Computerviren, Waldbrände und Seuchen - ein stochastisches Modell für die Reichweite einer Epidemie

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Computerviren, Waldbrände und Seuchen - ein stochastisches Modell für die Reichweite einer Epidemie"

Transkript

1 Computerviren, Waldbrände und Seuchen - ein stochastisches für die Reichweite einer Epidemie Universität Hildesheim Schüler-Universität der Universität Hildesheim,

2 Warum Mathematik? Fragen zum Thema Mathematik: Ist es notwendig, dass Mathematik so abstrakt ist? Ist Mathematik spannend? Ist Mathematik überhaupt für irgendetwas relevant? Hat Schul-Mathematik viel mit Mathe an der Uni zu tun? Was macht eigentlich ein hauptberuflicher Mathematiker?

3 Code Red-Wurm Code Red Text HELLO! Welcome to Hacked By Chinese! am in 14 Stunden Server infiziert Verbreitung: Kopien an zufällig erzeugte Internet-Adressen Ziel: Angriff auf den Web Server des Weißen Hauses

4 Waldbrand Ursache: i.d.r. vorsätzliche oder fahrlässige Brandstiftung Ausbreitung als Lauffeuer oder Wipfelfeuer Barrieren: Straßen, Bäche,...

5 Schweinegrippe Schweinegrippe-Pandemie 2009/2010 Erreger: Variante des Influenza-A-Virus H1N1 Ausbreitung durch Tröpfcheninfektion Letalitätsrate ca. 0, 4% mehr als gemeldete Infektionen mehr als gemeldete Tote

6 Poröser Stein Ausbreitung von Wasser durch Hohlräume Struktur der Poren: zufällig Durchlässigkeit des Steins? percolare = lat. durchsickern

7 Abstraktion Zutaten in jedem Beispiel: Menge der betrachteten Objekte Menge anfänglich infizierter Objekte Potentielle Infektionswege: benachbarte Objekte Tatsächliche Infektionswege vom Zufall bestimmt Frage: Wie weit breitet sich die Infektion aus? Ignoriere: Zeitlicher Verlauf Genesung bzw. Tod Auswirkung von Gegenmaßnahmen

8 : Graph Graph Menge von Knoten (betrachtete Objekte) Menge von Kanten zwischen Knoten (Nachbarn) Die Kanten spiegeln nicht den tatsächlichen Abstand der Objekte wieder, sondern stehen nur für benachbart in einem abstrakten Sinn.

9 : Stochastik Jede Kante k des Graphen erhält eine Wahrscheinlichkeit p k : Mit Wahrscheinlichkeit p k ist k offen für Infektionen. Ansonsten ist k geschlossen für Infektionen. p k [0, 1] mit 0% := 0 und 100% := 1 Infektionszustand von Kanten: unabhängig voneinander 0,9 Graph mit Infektionswahrscheinlichkeiten: 0,3 0,8 0,5

10 : Stochastik Jede Kante k des Graphen erhält eine Wahrscheinlichkeit p k : Mit Wahrscheinlichkeit p k ist k offen für Infektionen. Ansonsten ist k geschlossen für Infektionen. p k [0, 1] mit 0% := 0 und 100% := 1 Infektionszustand von Kanten: unabhängig voneinander 0,9 Graph mit Infektionswahrscheinlichkeiten: 0,3 0,8 0,5 Unabhängigkeit: Multiplikation von Wahrscheinlichkeiten.

11 Beispiel Graph mit Infektionswahrscheinlichkeiten: 0,3 0,9 0, = 2 4 = 16 Möglichkeiten: 0,5 0,7% 0,7% 2,8% 6,3% 0,3% 2,8% 6,3% 0,3% 25% 1,2% 2,7% 25% 1,2% 2,7% 11% 11%

12 Beispiel: Infektion von links unten nach rechts oben Graph mit Infektionswahrscheinlichkeiten: 0,3 0,9 0, = 2 4 = 16 Möglichkeiten: 0,5 0,7% 0,7% 2,8% 6,3% 0,3% 2,8% 6,3% 0,3% 25% 1,2% 2,7% 25% 1,2% 2,7% 11% 11% Gesamt: 56%

13 Cluster Schreibweisen: x y: y kann von x aus infiziert werden C(x) := {y : x y}: Infektionscluster von x Frage: Wie groß ist C(x)? (Hängt vom Zufall ab!) Beispiel für einen Graph (mit gegebenen p k ), eine mögliche Realisierung und das Infektionscluster. y y y x Hier ist C(x) = 3 und x y. x x

