Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem:"

Transkript

1 Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: Verwenden Sie dazu eine atomare Formel A[n, x, y] für jedes Tripel (n, x, y) {1,..., 9} 3 : A[n, x, y] = 1, falls: Auf der Zeile x, Spalte y liegt die Zahl n. 42

2 Formalisierung von Sudoku Beispiel: In der erste Zeile stehen alle Zahlen von 1 bis A[n, 1, y] n=1 y=1 Die Wahrheitstabelle hat Zeilen. Warum?

3 Modelle Sei F eine Formel und B eine Belegung. Falls B für alle in F vorkommenden atomaren Formeln definiert ist, so heißt B zu F passend. Sei B passend zu F : Falls B(F ) = 1 so schreiben wir B = F und sagen F gilt unter B oder B ist ein Modell für F Falls B(F ) = 0 so schreiben wir B = F und sagen F gilt nicht unter B oder B ist kein Modell für F 44

4 Gültigkeit und Erfüllbarkeit Erfüllbarkeit: Eine Formel F heißt erfüllbar, falls F mindestens ein Modell besitzt, andernfalls heißt F unerfüllbar. Eine (endliche oder unendliche!) Menge von Formeln M heißt erfüllbar, falls es eine Belegung gibt, die für jede Formel in M ein Modell ist. Gültigkeit: Eine Formel F heißt gültig (oder allgemeingültig oder Tautologie) falls jede zu F passende Belegung ein Modell für F ist. Wir schreiben = F, falls F gültig ist, und = F sonst. 45

5 Gültigkeit und Erfüllbarkeit: Aufgabe (I) A A B A A A A A B A A A A A A A (B A) A (A B) A (B A) Gültig Erfüllbar Unerfüllbar 46

6 Gültigkeit und Erfüllbarkeit: Aufgabe (II) Gelten die folgenden Aussagen? Wenn F gültig, dann F erfüllbar Wenn F erfüllbar, dann F unerfüllbar Wenn F gültig, dann F unerfüllbar Wenn F unerfüllbar, dann F gültig J/N Gegenb. 47

7 Ein Gültigkeitstest Wie kann man überprüfen, ob eine Formel F gültig ist? Eine Möglichkeit: Wahrheitstafel aufstellen Angenommen, die Formel F enthält n verschiedene atomare Formeln. Wie groß ist die Wahrheitstafel? Anzahl Zeilen in der Wahrheitstafel: 2 n Wir werden uns mit der Frage befassen, ob es auch effizienter geht. 48

8 Folgerung Eine Formel G heißt eine Folgerung der Formeln F 1,..., F k, falls für jede Belegung B, die sowohl zu F 1,..., F k als auch zu G paßt, gilt: Wenn B Modell von {F 1,..., F k } ist (d.h. Modell von F 1 und Modell von F 2 und... und Modell von F k ), dann ist B auch Modell von G. Wir schreiben F 1,..., F k = G, falls G eine Folgerung von F 1,..., F k ist. 49

9 Folgerung: Beispiel (vgl. Folien 40) (AK BK), (AK BK), ((BK RL) AK), RL = ( AK BK) denn: (AK BK) (AK BK) RL AK BK ((BK RL) AK) RL ( AK BK)

10 Folgerung: Beispiel (vgl. Folien 40) (AK BK), (AK BK), ((BK RL) AK), RL = ( AK BK) Wenn Bauteil A oder Bauteil B kaputt ist und daraus, daß Bauteil A kaputt ist, immer folgt, daß Bauteil B kaputt ist und dann kann man die Folgerung ziehen: das Bauteil A ist nicht kaputt und Bauteil B ist kaputt. 50

11 Folgerung: Aufgabe M F Gilt M = F? A A B A A B A, B A B A, B A B A B A A B A A, A B B 51

12 Folgerung, Gültigkeit und Unerfüllbarkeit Satz Folgende Aussagen sind äquivalent: 1 F 1,..., F k = G, d.h., G ist eine Folgerung von F 1,..., F k. 2 (( k i=1 F i) G) ist gültig. 3 (( k i=1 F i) G) ist unerfüllbar. Beweis: Wir werden zeigen:

13 Folgerung, Gültigkeit und Unerfüllbarkeit 1 2: Gelte F 1,..., F k = G. z.z. ist Gültigkeit von (( k i=1 F i) G). Sei B eine beliebige zu (( k i=1 F i) G) passende Belegung. 1.Fall: Es gibt ein i {1,..., k} mit B(F i ) = 0: Dann gilt auch B( k i=1 F i) = 0 und somit B(( k i=1 F i) G) = 1. 2.Fall: Für alle i {1,..., k} gilt B(F i ) = 1: Aus F 1,..., F k = G folgt B(G) = 1 und somit auch B(( k i=1 F i) G) = 1. 53

14 Folgerung, Gültigkeit und Unerfüllbarkeit 2 3: Sei (( k i=1 F i) G) gültig. z.z.: (( k i=1 F i) G) ist unerfüllbar. Sei B eine beliebige Belegung. 1.Fall: B(G) = 1: Dann gilt B(( k i=1 F i) G) = 0. 2.Fall: B( k i=1 F i) = 0: Dann gilt wieder B(( k i=1 F i) G) = 0. 3.Fall: B( k i=1 F i) = 1 und B(G) = 0: Dann gilt B(( k i=1 F i) G) = 0, dies widerspricht jedoch der Tatsache, dass (( k i=1 F i) G) gültig ist. Also kann Fall 3 nicht eintreten. 54

15 Folgerung, Gültigkeit und Unerfüllbarkeit 3 1: Sei (( k i=1 F i) G) unerfüllbar. z.z.: F 1,..., F k = G Sei B eine beliebige Belegung mit B(F i ) = 1 für alle i {1,..., k}. Da (( k i=1 F i) G) unerfüllbar ist, muss B(G) = 1 gelten (sonst wäre B(( k i=1 F i) G) = 1). 55

16 Äquivalenz (I) Zwei Formeln F und G heißen (semantisch) äquivalent, falls B(F ) = B(G) für alle Belegungen B gilt, die sowohl zu F als auch zu G passen. Hierfür schreiben wir F G. Beispiel: A (A B) A, denn: A B A (A B) A (B C) (A B) C, denn B(A (B C)) = 1 0 = B((A B) C) mit B(A) = B(C) = 1 und B(B) = 0. (A A) (B B), denn B(A A) = 0 = B(B B) für alle Belegungen B. 56

17 Äquivalenz: Aufgabe Gelten die folgenden Äquivalenzen? (A B) ( A B) (A (B C)) ((A B) (A C)) (A B) C A (B C) (A B) C (A B) C (A B) C A (B C) 57

18 Äquivalenzen (II) Satz (Fundamentalsatz der Aussagenlogik) Es gelten die folgenden Äquivalenzen: (F F ) F (F F ) F (Idempotenz) (F G) (G F ) (F G) (G F ) (Kommutativität) ((F G) H) (F (G H)) ((F G) H) (F (G H)) (Assoziativität) (F (F G)) F (F (F G)) F (Absorption) (F (G H)) ((F G) (F H)) (F (G H)) ((F G) (F H)) (Distributivität) 58

19 Äquivalenzen (III) Satz (Fundamentalsatz der Aussagenlogik (Fortsetzung)) Es gelten die folgenden Äquivalenzen: F F (Doppelnegation) (F G) ( F G) (F G) ( F G) (demorgansche Regeln) (F G) F, falls F Tautologie (F G) G, falls F Tautologie (Tautologieregeln) (F G) G, falls F unerfüllbar (F G) F, falls F unerfüllbar (Unerfüllbarkeitsregeln) Beweis: Übung 59

