweit hängen die Ergebnisse davon ab, welchen Typ von Gitter man betrachtet? (Vieles ist universell gültig, aber warum??)

22 Noch eine Frage Selbst sehr einleuchtende Fragen können sehr schwer sein: Vermutung über die Monotonie der Infektionswahrscheinlichkeit Je weiter ein Punkt vom Infektionsherd weg ist, desto unwahrscheinlicher ist es, dass er infiziert wird, d.h. P(x y) P(x y)

23 Eindimensional Eindimensionales Gitter: 0 Satz über p c für d = 1 Im eindimensionalen Gitter ist p c = 1, d.h. P p ( C(0) = ) = 0 für alle p [0, 1). Beweis: P( C(0) = ) P(0 n) + P(0 n) =

24 Eindimensional Eindimensionales Gitter: 0 Satz über p c für d = 1 Im eindimensionalen Gitter ist p c = 1, d.h. P p ( C(0) = ) = 0 für alle p [0, 1). Beweis: P( C(0) = ) P(0 n) + P(0 n) = 2p n für beliebige n. Es folgt P( C(0) = ) = 0.

25 Zweidimensional Zweidimensionales unendliches Gitter: Satz über p c für d = 2 Im zweidimensionalen Gitter ist p c = 1/2. Beweis: sehr schwierig!

26 Beweisidee Warum passiert bei p = 1/2 etwas Besonderes? Betrachte dazu ein (n + 1) n-rechteck. Sei A n das Ereignis, dass es einen Infektionspfad vom linken bis zum rechten Rand gibt. Hilfssatz über Infektionspfade von links nach rechts Für beliebige n 0 ist P 1/2 (A n ) = 1 2. Warum?

27 Dualität Jede Kante hat eine duale Kante: Kante offen : duale Kante geschlossen, also blaue Kante offen mit Wahrscheinlichkeit 1 1/2 = 1/2. A n := Blauer Weg von oben nach unten

28 Dualität Jede Kante hat eine duale Kante: Kante offen : duale Kante geschlossen, also blaue Kante offen mit Wahrscheinlichkeit 1 1/2 = 1/2. A n := Blauer Weg von oben nach unten Alternative: A n oder A n (genau eines von beiden)

29 Dualität Jede Kante hat eine duale Kante: Kante offen : duale Kante geschlossen, also blaue Kante offen mit Wahrscheinlichkeit 1 1/2 = 1/2. A n := Blauer Weg von oben nach unten Alternative: A n oder A n (genau eines von beiden) 1 = P(A n ) + P(A n) = 2P(A n ), also P(A n ) = 1 2

30 Angewandte Mathematik Vorgehen in der angewandten Mathematik: 1 Phänomen aus der realen Welt (verschiedene ) 2 Reduzieren der auf den gemeinsamen Kern 3 Beschreibung des Kerns mit mathematischen Konzepten: Mathematisches 4 Untersuchung des s: Erkennen von Mustern 5 Hypothesenbildung, Präzisieren der Hypothesen mittels mathematischer Formelsprache 6 Beweis der Hypothesen oder Testen der Hypothesen anhand von Simulationen

31 Weitere Empfehlungen Empfehlungen und Links für Mathe-Interessierte: Mathematik-Wettbewerbe, z.b. Mathematik-Foren, z.b.: Bücher auf Uni-Level (z.b. Norbert Henze: Stochsatik für Einsteiger) Mathematik-Studium Vielen Dank für die Aufmerksamkeit!

Mathematikstudium in Frankfurt - und was danach?

Mathematikstudium in Frankfurt - und was danach? info-tage 2005 an den Frankfurter Hochschulen für Schülerinnen und Schüler der Oberstufe Goethe-Universität, 14. März 2005 Mathematikstudium in Frankfurt - und was danach? Ausblicke, Einblicke, Rückblicke

Mehr

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:

Mehr

6 Conways Chequerboard-Armee

6 Conways Chequerboard-Armee 6 Conways Chequerboard-Armee Spiele gehören zu den interessantesten Schöpfungen des menschlichen Geistes und die Analyse ihrer Struktur ist voller Abenteuer und Überraschungen. James R. Newman Es ist sehr

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Kapitel 3: Etwas Informationstheorie

Kapitel 3: Etwas Informationstheorie Stefan Lucks 3: Informationstheorie 28 orlesung Kryptographie (SS06) Kapitel 3: Etwas Informationstheorie Komplexitätstheoretische Sicherheit: Der schnellste Algorithmus, K zu knacken erfordert mindestens

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

Was können Schüler anhand von Primzahltests über Mathematik lernen?