14 Analyse Im Allgemeinen hat man große Graphen, z.b.: 50 Personen (isoliert vom Rest der Welt) jeder: Kontakt mit 10 anderen Anzahl der Kanten:

15 Analyse Im Allgemeinen hat man große Graphen, z.b.: 50 Personen (isoliert vom Rest der Welt) jeder: Kontakt mit 10 anderen Anzahl der Kanten: = 250 Anzahl der möglichen Realisierungen:

16 Analyse Im Allgemeinen hat man große Graphen, z.b.: 50 Personen (isoliert vom Rest der Welt) jeder: Kontakt mit 10 anderen Anzahl der Kanten: = 250 Anzahl der möglichen Realisierungen: Exakte Analyse nicht ohne weiteres möglich - stattdessen:

17 Analyse Im Allgemeinen hat man große Graphen, z.b.: 50 Personen (isoliert vom Rest der Welt) jeder: Kontakt mit 10 anderen Anzahl der Kanten: = 250 Anzahl der möglichen Realisierungen: Exakte Analyse nicht ohne weiteres möglich - stattdessen: Computergestützte Simulation, n Mal (z.b. n = 10000) Statistische Auswertung Gesetz der großen Zahl: Simulationen mit x y n P(x y).

18 Vereinfachung Für theoretische Analyse weitere Vereinfachungen des s: Graph ist ein regelmäßiges Gitter, z.b. Quadratgitter Gleiche Wahrscheinlichkeiten: p k = p für alle Kanten.

19 Phasenübergang Typische Realisierungen für verschiedene Werte von p Beobachtung: Dramatische Veränderung bei p 0.5: Für p < 0.5 alle Cluster realtiv klein Für p > 0.5 auftreten riesiger Cluster Phasenübergang

20 Präzisierung Statt sehr viele Objekte: unendlich viele Objekte Betrachte: θ x (p) = P p ( C(x) = ) θ(p) = P p ( C(x) = für irgendein x) Satz über die kritische Wahrscheinlichkeit Es gibt ein kritischen Wert p c [0, 1], so dass θ x (p) θ(p) 1 1 p c 1 p p c 1 p

21 Fragen Einiges ist bekannt, vieles aber (noch) nicht: Kann es mehr als ein unendliches Cluster geben? (Nein, entweder keines oder genau eines!) Kann man p c genau bestimmen? (Für d = 2 ja, für d = 3 unbekannt) Gibt es bei p = p c ein unendliches Cluster? (Für d = 2 nein, für d = 3 unbekannt) Inwieweit hängen die Ergebnisse davon ab, welchen Typ von Gitter man betrachtet? (Vieles ist universell gültig, aber warum??)

22 Noch eine Frage Selbst sehr einleuchtende Fragen können sehr schwer sein: Vermutung über die Monotonie der Infektionswahrscheinlichkeit Je weiter ein Punkt vom Infektionsherd weg ist, desto unwahrscheinlicher ist es, dass er infiziert wird, d.h. P(x y) P(x y)

23 Eindimensional Eindimensionales Gitter: 0 Satz über p c für d = 1 Im eindimensionalen Gitter ist p c = 1, d.h. P p ( C(0) = ) = 0 für alle p [0, 1). Beweis: P( C(0) = ) P(0 n) + P(0 n) =

24 Eindimensional Eindimensionales Gitter: 0 Satz über p c für d = 1 Im eindimensionalen Gitter ist p c = 1, d.h. P p ( C(0) = ) = 0 für alle p [0, 1). Beweis: P( C(0) = ) P(0 n) + P(0 n) = 2p n für beliebige n. Es folgt P( C(0) = ) = 0.

25 Zweidimensional Zweidimensionales unendliches Gitter: Satz über p c für d = 2 Im zweidimensionalen Gitter ist p c = 1/2. Beweis: sehr schwierig!

26 Beweisidee Warum passiert bei p = 1/2 etwas Besonderes? Betrachte dazu ein (n + 1) n-rechteck. Sei A n das Ereignis, dass es einen Infektionspfad vom linken bis zum rechten Rand gibt. Hilfssatz über Infektionspfade von links nach rechts Für beliebige n 0 ist P 1/2 (A n ) = 1 2. Warum?