20 Einschub: Äquivalenzrelationen Sei R eine binäre Relation auf der Menge A, d.h. R A A. R ist reflexiv, falls für alle a A gilt: (a, a) R. R ist symmetrisch, falls für alle a, b A gilt: Wenn (a, b) R, dann auch (b, a) R. R ist transitiv, falls für alle a, b, c A gilt: Wenn (a, b) R und (b, c) R, dann auch (a, c) R. Eine reflexive, symmetrische und transitive Relation wird auch als Äquivalenzrelation bezeichnet. Für eine binäre Relation R schreiben wir im folgenden auch a R b anstatt (a, b) R (Infixschreibweise). Beispiel: Für eine natürliche Zahl k 1 definieren wir die binäre Relation k auf Z: n k m genau dann, wenn n m durch k teilbar ist. 60

21 semantische Äquivalenz als Äquivalenzrelation Sei F die Menge aller Formeln. Dann ist die Äquivalenz von Formeln eine binäre Relation auf F. ist sogar eine Äquivalenzrelation: reflexiv F F, da B(F ) = B(F ) für alle passenden Belegungen B symmetrisch Wenn F G gilt, so folgt B(F ) = B(G) für alle passenden Belegungen. Damit gilt aber B(G) = B(F ) für alle passenden Belegungen und damit G F. transitiv Gelte F G und G H. Um z.z., daß F H gilt, sei B eine beliebige Belegung, die zu F und zu H paßt. Problem: sie muß nicht unbedingt zu G passen. Sei B eine Belegung, die auf dem Definitionsbereich von B mit B übereinstimmt und die auch zu G paßt. Dann gilt B(F ) = B (F ) = B (G) = B (H) = B(H), also F H. 61

22 Einschub: Kongruenzrelationen Sei f eine n-stellige Operation auf A, d.h. f : A n A, wobei A n = {(a 1,..., a n ) a 1,..., a n A}. Die binäre Relation R A A ist abgeschlossen unter der Operation f, falls gilt: Für alle (a 1,..., a n ), (b 1,..., b n ) A n gilt: Wenn a 1 R b 1 und... a n R b n, dann auch f (a 1,..., a n ) R f (b 1,..., b n ). Man sagt auch, dass R und f verträglich sind. Seien f 1,..., f n Operationen auf A (beliebiger Stelligkeit). R ist eine Kongruenzrelation auf A (bezüglich f 1,..., f n ), falls gilt: R ist eine Äquivalenzrelationen. R ist abgeschlossen unter f 1,..., f n. Aufgabe: zeigen Sie, daß k eine Kongruenzrelation auf Z ist bezüglich der 2-stelligen Operationen Addition und Multiplikation. 62

23 semantische Äquivalenz als Kongruenzrelation Sei F die Menge aller Formeln. und sind 2-stellige Operationen auf F. ist ein 1-stelliger Operationen auf F. ist eine Kongruenzrelation auf F (bzgl. der Operationen, und ): Äquivalenzrelation: schon gezeigt abgeschlossen unter : Gelte F 1 F 2 und G 1 G 2. Um F 1 G 1 F 2 G 2 z.z., sei B eine Belegung, die zu F 1 F 2 und zu G 1 G 2 paßt. Dann gilt B(F 1 F 2 ) = min(b(f 1 ), B(F 2 )) = min(b(g 1 ), B(G 2 )) = B(G 1 G 2 ), also F 1 G 1 F 2 G 2. abgeschlossen unter und : analog 63

24 Einschub: Boolesche Algebren Sei G die Menge der -Äquivalenzklassen von Formeln. Auf G kann man Operationen G, G und G definieren durch [F ] G [G] = [F G] [F ] G [G] = [F G] G [F ] = [ F ] Die Rechenregeln des Fundamentalsatzes der Aussagenlogik gelten dann auch für diese Operationen, also ist (G, G, G, G ) eine Boolesche Algebra. Übung: Zeigen Sie, daß die Potenzmenge von N mit den Operationen, und N \. ebenfalls die Aussagen des Fundamentalsatzes erfüllt. Welche Mengen verhalten sich hier wie die Tautologien bzw. die unerfüllbaren Formeln? 64

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/??