Was können Schüler anhand von Primzahltests über Mathematik lernen? Was können Schüler anhand von Primzahltests über Mathematik lernen? Innermathematisches Vernetzen von Zahlentheorie und Wahrscheinlichkeitsrechnung Katharina Klembalski Humboldt-Universität Berlin 20.

Mehr

Fotios Filis. Monte-Carlo-Simulation

Fotios Filis. Monte-Carlo-Simulation Fotios Filis Monte-Carlo-Simulation Monte-Carlo-Methoden??? Spielcasino gibt Namen Monte Carlo war namensgebend für diese Art von Verfahren: Erste Tabellen mit Zufallszahlen wurden durch Roulette-Spiel-Ergebnisse

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Schlussrechnung, Modellbildung und Interpolation

Schlussrechnung, Modellbildung und Interpolation Schlussrechnung, Modellbildung und Interpolation Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Tag der Mathematik Graz, 7. Februar 2013 Beispiele für Schlussrechnungen

Mehr

Wie Google Webseiten bewertet. François Bry

Wie Google Webseiten bewertet. François Bry Wie Google Webseiten bewertet François Bry Heu6ge Vorlesung 1. Einleitung 2. Graphen und Matrizen 3. Erste Idee: Ranking als Eigenvektor 4. Fragen: Exisi6ert der Eigenvektor? Usw. 5. Zweite Idee: Die Google

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Wie löst man Mathematikaufgaben?

Wie löst man Mathematikaufgaben? Wie löst man Mathematikaufgaben? Manfred Dobrowolski Universität Würzburg Wie löst man Mathematikaufgaben? 1 Das Schubfachprinzip 2 Das Invarianzprinzip 3 Das Extremalprinzip Das Schubfachprinzip Verteilt

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Elementare statistische Methoden

Elementare statistische Methoden Elementare statistische Methoden Vorlesung Computerlinguistische Techniken Alexander Koller 28. November 2014 CL-Techniken: Ziele Ziel 1: Wie kann man die Struktur sprachlicher Ausdrücke berechnen? Ziel

Mehr

Textmining Klassifikation von Texten Teil 1: Naive Bayes

Textmining Klassifikation von Texten Teil 1: Naive Bayes Textmining Klassifikation von Texten Teil 1: Naive Bayes Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten 1: Naive

Mehr

MATURITÄTSPRÜFUNGEN 2008

MATURITÄTSPRÜFUNGEN 2008 KANTONSSCHULE FRAUENFELD 4MC MATURITÄTSPRÜFUNGEN 2008 Hilfsmittel: Prüfungsdauer: Bemerkungen: Bewertung: - Formelsammlung DMK/DPK - Taschenrechner Texas Instruments TI-84-180 Minuten - Für jeden Aufgabenblock

Mehr

Molekularfeldtheorie (MFT)

Molekularfeldtheorie (MFT) 29.06.2006 Motivation Anwendungen der MFT MFT-Herleitung mittels Variationsansatz und Anwendung Grenzen der Anwendung der MFT Motivation Meisten Probleme nur unter Berücksichtigung von Wechselwirkungen

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Software-Engineering SS03. Zustandsautomat

Software-Engineering SS03. Zustandsautomat Zustandsautomat Definition: Ein endlicher Automat oder Zustandsautomat besteht aus einer endlichen Zahl von internen Konfigurationen - Zustände genannt. Der Zustand eines Systems beinhaltet implizit die

Mehr

Das Small World Phenomenon. Aus http://www.tell6.com

Das Small World Phenomenon. Aus http://www.tell6.com Das Small World Phenomenon Aus http://www.tell6.com Das Experiment Durchgeführt von Stanley Milgram im Jahr 1969 [7] 296 Briefe an zufällig ausgewählte Personen in Nebraska und Boston Briefe sollten an