27 Dualität Jede Kante hat eine duale Kante: Kante offen : duale Kante geschlossen, also blaue Kante offen mit Wahrscheinlichkeit 1 1/2 = 1/2. A n := Blauer Weg von oben nach unten

28 Dualität Jede Kante hat eine duale Kante: Kante offen : duale Kante geschlossen, also blaue Kante offen mit Wahrscheinlichkeit 1 1/2 = 1/2. A n := Blauer Weg von oben nach unten Alternative: A n oder A n (genau eines von beiden)

29 Dualität Jede Kante hat eine duale Kante: Kante offen : duale Kante geschlossen, also blaue Kante offen mit Wahrscheinlichkeit 1 1/2 = 1/2. A n := Blauer Weg von oben nach unten Alternative: A n oder A n (genau eines von beiden) 1 = P(A n ) + P(A n) = 2P(A n ), also P(A n ) = 1 2

30 Angewandte Mathematik Vorgehen in der angewandten Mathematik: 1 Phänomen aus der realen Welt (verschiedene ) 2 Reduzieren der auf den gemeinsamen Kern 3 Beschreibung des Kerns mit mathematischen Konzepten: Mathematisches 4 Untersuchung des s: Erkennen von Mustern 5 Hypothesenbildung, Präzisieren der Hypothesen mittels mathematischer Formelsprache 6 Beweis der Hypothesen oder Testen der Hypothesen anhand von Simulationen

31 Weitere Empfehlungen Empfehlungen und Links für Mathe-Interessierte: Mathematik-Wettbewerbe, z.b. Mathematik-Foren, z.b.: Bücher auf Uni-Level (z.b. Norbert Henze: Stochsatik für Einsteiger) Mathematik-Studium Vielen Dank für die Aufmerksamkeit!

6 Conways Chequerboard-Armee

6 Conways Chequerboard-Armee 6 Conways Chequerboard-Armee Spiele gehören zu den interessantesten Schöpfungen des menschlichen Geistes und die Analyse ihrer Struktur ist voller Abenteuer und Überraschungen. James R. Newman Es ist sehr

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

Perkolation Christina Sander

Perkolation Christina Sander Perkolation Christina Sander 28.6.2010 Seite 2 Perkolation 28.6.2010 Christina Sander Inhalt Motivation Definitionen Kritischer Wert Boolsches Modell Anhang Seite 3 Perkolation 28.6.2010 Christina Sander

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Kapitel 3: Etwas Informationstheorie

Kapitel 3: Etwas Informationstheorie Stefan Lucks 3: Informationstheorie 28 orlesung Kryptographie (SS06) Kapitel 3: Etwas Informationstheorie Komplexitätstheoretische Sicherheit: Der schnellste Algorithmus, K zu knacken erfordert mindestens

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

in vivo -- Das Magazin der Deutschen Krebshilfe vom 09.11.2010

in vivo -- Das Magazin der Deutschen Krebshilfe vom 09.11.2010 Seite 1/5 in vivo -- Das Magazin der Deutschen Krebshilfe vom 09.11.2010 Expertengespräch zum Thema Retinoblastom Und zu diesem Thema begrüße ich jetzt Professor Norbert Bornfeld, Direktor des Zentrums

Mehr

Schlussrechnung, Modellbildung und Interpolation

Schlussrechnung, Modellbildung und Interpolation Schlussrechnung, Modellbildung und Interpolation Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Tag der Mathematik Graz, 7. Februar 2013 Beispiele für Schlussrechnungen

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Elementare statistische Methoden

Elementare statistische Methoden Elementare statistische Methoden Vorlesung Computerlinguistische Techniken Alexander Koller 28. November 2014 CL-Techniken: Ziele Ziel 1: Wie kann man die Struktur sprachlicher Ausdrücke berechnen? Ziel

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Fotios Filis. Monte-Carlo-Simulation

Fotios Filis. Monte-Carlo-Simulation Fotios Filis Monte-Carlo-Simulation Monte-Carlo-Methoden??? Spielcasino gibt Namen Monte Carlo war namensgebend für diese Art von Verfahren: Erste Tabellen mit Zufallszahlen wurden durch Roulette-Spiel-Ergebnisse

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Wie Google Webseiten bewertet. François Bry

Wie Google Webseiten bewertet. François Bry Wie Google Webseiten bewertet François Bry Heu6ge Vorlesung 1. Einleitung 2. Graphen und Matrizen 3. Erste Idee: Ranking als Eigenvektor 4. Fragen: Exisi6ert der Eigenvektor? Usw. 5. Zweite Idee: Die Google

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Stochastik Abitur 2009 Stochastik