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/?? Äquivalenz Zwei Formeln F und G heißen (semantisch) äquivalent, falls für alle Belegungen A, die sowohl für F als auch für G passend sind, gilt A(F ) = A(G). Hierfür schreiben wir F G.. 1/?? Aufgabe Gelten

Mehr

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4 Syntax der Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Eine atomare Formel hat die Form A i (wobei i = 1, 2, 3,...). Definition (Formel)

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht

Mehr

Logik. Markus Lohrey. Wintersemester 2012/2013. Universität Leipzig. Markus Lohrey (Universität Leipzig) Logik Wintersem.

Logik. Markus Lohrey. Wintersemester 2012/2013. Universität Leipzig. Markus Lohrey (Universität Leipzig) Logik Wintersem. Logik Markus Lohrey Universität Leipzig Wintersemester 2012/2013 Markus Lohrey (Universität Leipzig) Logik Wintersem. 2012/2013 1 / 214 Organisatorisches zur Vorlesung Informationen finden Sie unter z.

Mehr

Resolutionsalgorithmus

Resolutionsalgorithmus 112 Resolutionskalkül Mit dem Begriff Kalkül bezeichnet man eine Menge von syntaktischen Umformungsregeln, mit denen man semantische Eigenschaften der Eingabeformel herleiten kann. Für den Resolutionskalkül:

Mehr

Ersetzbarkeitstheorem

Ersetzbarkeitstheorem Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen

Mehr

Beispiel Aussagenlogik nach Schöning: Logik...

Beispiel Aussagenlogik nach Schöning: Logik... Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit

Mehr

Logik. Markus Lohrey. Sommersemester Universität Siegen. Markus Lohrey (Universität Siegen) Logik Sommersem / 299

Logik. Markus Lohrey. Sommersemester Universität Siegen. Markus Lohrey (Universität Siegen) Logik Sommersem / 299 Logik Markus Lohrey Universität Siegen Sommersemester 2014 Markus Lohrey (Universität Siegen) Logik Sommersem. 2014 1 / 299 Organisatorisches zur Vorlesung Informationen finden Sie unter z. B. http://www.eti.uni-siegen.de/ti/lehre/ss14/logik/

Mehr

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann heitmann@informatik.uni-hamburg.de 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei

Mehr

Was bisher geschah: klassische Aussagenlogik

Was bisher geschah: klassische Aussagenlogik Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur Junktoren: t, f (nullstellig), (einstellig),,,, (zweistellig) aussagenlogische Formeln AL(P) induktive Definition: IA atomare Formeln

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung

Mehr

Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl.

Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Erfüllbarkeitstests Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Grundlagen und diskrete Strukturen ) Ein für Formeln

Mehr

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 = Was bisher geschah (Klassische) Aussagenlogik: Aussage Wahrheitswerte 0 (falsch) und 1 (wahr) Junktoren Syntax Semantik Stelligkeit Symbol Wahrheitswertfunktion wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:

Mehr

Die Prädikatenlogik erster Stufe: Syntax und Semantik

Die Prädikatenlogik erster Stufe: Syntax und Semantik Die Prädikatenlogik erster Stufe: Syntax und Semantik 1 Mathematische Strukturen und deren Typen Definition 1.1 Eine Struktur A ist ein 4-Tupel A = (A; (R A i i I); (f A j j J); (c A k k K)) wobei I, J,

Mehr

Logik Vorlesung 3: Äquivalenz und Normalformen

Logik Vorlesung 3: Äquivalenz und Normalformen Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Logik Vorlesung 8: Modelle und Äquivalenz

Logik Vorlesung 8: Modelle und Äquivalenz Logik Vorlesung 8: Modelle und Äquivalenz Andreas Maletti 12. Dezember 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10 Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

TU9 Aussagenlogik. Daniela Andrade

TU9 Aussagenlogik. Daniela Andrade TU9 Aussagenlogik Daniela Andrade daniela.andrade@tum.de 18.12.2017 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2 /