Mehr

Data Mining Anwendungen und Techniken

Data Mining Anwendungen und Techniken Data Mining Anwendungen und Techniken Knut Hinkelmann DFKI GmbH Entdecken von Wissen in banken Wissen Unternehmen sammeln ungeheure mengen enthalten wettbewerbsrelevantes Wissen Ziel: Entdecken dieses

Mehr

Das Bayes-Theorem. Christian Neukirchen Gleichwertige Leistungsfeststellung, Juni 2005

Das Bayes-Theorem. Christian Neukirchen Gleichwertige Leistungsfeststellung, Juni 2005 Das Bayes-Theorem Christian Neukirchen Gleichwertige Leistungsfeststellung, Juni 2005 Ein lahmer Witz Heute im Angebot: Ein praktisches Beispiel zur Einleitung Kurze Wiederholung der Überblick über Reverend

Mehr

Das Falten-und-Schneiden Problem

Das Falten-und-Schneiden Problem Das Falten-und-Schneiden Problem Kristian Bredies Uttendorf, 14. Februar 2005 Inhalt Einleitung Origami Das Falten-und-Schneiden Problem Mathematische Analyse Flaches Origami Lokale Eigenschaften Faltbarkeit

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

Analytische Methoden und die Black-Scholes Modelle

Analytische Methoden und die Black-Scholes Modelle Analytische Methoden und die Black-Scholes Modelle Diplomverteidigung Universität Rostock Institut für Mathematik 20.01.2011 Agenda 1 Das Ornstein-Uhlenbeck Volatilitätsmodell 2 in L 2 (R 2 ) 3 4 Problem

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

Mathematik des Zufalls Was verbindet ein Münzspiel, Aktienkurse und einen Vogelflug

Mathematik des Zufalls Was verbindet ein Münzspiel, Aktienkurse und einen Vogelflug Mathematik des Zufalls Was verbindet ein Münzspiel, Aktienkurse und einen Vogelflug Sylvie Roelly Lehrstuhl für Wahrscheinlichkeitstheorie, Institut für Mathematik der Universität Potsdam Lehrertag, Postdam,

Mehr

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren 4: Stromchiffren Zwei Grundbausteine der symmetrischen Kryptographie: Stromchiffren Verschlüsseln beliebig langer Klartexte, interner Zustand Blockchiffren Verschlüsseln von Blocks einer festen Größe,

Mehr

Data Mining als Arbeitsprozess

Data Mining als Arbeitsprozess Data Mining als Arbeitsprozess Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 31. Dezember 2015 In Unternehmen werden umfangreichere Aktivitäten oder Projekte im Bereich des Data Mining

Mehr

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Unabhängigkeit

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Datenanalyse und Statistik

Datenanalyse und Statistik Datenanalyse und Statistik Vorlesung 1 K.Gerald van den Boogaart http://www.stat.boogaart.de/ds0809 Datenanalyse und Statistik p.1/48 Daten Schätzung Test Mathe Die Datenminen Riesige Halde mit nichtrepräsentativen

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 11: Abstrakte Reduktionssysteme schulz@eprover.org Reduktionssysteme Definition: Reduktionssystem Ein Reduktionssystem ist ein Tupel (A, ) Dabei gilt: A

Mehr

Guten Morgen und Willkommen zur Saalübung!

Guten Morgen und Willkommen zur Saalübung! Guten Morgen und Willkommen zur Saalübung! 1 Wie gewinnt man ein Spiel? Was ist ein Spiel? 2 Verschiedene Spiele Schach, Tic-Tac-Toe, Go Memory Backgammon Poker Nim, Käsekästchen... 3 Einschränkungen Zwei

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Zusammenfassung der 8. Vorlesung

Zusammenfassung der 8. Vorlesung Zusammenfassung der 8. Vorlesung Beschreibung und und Analyse dynamischer Systeme im im Zustandsraum Steuerbarkeit eines dynamischen Systems Unterscheidung: Zustandssteuerbarkeit, Zustandserreichbarkeit

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Felix-Nicolai Müller. Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009

Felix-Nicolai Müller. Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009 Cohen s Kappa Felix-Nicolai Müller Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009 Felix-Nicolai Müller Cohen s Kappa 24.11.2009 1 / 21 Inhaltsverzeichnis 1 2 3 4

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Petri-Netze / Eine Einführung (Teil 2)