Stochastik Abitur 2009 Stochastik Abitur 2009 Stochastik Beilage ea (erhöhtes Anforderungsniveau) ga (grundlegendes Anforderungsniveau) ISBN 978-3-8120-0108-3 und ISBN 978-3-8120-0223-3 1 Aufgabe 2 (ea) Rauchen ist das größte vermeidbare

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Was ist Orxonox? Ein Spiel:

Was ist Orxonox? Ein Spiel: Willkommen! ORXONOX Was ist Orxonox? Ein Spiel: Orxonox ist primär ein Spaceshooter, enthält aber auch Elemente eines Egoshooters. In Zukunft sind sogar noch weitere Einflüsse denkbar (z.b. ein kleines

Mehr

Mathematikstudium in Frankfurt - und was danach?

Mathematikstudium in Frankfurt - und was danach? info-tage 2005 an den Frankfurter Hochschulen für Schülerinnen und Schüler der Oberstufe Goethe-Universität, 14. März 2005 Mathematikstudium in Frankfurt - und was danach? Ausblicke, Einblicke, Rückblicke

Mehr

Schritt 1: Schulung vorbereiten

Schritt 1: Schulung vorbereiten Themen auswählen Jede Ausbildung am Arbeitsplatz sollte gründlich vorbereitet werden. Je besser die Vorbereitung, desto erfolgreicher wird die Schulung selbst sein. Außerdem hat die Vorbereitung auch die

Mehr

1 Aufgabe: Absorption von Laserstrahlung

1 Aufgabe: Absorption von Laserstrahlung 1 Aufgabe: Absorption von Laserstrahlung Werkstoff n R n i Glas 1,5 0,0 Aluminium (300 K) 25,3 90,0 Aluminium (730 K) 36,2 48,0 Aluminium (930 K) 33,5 41,9 Kupfer 11,0 50,0 Gold 12,0 54,7 Baustahl (570

Mehr

Beweisbar sichere Verschlüsselung

Beweisbar sichere Verschlüsselung Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit bmoeller@crypto.rub.de 6

Mehr

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Unabhängigkeit

Mehr

Objektorientierter Software-Entwurf Grundlagen 1 1. Analyse Design Implementierung. Frühe Phasen durch Informationssystemanalyse abgedeckt

Objektorientierter Software-Entwurf Grundlagen 1 1. Analyse Design Implementierung. Frühe Phasen durch Informationssystemanalyse abgedeckt Objektorientierter Software-Entwurf Grundlagen 1 1 Einordnung der Veranstaltung Analyse Design Implementierung Slide 1 Informationssystemanalyse Objektorientierter Software-Entwurf Frühe Phasen durch Informationssystemanalyse

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Speicher in der Cloud

Speicher in der Cloud Speicher in der Cloud Kostenbremse, Sicherheitsrisiko oder Basis für die unternehmensweite Kollaboration? von Cornelius Höchel-Winter 2013 ComConsult Research GmbH, Aachen 3 SYNCHRONISATION TEUFELSZEUG

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Conversion Attribution

Conversion Attribution Conversion Attribution Eines der Trendthemen über das zurzeit jeder spricht ist Attribution. Das heißt allerdings nicht, dass auch jeder weiß was genau Attribution ist, was man damit machen kann und für

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Mathematik des Zufalls Was verbindet ein Münzspiel, Aktienkurse und einen Vogelflug

Mathematik des Zufalls Was verbindet ein Münzspiel, Aktienkurse und einen Vogelflug Mathematik des Zufalls Was verbindet ein Münzspiel, Aktienkurse und einen Vogelflug Sylvie Roelly Lehrstuhl für Wahrscheinlichkeitstheorie, Institut für Mathematik der Universität Potsdam Lehrertag, Postdam,

Mehr

Die Finite Elemente Methode (FEM) gibt es seit über 50 Jahren

Die Finite Elemente Methode (FEM) gibt es seit über 50 Jahren Die Finite Elemente Methode (FEM) gibt es seit über 50 Jahren Aber es gibt bis heute kein Regelwerk oder allgemein gültige Vorschriften/Normen für die Anwendung von FEM-Analysen! Es gibt nur sehr vereinzelt

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Wissenswertes über Suchmaschinenoptimierung

Wissenswertes über Suchmaschinenoptimierung Mit dem Begriff ist die Optimierung einer Webseite gemeint, so dass sie unter entsprechend themenrelevanten Suchbegriffen möglichst weit oben in der Trefferliste der Suchmaschinen angezeigt wird. Es gibt