Mehr

Syntax der Prädikatenlogik: Variablen, Terme. Formeln. Freie und gebundene Variablen, Aussagen. Aufgabe

Syntax der Prädikatenlogik: Variablen, Terme. Formeln. Freie und gebundene Variablen, Aussagen. Aufgabe Syntax der Prädikatenlogik: Variablen, Terme Formeln Eine Variable hat die Form x i mit i = 1, 2, 3.... Ein Prädikatensymbol hat die Form Pi k und ein Funktionssymbol hat die Form fi k mit i = 1, 2, 3...

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 9. November 2016 Weitere Begriffe Eine Zuweisung von Wahrheitswerten W bzw. F

Mehr

Kapitel 1.2. Aussagenlogik: Semantik. Mathematische Logik (WS 2011/12) Kapitel 1.2: Aussagenlogik: Semantik 1 / 57

Kapitel 1.2. Aussagenlogik: Semantik. Mathematische Logik (WS 2011/12) Kapitel 1.2: Aussagenlogik: Semantik 1 / 57 Kapitel 1.2 Aussagenlogik: Semantik Mathematische Logik (WS 2011/12) Kapitel 1.2: Aussagenlogik: Semantik 1 / 57 Übersicht 1.2.1 Interpretationen der al. Formeln 1.2.2 Zentrale semantische Begriffe 1.2.3

Mehr

Aufgabe - Fortsetzung

Aufgabe - Fortsetzung Aufgabe - Fortsetzung NF: Nicht-Formel F: Formel A: Aussage x :( y : Q(x, y) R(x, y)) z :(Q(z, x) R(y, z)) y :(R(x, y) Q(x, z)) x :( P(x) P(f (a))) P(x) x : P(x) x y :((P(y) Q(x, y)) P(x)) x x : Q(x, x)

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt (Probeklausur) 9

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt (Probeklausur) 9 Prof. Dr. Bernhard Steffen Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker Grundlagen der Mathematik für Informatiker Mengen, Relationen, Funktionen. Mengen Definition. [Georg Cantor 895] Eine Menge ist eine Zusammenfassung bestimmter,

Mehr

Mathematik für Informatiker 1 Tutorium

Mathematik für Informatiker 1 Tutorium Mathematik für Informatiker 1 Tutorium Malte Isberner 19.12.2013 M. Isberner MafI1-Tutorium 19.12.2013 1 / 15 Themen heute Zur Auswahl... Besprechung der Probeklausur Verbände Gruppen und Ringe M. Isberner

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume & Dr. Sander Bruggink Barbara König Logik 1 (Motivation) Wir benötigen Algorithmen für Erfüllbarkeitstests,

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Aufgabe 13 (Markierungsalgorithmus). Gegeben ist die Formel F = (A D C) (E A) ( ( B D) E) A B (B D)

Aufgabe 13 (Markierungsalgorithmus). Gegeben ist die Formel F = (A D C) (E A) ( ( B D) E) A B (B D) INTA - Lösungshinweise zum Übungsblatt 4, Version 1.0α. Wenn sie Fehler finden oder Ihnen etwas auch nach dem Gespräch mit ihren Kommilitonen noch unklar ist, dann schicken sie mir bitte eine Email! Aufgabe

Mehr

TU7 Aussagenlogik II und Prädikatenlogik

TU7 Aussagenlogik II und Prädikatenlogik TU7 Aussagenlogik II und Prädikatenlogik Daniela Andrade daniela.andrade@tum.de 5.12.2016 1 / 32 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds

Mehr

Kapitel 1.2. Semantik der Aussagenlogik. Mathematische Logik (WS 2013/14) Kapitel 1.2: Semantik der Aussagenlogik 1 / 60