Petri-Netze / Eine Einführung (Teil 2) Manuel Hertlein Seminar Systementwurf Lehrstuhl Theorie der Programmierung Wiederholung (1) Petri-Netz = bipartiter, gerichteter Graph Aufbau: Plätze (passive Komponenten) Transitionen (aktive Komponenten)

Mehr

DynaTraffic Einstiegsaufgaben

DynaTraffic Einstiegsaufgaben DynaTraffic Einstiegsaufgaben Bemerkung: Falls nichts anderes erwähnt, sind die Standard-Einstellungen zu einer Verkehrssituation von DynaTraffic zu verwenden. 1. Interpretation von Verkehrssituation und

Mehr

Objektorientierter Software-Entwurf Grundlagen 1 1. Analyse Design Implementierung. Frühe Phasen durch Informationssystemanalyse abgedeckt

Objektorientierter Software-Entwurf Grundlagen 1 1. Analyse Design Implementierung. Frühe Phasen durch Informationssystemanalyse abgedeckt Objektorientierter Software-Entwurf Grundlagen 1 1 Einordnung der Veranstaltung Analyse Design Implementierung Slide 1 Informationssystemanalyse Objektorientierter Software-Entwurf Frühe Phasen durch Informationssystemanalyse

Mehr

Architektur verteilter Anwendungen

Architektur verteilter Anwendungen Architektur verteilter Anwendungen Schwerpunkt: verteilte Algorithmen Algorithmus: endliche Folge von Zuständen Verteilt: unabhängige Prozessoren rechnen tauschen Informationen über Nachrichten aus Komplexität:

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Simulation of malware propagation

Simulation of malware propagation André Harms HAW Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Zusammen Rückblick von Cyberangriffen Netzwerkangriffe Ausbreitung von Schadsoftware o Mathematische

Mehr

2.5. VERBINDUNGSNETZWERKE GESTALTUNGSKRITERIEN DER NETZWERKE TOPOLOGIE ALS GRAPH. Vorlesung 5 TOPOLOGIE: DEFINITIONEN : Sei G = (V, E) ein Graph mit:

2.5. VERBINDUNGSNETZWERKE GESTALTUNGSKRITERIEN DER NETZWERKE TOPOLOGIE ALS GRAPH. Vorlesung 5 TOPOLOGIE: DEFINITIONEN : Sei G = (V, E) ein Graph mit: Vorlesung 5.5. VERBINDUNGSNETZWERKE Kommunikation zwischen den einzelnen Komponenten eines arallelrechners wird i.d.r. über ein Netzwerk organisiert. Dabei unterscheidet man zwei Klassen der Rechner: TOOLOGIE:

Mehr

Bericht vom 1. Leipziger Seminar am 25. November 2006

Bericht vom 1. Leipziger Seminar am 25. November 2006 Bericht vom 1. Leipziger Seminar am 25. November 2006 Das Wythoff-Nim-Spiel Wir wollen uns ein Spiel für zwei Personen ansehen, welches sich W.A.Wythoff 1907 ausgedacht hat: Vor den Spielern liegen zwei

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Peer-to-Peer- Netzwerke

Peer-to-Peer- Netzwerke Peer-to-Peer- Netzwerke Christian Schindelhauer Sommersemester 2006 14. Vorlesung 23.06.2006 schindel@informatik.uni-freiburg.de 1 Evaluation der Lehre im SS2006 Umfrage zur Qualitätssicherung und -verbesserung

Mehr

Eine mathematische Reise ins Unendliche. Peter Koepke Universität Bonn

Eine mathematische Reise ins Unendliche. Peter Koepke Universität Bonn Eine mathematische Reise ins Unendliche Peter Koepke Universität Bonn Treffen sich die Schienen im Unendlichen? Gibt es unendlich ferne Punkte? Gibt es unendliche Zahlen? 1 Antwort: Nein! , so prostestire

Mehr

Vermessung und Verständnis von FFT Bildern

Vermessung und Verständnis von FFT Bildern Vermessung und Verständnis von FFT Bildern Viele Auswertungen basieren auf der "Fast Fourier Transformation" FFT um die (ungewünschten) Regelmäßigkeiten im Schliffbild darzustellen. Die Fourier-Transformation

Mehr

1.3 Ein paar Standardaufgaben

1.3 Ein paar Standardaufgaben 1.3 Ein paar Standardaufgaben 15 1.3 Ein paar Standardaufgaben Einerseits betrachten wir eine formale und weitgehend abgeschlossene mathematische Theorie. Sie bildet einen Rahmen, in dem man angewandte

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Übungsaufgabe 7: Ziele der BWL. a) Welche Ziele hat die Betriebswirtschaftslehre als Wissenschaft?