Mehr

GIMP Objekte frei stellen

GIMP Objekte frei stellen GIMP Objekte frei stellen Tutorial Teil 2 Aller Anfang ist eine Auswahl Gimp bietet dir eine Reihe von Werkzeugen, die dir dabei helfen können, ein Objekt frei zu stellen. Welches Werkzeug das Beste ist,

Mehr

Das Bayes-Theorem. Christian Neukirchen Gleichwertige Leistungsfeststellung, Juni 2005

Das Bayes-Theorem. Christian Neukirchen Gleichwertige Leistungsfeststellung, Juni 2005 Das Bayes-Theorem Christian Neukirchen Gleichwertige Leistungsfeststellung, Juni 2005 Ein lahmer Witz Heute im Angebot: Ein praktisches Beispiel zur Einleitung Kurze Wiederholung der Überblick über Reverend

Mehr

1. Was ist der Pflege - Bahr?

1. Was ist der Pflege - Bahr? BFFM GmbH & Co KG Normannenweg 17-21 20537 Hamburg www.bffm.de Januar 2013, Nr. 2 Pflegeversicherungen Stiftung Warentest hält den neuen Pflege - Bahr für sinnvoll Und die ersten Policen sind auch schon

Mehr

Modellierung biologischer. Christian Maidorfer Thomas Zwifl (Seminar aus Informatik)

Modellierung biologischer. Christian Maidorfer Thomas Zwifl (Seminar aus Informatik) Modellierung biologischer Prozesse Christian Maidorfer Thomas Zwifl (Seminar aus Informatik) Überblick Einführung Arten von Modellen Die stochastische Pi-Maschine Warum Modelle Die Biologie konzentriert

Mehr

2.5. VERBINDUNGSNETZWERKE GESTALTUNGSKRITERIEN DER NETZWERKE TOPOLOGIE ALS GRAPH. Vorlesung 5 TOPOLOGIE: DEFINITIONEN : Sei G = (V, E) ein Graph mit:

2.5. VERBINDUNGSNETZWERKE GESTALTUNGSKRITERIEN DER NETZWERKE TOPOLOGIE ALS GRAPH. Vorlesung 5 TOPOLOGIE: DEFINITIONEN : Sei G = (V, E) ein Graph mit: Vorlesung 5.5. VERBINDUNGSNETZWERKE Kommunikation zwischen den einzelnen Komponenten eines arallelrechners wird i.d.r. über ein Netzwerk organisiert. Dabei unterscheidet man zwei Klassen der Rechner: TOOLOGIE:

Mehr

PCD Europe, Krefeld, Jan 2007. Auswertung von Haemoccult

PCD Europe, Krefeld, Jan 2007. Auswertung von Haemoccult Auswertung von Haemoccult Ist das positiv? Nein! Ja! Im deutschen Krebsfrüherkennungsprogramm haben nur etwa 1 % der Frauen und 1,5 % der Männer ein positives Haemoccult -Ergebnis, da dieser Test eine

Mehr

Wie löst man Mathematikaufgaben?

Wie löst man Mathematikaufgaben? Wie löst man Mathematikaufgaben? Manfred Dobrowolski Universität Würzburg Wie löst man Mathematikaufgaben? 1 Das Schubfachprinzip 2 Das Invarianzprinzip 3 Das Extremalprinzip Das Schubfachprinzip Verteilt

Mehr

24. Algorithmus der Woche Bin Packing Wie bekomme ich die Klamotten in die Kisten?

24. Algorithmus der Woche Bin Packing Wie bekomme ich die Klamotten in die Kisten? 24. Algorithmus der Woche Wie bekomme ich die Klamotten in die Kisten? Autor Prof. Dr. Friedhelm Meyer auf der Heide, Universität Paderborn Joachim Gehweiler, Universität Paderborn Ich habe diesen Sommer

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:

Mehr

Multicheck Schülerumfrage 2013

Multicheck Schülerumfrage 2013 Multicheck Schülerumfrage 2013 Die gemeinsame Studie von Multicheck und Forschungsinstitut gfs-zürich Sonderauswertung ICT Berufsbildung Schweiz Auswertung der Fragen der ICT Berufsbildung Schweiz Wir

Mehr

Tutorial 2: Simulationen

Tutorial 2: Simulationen Tutorial 2: Simulationen Andrea Wiencierz Institut für Statistik, LMU München Andrea.Wiencierz@stat.uni-muenchen.de Abschlussarbeiten-Kolloquium, AG Augustin A. Wiencierz (LMU Munich) Literature & LATEX

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Übungsaufgabe 7: Ziele der BWL. a) Welche Ziele hat die Betriebswirtschaftslehre als Wissenschaft?

Übungsaufgabe 7: Ziele der BWL. a) Welche Ziele hat die Betriebswirtschaftslehre als Wissenschaft? Übungsaufgabe 7: Ziele der BWL a) Welche Ziele hat die Betriebswirtschaftslehre als Wissenschaft? b) Kosiol und Gutenberg vertreten verschiedene Auffassungen, wie ein Betrieb zu kennzeichnen ist. Hat dies

Mehr

Das Falten-und-Schneiden Problem

Das Falten-und-Schneiden Problem Das Falten-und-Schneiden Problem Kristian Bredies Uttendorf, 14. Februar 2005 Inhalt Einleitung Origami Das Falten-und-Schneiden Problem Mathematische Analyse Flaches Origami Lokale Eigenschaften Faltbarkeit

Mehr

Was können Schüler anhand von Primzahltests über Mathematik lernen?

Was können Schüler anhand von Primzahltests über Mathematik lernen? Was können Schüler anhand von Primzahltests über Mathematik lernen? Innermathematisches Vernetzen von Zahlentheorie und Wahrscheinlichkeitsrechnung Katharina Klembalski Humboldt-Universität Berlin 20.

Mehr

Architektur verteilter Anwendungen

Architektur verteilter Anwendungen Architektur verteilter Anwendungen Schwerpunkt: verteilte Algorithmen Algorithmus: endliche Folge von Zuständen Verteilt: unabhängige Prozessoren rechnen tauschen Informationen über Nachrichten aus Komplexität:

Mehr

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 25 Vorlesung 060503 6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6.1 Grundaufgabe der Elektrodynamik Gegeben: Ladungsdichte

Mehr

20. Algorithmus der Woche Online-Algorithmen: Was ist es wert, die Zukunft zu kennen? Das Ski-Problem

20. Algorithmus der Woche Online-Algorithmen: Was ist es wert, die Zukunft zu kennen? Das Ski-Problem 20. Algorithmus der Woche Online-Algorithmen: Was ist es wert, die Zukunft zu kennen? Das Ski-Problem Autor Susanne Albers, Universität Freiburg Swen Schmelzer, Universität Freiburg In diesem Jahr möchte

Mehr

Molekularfeldtheorie (MFT)

Molekularfeldtheorie (MFT) 29.06.2006 Motivation Anwendungen der MFT MFT-Herleitung mittels Variationsansatz und Anwendung Grenzen der Anwendung der MFT Motivation Meisten Probleme nur unter Berücksichtigung von Wechselwirkungen

Mehr

DynaTraffic Einstiegsaufgaben

DynaTraffic Einstiegsaufgaben DynaTraffic Einstiegsaufgaben Bemerkung: Falls nichts anderes erwähnt, sind die Standard-Einstellungen zu einer Verkehrssituation von DynaTraffic zu verwenden. 1. Interpretation von Verkehrssituation und

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

Datei: AsGGL913.doc (Format von Word2000)

Datei: AsGGL913.doc (Format von Word2000) Datei: AsGGL913.doc (Format von Word2000) Schule: Gottfried-Leibniz-Gymnasium Chemnitz E-Mail: P.Weigert@t-online.de Autor/Ansprechpartner: Peter Weigert Quelle / Literaturhinweise: Eigene Entwicklung

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Algorithmische Kryptographie

Algorithmische Kryptographie Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Quantenkryptographie 1 Einleitung Grundlagen aus der Physik 2 Datenübertragung 1. Idee 2. Idee Nochmal Physik 3 Sichere

Mehr

Kryptographie und Fehlertoleranz für Digitale Magazine

Kryptographie und Fehlertoleranz für Digitale Magazine Stefan Lucks Kryptographie und Fehlertoleranz für digitale Magazine 1 Kryptographie und Fehlertoleranz für Digitale Magazine Stefan Lucks Professur für Mediensicherheit 13. März 2013 Stefan Lucks Kryptographie

Mehr

Bin Packing oder Wie bekomme ich die Klamotten in die Kisten?

Bin Packing oder Wie bekomme ich die Klamotten in die Kisten? Bin Packing oder Wie bekomme ich die Klamotten in die Kisten? Ich habe diesen Sommer mein Abi gemacht und möchte zum Herbst mit dem Studium beginnen Informatik natürlich! Da es in meinem kleinen Ort keine

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Gutes Leben was ist das?