Übungsaufgabe 7: Ziele der BWL. a) Welche Ziele hat die Betriebswirtschaftslehre als Wissenschaft? Übungsaufgabe 7: Ziele der BWL a) Welche Ziele hat die Betriebswirtschaftslehre als Wissenschaft? b) Kosiol und Gutenberg vertreten verschiedene Auffassungen, wie ein Betrieb zu kennzeichnen ist. Hat dies

Mehr

MATHEMATISCHE ANALYSE VON ALGORITHMEN

MATHEMATISCHE ANALYSE VON ALGORITHMEN MATHEMATISCHE ANALYSE VON ALGORITHMEN Michael Drmota Institut für Diskrete Mathematik und Geometrie, TU Wien michael.drmota@tuwien.ac.at www.dmg.tuwien.ac.at/drmota/ Ringvorlesung SS 2008, TU Wien Algorithmus

Mehr

Exploration und Klassifikation von BigData

Exploration und Klassifikation von BigData Exploration und Klassifikation von BigData Inhalt Einführung Daten Data Mining: Vorbereitungen Clustering Konvexe Hülle Fragen Google: Riesige Datenmengen (2009: Prozessieren von 24 Petabytes pro Tag)

Mehr

Variationen Permutationen Kombinationen

Variationen Permutationen Kombinationen Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert

Mehr

RLP Daten TransKiGs Unterrichtsbeispiele Grundschule. Daten und Zufall 2. Dr. Elke Warmuth. Sommersemester 2016 1 / 36

RLP Daten TransKiGs Unterrichtsbeispiele Grundschule. Daten und Zufall 2. Dr. Elke Warmuth. Sommersemester 2016 1 / 36 Daten und Zufall 2 Dr. Elke Warmuth Sommersemester 2016 1 / 36 Berliner Rahmenlehrplan ab 2017 Neuer RLP, Inhaltsbezogene Standards, S. 30 2 / 36 Berliner Rahmenlehrplan ab 2017 Neuer RLP, Inhaltsbezogene

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

- - CodE 11 CodE 0 0 0 0 0 0 0 0 2.o C 1 10.0 C 2 off 3 3.0 4 2.0 5 off 6 1 8 20.0 9 60 C 7 4.0 10 80 C 1 38 C 12 8 k 13 on 14 30.0 15 10 16 - - CodE 11 CodE 0 0 0 0 0 0 0 0 2.o C 1 10.0 C 2

Mehr

in vivo -- Das Magazin der Deutschen Krebshilfe vom 09.11.2010

in vivo -- Das Magazin der Deutschen Krebshilfe vom 09.11.2010 Seite 1/5 in vivo -- Das Magazin der Deutschen Krebshilfe vom 09.11.2010 Expertengespräch zum Thema Retinoblastom Und zu diesem Thema begrüße ich jetzt Professor Norbert Bornfeld, Direktor des Zentrums

Mehr

Kapitel 3: Problemformulierungen in der KI. oder das Problem ist die halbe Lösung

Kapitel 3: Problemformulierungen in der KI. oder das Problem ist die halbe Lösung Kapitel 3: Problemformulierungen in der KI oder das Problem ist die halbe Lösung Lernziele: eine Struktur für die Definition eines problemlösenden Agenten kennen die wichtige Rolle von Abstraktionen in

Mehr

Kryptographie. nur mit. Freier Software!