Gutes Leben was ist das? Lukas Bayer Jahrgangsstufe 12 Im Hirschgarten 1 67435 Neustadt Kurfürst-Ruprecht-Gymnasium Landwehrstraße22 67433 Neustadt a. d. Weinstraße Gutes Leben was ist das? Gutes Leben für alle was genau ist das

Mehr

Peer-to-Peer- Netzwerke

Peer-to-Peer- Netzwerke Peer-to-Peer- Netzwerke Christian Schindelhauer Sommersemester 2006 14. Vorlesung 23.06.2006 schindel@informatik.uni-freiburg.de 1 Evaluation der Lehre im SS2006 Umfrage zur Qualitätssicherung und -verbesserung

Mehr

Wie oft soll ich essen?

Wie oft soll ich essen? Wie oft soll ich essen? Wie sollen Sie sich als Diabetiker am besten ernähren? Gesunde Ernährung für Menschen mit Diabetes unterscheidet sich nicht von gesunder Ernährung für andere Menschen. Es gibt nichts,

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

200,- Euro am Tag gewinnen Konsequenz Silber Methode Warum machen die Casinos nichts dagegen? Ist es überhaupt legal?

200,- Euro am Tag gewinnen Konsequenz Silber Methode Warum machen die Casinos nichts dagegen? Ist es überhaupt legal? Mit meiner Methode werden Sie vom ersten Tag an Geld gewinnen. Diese Methode ist erprobt und wird von vielen Menschen angewendet! Wenn Sie es genau so machen, wie es hier steht, werden Sie bis zu 200,-

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

Probleme beim Arbeiten mit Variablen, Termen und Gleichungen

Probleme beim Arbeiten mit Variablen, Termen und Gleichungen Probleme beim Arbeiten mit Variablen, Termen und Gleichungen Tage des Unterrichts in Mathematik, Naturwissenschaften und Technik Rostock 2010 Prof. Dr. Hans-Dieter Sill, Universität Rostock, http://www.math.uni-rostock.de/~sill/

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Praktikumsbericht. Gruppe 6: Daniela Poppinga, Jan Christoph Bernack, Isaac Paha. Betreuerin: Natalia Podlaszewski 28.

Praktikumsbericht. Gruppe 6: Daniela Poppinga, Jan Christoph Bernack, Isaac Paha. Betreuerin: Natalia Podlaszewski 28. Praktikumsbericht Gruppe 6: Daniela Poppinga, Jan Christoph Bernack, Isaac Paha Betreuerin: Natalia Podlaszewski 28. Oktober 2008 1 Inhaltsverzeichnis 1 Versuche mit dem Digital-Speicher-Oszilloskop 3

Mehr

Seminar Text- und Datamining Datamining-Grundlagen

Seminar Text- und Datamining Datamining-Grundlagen Seminar Text- und Datamining Datamining-Grundlagen Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 23.05.2013 Gliederung 1 Klassifikationsprobleme 2 Evaluation

Mehr

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 6 Komplexität von Algorithmen 1 6.1 Beurteilung von Algorithmen I.d.R. existieren viele Algorithmen, um dieselbe Funktion zu realisieren. Welche Algorithmen sind die besseren? Betrachtung nicht-funktionaler

Mehr

Download. Themenwahl bei einer Erörterung. Peter Diepold. Downloadauszug aus dem Originaltitel:

Download. Themenwahl bei einer Erörterung. Peter Diepold. Downloadauszug aus dem Originaltitel: Download Peter Diepold Themenwahl bei einer Erörterung Downloadauszug aus dem Originaltitel: bei einer Erörterung Dieser Download ist ein Auszug aus dem Originaltitel Aufsätze schreiben - Schritt für Schritt

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Ruinwahrscheinlichkeiten im Glücksspiel

Ruinwahrscheinlichkeiten im Glücksspiel Ruinwahrscheinlichkeiten im Glücksspiel Wilhelm Stannat Fachbereich Mathematik TU Darmstadt February 24, 2007 Stochastik = Wahrscheinlichkeitstheorie + Statistik Wahrscheinlichkeitstheorie = Mathematische

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Vermessung und Verständnis von FFT Bildern

Vermessung und Verständnis von FFT Bildern Vermessung und Verständnis von FFT Bildern Viele Auswertungen basieren auf der "Fast Fourier Transformation" FFT um die (ungewünschten) Regelmäßigkeiten im Schliffbild darzustellen. Die Fourier-Transformation