Kryptographie. nur mit. Freier Software! Michael Stehmann Kryptographie nur mit Freier Software! Kurze Einführung in Kryptographie ErsterTeil: Bei der Kryptographie geht es um die Zukunft von Freiheit und Demokratie Artur P. Schmidt, 1997 http://www.heise.de/tp/artikel/1/1357/1.html

Mehr

Wellentheoretische Untersuchungen zur akustischen Wirkung von zick-zack-förmigen Hausgrundrissen

Wellentheoretische Untersuchungen zur akustischen Wirkung von zick-zack-förmigen Hausgrundrissen Empa Überlandstrasse 129 CH-8600 Dübendorf T +41 58 765 11 11 F +41 58 765 11 22 www.empa.ch Baudirektion Kanton Zürich Fachstelle Lärmschutz Thomas Gastberger Walcheturm, Postfach 8090 Zürich Wellentheoretische

Mehr

Grundlagen Risikomanagement Risiko- und Katastrophenmanagement in der Logistik

Grundlagen Risikomanagement Risiko- und Katastrophenmanagement in der Logistik Grundlagen 1 3. Systeme Grundlagen in der Logistik Gliederung 2 3. Systeme 1 Überblick Begriffbestimmungen 2 Risikoarten, Risikoindikatoren und Instrumente 3 Systeme systeme und Risikobewältigungsstrategien

Mehr

Studiendesign/ Evaluierungsdesign

Studiendesign/ Evaluierungsdesign Jennifer Ziegert Studiendesign/ Evaluierungsdesign Praxisprojekt: Nutzerorientierte Evaluierung von Visualisierungen in Daffodil mittels Eyetracker Warum Studien /Evaluierungsdesign Das Design einer Untersuchung

Mehr

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery Seminar Business Intelligence Teil II Data Mining & Knowledge Discovery Was ist Data Mining? Sabine Queckbörner Was ist Data Mining? Data Mining Was ist Data Mining? Nach welchen Mustern wird gesucht?

Mehr

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik Irrfahrten Und ihre Bedeutung in der Finanzmathematik Alexander Hahn, 04.11.2008 Überblick Ziele der Finanzmathematik Grundsätzliches zu Finanzmarkt, Aktien, Optionen Problemstellung in der Praxis Der

Mehr

Sichere Daten mit OSL Storage Cluster

Sichere Daten mit OSL Storage Cluster Sichere Daten mit OSL Storage Cluster Alternative Konzepte für die Datensicherung und Katastrophenvorsorge Dipl.-Ing. Torsten Pfundt Gliederung Voraussetzungen für die Konzepte und Lösungen restorefreies

Mehr

Ein einfaches Modell zur Fehlerfortpflanzung

Ein einfaches Modell zur Fehlerfortpflanzung Ein einfaches Modell zur Fehlerfortpflanzung Jens Chr. Lisner lisner@dc.uni-due.de ICB / Universität Duisburg-Essen AK Fehlertoleranz 11/2006 p. Problemstellung Üblich bei der Formalisierung von Systemen:

Mehr

26.01.2009. Gliederung. Nebenläufigkeit und Fairness. 1. Nebenläufigkeit Lokalitätsprinzip. 2. Betrachtungsweisen von Nebenläufigkeit. 3.

26.01.2009. Gliederung. Nebenläufigkeit und Fairness. 1. Nebenläufigkeit Lokalitätsprinzip. 2. Betrachtungsweisen von Nebenläufigkeit. 3. Gliederung Lokalitätsprinzip Nebenläufigkeit und Fairness Seminar Model lchecking WS 08/09 Interleaving Halbordnung. Fairness Jan Engelsberg engelsbe@informatik.hu berlin.de Was ist Nebenläufigkeit? In

Mehr

Einführung in die Wahrscheinlichkeitstheorie und Statistik

Einführung in die Wahrscheinlichkeitstheorie und Statistik Einführung in die Wahrscheinlichkeitstheorie und Statistik Dr. C.J. Luchsinger 10. Schlussbemerkungen 10.1 Allgemeine Bemerkungen Sie haben in Basel bereits im ersten Semester die Wahrscheinlichkeitstheorie

Mehr

Ruinwahrscheinlichkeiten im Glücksspiel

Ruinwahrscheinlichkeiten im Glücksspiel Ruinwahrscheinlichkeiten im Glücksspiel Wilhelm Stannat Fachbereich Mathematik TU Darmstadt February 24, 2007 Stochastik = Wahrscheinlichkeitstheorie + Statistik Wahrscheinlichkeitstheorie = Mathematische

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Probleme beim Arbeiten mit Variablen, Termen und Gleichungen

Probleme beim Arbeiten mit Variablen, Termen und Gleichungen Probleme beim Arbeiten mit Variablen, Termen und Gleichungen Tage des Unterrichts in Mathematik, Naturwissenschaften und Technik Rostock 2010 Prof. Dr. Hans-Dieter Sill, Universität Rostock, http://www.math.uni-rostock.de/~sill/