Mehr

PISA-Test. mit Jörg Pilawa. Das Buch zur Sendereihe

PISA-Test. mit Jörg Pilawa. Das Buch zur Sendereihe -Test mit Jörg Pilawa Das Buch zur Sendereihe 100 spannende Aufgaben zum Nachlesen und Mitraten Von Jonas Kern und Thomas Klarmeyer Mit einem Vorwort von Jörg Pilawa und vielen Fotos aus der Fernsehshow

Mehr

Analytische Methoden und die Black-Scholes Modelle

Analytische Methoden und die Black-Scholes Modelle Analytische Methoden und die Black-Scholes Modelle Diplomverteidigung Universität Rostock Institut für Mathematik 20.01.2011 Agenda 1 Das Ornstein-Uhlenbeck Volatilitätsmodell 2 in L 2 (R 2 ) 3 4 Problem

Mehr

26.01.2009. Gliederung. Nebenläufigkeit und Fairness. 1. Nebenläufigkeit Lokalitätsprinzip. 2. Betrachtungsweisen von Nebenläufigkeit. 3.

26.01.2009. Gliederung. Nebenläufigkeit und Fairness. 1. Nebenläufigkeit Lokalitätsprinzip. 2. Betrachtungsweisen von Nebenläufigkeit. 3. Gliederung Lokalitätsprinzip Nebenläufigkeit und Fairness Seminar Model lchecking WS 08/09 Interleaving Halbordnung. Fairness Jan Engelsberg engelsbe@informatik.hu berlin.de Was ist Nebenläufigkeit? In

Mehr

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die

Mehr

Hauptseminar Autofokus

Hauptseminar Autofokus Hauptseminar Autofokus Hans Dichtl 30. Januar 2007 Wann ist ein Bild fokussiert? Wann ist ein Bild fokusiert? Welche mathematischen Modelle stehen uns zur Verfügung? Wie wird das elektronisch und mechanisch

Mehr

Praktikum. Elektromagnetische Verträglichkeit

Praktikum. Elektromagnetische Verträglichkeit Praktikum Elektromagnetische Verträglichkeit Versuch 1 Stromoberschwingungen und Flicker Gruppe 7 Versuchsdurchführung am 24.05.2006 Blattzahl (inkl. Deckblatt): 20 Seite 1 von 20 Inhaltsverzeichnis 1.

Mehr

T-Shirts mit Ornamenten

T-Shirts mit Ornamenten T-Shirts mit Ornamenten (Christian Liedl) Ziel ist es möglichst schicke T-Shirts durch ein eigenes Ornament zu verzieren. Dazu benötigen wir ein T-Shirt, eine T-Shirt Transferfolie zum Bedrucken und Aufbügeln,

Mehr

Felix-Nicolai Müller. Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009

Felix-Nicolai Müller. Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009 Cohen s Kappa Felix-Nicolai Müller Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009 Felix-Nicolai Müller Cohen s Kappa 24.11.2009 1 / 21 Inhaltsverzeichnis 1 2 3 4

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.

Mehr

Mathematik und Logik

Mathematik und Logik Mathematik und Logik 6. Übungsaufgaben 2006-01-24, Lösung 1. Berechnen Sie für das Konto 204938716 bei der Bank mit der Bankleitzahl 54000 den IBAN. Das Verfahren ist z.b. auf http:// de.wikipedia.org/wiki/international_bank_account_number

Mehr

Luftballons. Einführung. Scratch. Wir wollen ein Spiel machen, bei dem man Luftballons platzen lässt! Activity Checklist.

Luftballons. Einführung. Scratch. Wir wollen ein Spiel machen, bei dem man Luftballons platzen lässt! Activity Checklist. Scratch 1 Luftballons All Code Clubs must be registered. Registered clubs appear on the map at codeclubworld.org - if your club is not on the map then visit jumpto.cc/ccwreg to register your club. Einführung

Mehr

MATURITÄTSPRÜFUNGEN 2008

MATURITÄTSPRÜFUNGEN 2008 KANTONSSCHULE FRAUENFELD 4MC MATURITÄTSPRÜFUNGEN 2008 Hilfsmittel: Prüfungsdauer: Bemerkungen: Bewertung: - Formelsammlung DMK/DPK - Taschenrechner Texas Instruments TI-84-180 Minuten - Für jeden Aufgabenblock

Mehr