Mehr

Florian Frötscher und Demet Özçetin

Florian Frötscher und Demet Özçetin Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin florian.froetscher@uni-hamburg.de SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60

Mehr

J. vom ScheidtlB. Fellenberg/U. Wöhrl. Analyse und Simulation stochastischer Schwingungssysteme

J. vom ScheidtlB. Fellenberg/U. Wöhrl. Analyse und Simulation stochastischer Schwingungssysteme J. vom ScheidtlB. Fellenberg/U. Wöhrl Analyse und Simulation stochastischer Schwingungssysteme Leitfäden der angewandten Mathematik und Mechanik Herausgegeben von Prof. Dr. G. Hotz, Saarbrücken Prof. Dr.

Mehr

Wasserfall-Ansätze zur Bildsegmentierung

Wasserfall-Ansätze zur Bildsegmentierung Wasserfall-Ansätze zur Bildsegmentierung von Philipp Jester Seminar: Bildsegmentierung und Computer Vision 16.01.2006 Überblick 1. Problemstellung 2. Wiederholung: Wasserscheiden-Ansätze 3. Der Wasserfall-Ansatz

Mehr

Non-Deterministische CFD Simulationen in FINE /Turbo

Non-Deterministische CFD Simulationen in FINE /Turbo Non-Deterministische CFD Simulationen in FINE /Turbo Dipl.-Ing. (FH) Peter Thiel Dr.-Ing. Thomas Hildebrandt NUMECA Ingenieurbüro NUMECA, a New Wave in Fluid Dynamics Überblick 1. Motivation: Warum non-deterministische

Mehr

Modellierung biologischer. Christian Maidorfer Thomas Zwifl (Seminar aus Informatik)

Modellierung biologischer. Christian Maidorfer Thomas Zwifl (Seminar aus Informatik) Modellierung biologischer Prozesse Christian Maidorfer Thomas Zwifl (Seminar aus Informatik) Überblick Einführung Arten von Modellen Die stochastische Pi-Maschine Warum Modelle Die Biologie konzentriert

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

1. Eine gleiche Anzahl von Legosteine wird in jeweils einer Reihe angeordnet:

1. Eine gleiche Anzahl von Legosteine wird in jeweils einer Reihe angeordnet: Versuch 1: Materialliste: - Legosteine - (Tüte Gummibärchen) Ablauf: 1. Eine gleiche Anzahl von Legosteine wird in jeweils einer Reihe angeordnet: -- -- -- -- -- -- -- -- -- -- -- -- -- -- Das Kind wird

Mehr

Verändern sich zwischenmenschliche Beziehungen im Handyzeitalter

Verändern sich zwischenmenschliche Beziehungen im Handyzeitalter Verändern sich zwischenmenschliche Beziehungen im Handyzeitalter LV: 18.92 Empirische Forschungsmethoden in praktischer Anwendung Leiterin: Mag. Dr. Gunhild Sagmeister Inhaltsverzeichnis 1. Fragestellung/Erkenntnisinteresse

Mehr

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62 Unabhängigkeit ================================================================== 1. Im Rahmen der sogenannten JIM-Studie wurde in Deutschland im Jahr 2012 der Umgang von Jugendlichen im Alter von 12 bis

Mehr

Ein Überblick über KDevelop

Ein Überblick über KDevelop Inhalt KDevelop? Was ist das eigentlich? Inhalt KDevelop? Was ist das eigentlich? Was ist KDevelop 4.x? im Kern: C++-IDE basierend auf KDE- und Qt-Bibliotheken Komplettes Rewrite von Version 3 erstes 4.0-Release

Mehr

Warteschlangen. Vier Doppelstunden in der Carl-Bantzer-Schule Ziegenhain von Johannes Becker

Warteschlangen. Vier Doppelstunden in der Carl-Bantzer-Schule Ziegenhain von Johannes Becker Warteschlangen Vier Doppelstunden in der Carl-Bantzer-Schule Ziegenhain von Johannes Becker Inhaltsverzeichnis 1. Einleitung...1 2. Aufgaben...2 3. Simulation einer Warteschlange mit dem Würfel...2 4.

Mehr