Kapitel 1.2. Semantik der Aussagenlogik. Mathematische Logik (WS 2013/14) Kapitel 1.2: Semantik der Aussagenlogik 1 / 60 Kapitel 1.2 Semantik der Aussagenlogik Mathematische Logik (WS 2013/14) Kapitel 1.2: Semantik der Aussagenlogik 1 / 60 Übersicht 1.2.1 Interpretationen der al. Formeln 1.2.2 Zentrale semantische Begriffe

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

BA-INF 011 Logik und Diskrete Strukturen WS 2013/14 Mögliche Klausuraufgaben Stand vom

BA-INF 011 Logik und Diskrete Strukturen WS 2013/14 Mögliche Klausuraufgaben Stand vom Prof. Dr. Norbert Blum Elena Trunz Informatik V BA-INF 011 Logik und Diskrete Strukturen WS 2013/14 Mögliche Klausuraufgaben Stand vom 5.2.2014 Bitte beachten Sie, dass die tatsächlichen Klausuraufgaben

Mehr

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb.

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb. 4. Relationen 4.1 Grundlegende Definitionen Relation R in einer Menge M: Beziehung zwischen je 2 Elementen von M. Beispiel

Mehr

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1. Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik

Mehr

3 Allgemeine Algebren

3 Allgemeine Algebren Grundlagen der Mathematik für Informatiker 1 3 Allgemeine Algebren Definition 3.1 Für eine Menge A nennen wir eine n-stellige Funktion ω : A n A eine n-äre algebraische Operation. Bemerkung zum Fall n

Mehr

5.1 Operationen 5.2 Boolsche Algebren 5.3 Monoide, Gruppen, Ringe, Körper 5.4 Quotientenalgebren

5.1 Operationen 5.2 Boolsche Algebren 5.3 Monoide, Gruppen, Ringe, Körper 5.4 Quotientenalgebren 5. Algebra 5.1 Operationen 5.2 Boolsche Algebren 5.3 Monoide, Gruppen, Ringe, Körper 5.4 Quotientenalgebren 5. Algebra GM 5-1 Black Box Allgemein ist eine Black Box ein Objekt, dessen innerer Aufbau und

Mehr

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/36 Ersetzbarkeitstheorem

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

Resolution (Motivation) Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Resolution (Idee) Resolution (Idee)

Resolution (Motivation) Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Resolution (Idee) Resolution (Idee) (Motivation) Vorlesung Logik Sommersemester 0 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Wir benötigen Algorithmen für Erfüllbarkeitstests, die zumindest in vielen Fällen gutartiges

Mehr

Mengenlehre. Begriff der Mengenzugehörigkeit x M, x Ê M >x : x { a 1. e e x = a n. } 2 x = a 1. >x : x { y P(y) } 2 P(x) Begriff der leeren Menge

Mengenlehre. Begriff der Mengenzugehörigkeit x M, x Ê M >x : x { a 1. e e x = a n. } 2 x = a 1. >x : x { y P(y) } 2 P(x) Begriff der leeren Menge Mengenlehre Grundbegriff ist die Menge Definition (Naive Mengenlehre). Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Kapitel 1. Aussagenlogik

Kapitel 1. Aussagenlogik Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 1-14. Sitzung Dennis Felsing dennis.felsing@student.kit.edu http://www.stud.uni-karlsruhe.de/~ubcqr/2010w/tut gbi/ 2011-02-07 Äquivalenzrelationen 1 Äquivalenzrelationen

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Vorlesung Logik Wintersemester 2014/15 Universität Duisburg-Essen

Vorlesung Logik Wintersemester 2014/15 Universität Duisburg-Essen Vorlesung Logik Wintersemester 2014/15 Universität Duisburg-Essen Barbara König Übungsleitung: Dr. Sander Bruggink, Dennis Nolte Barbara König Logik 1 Barbara König Logik 2 Das heutige Programm: Organisatorisches

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle

Mehr

Vorlesung Logik Wintersemester 2017/18 Universität Duisburg-Essen

Vorlesung Logik Wintersemester 2017/18 Universität Duisburg-Essen Vorlesung Logik Wintersemester 2017/18 Universität Duisburg-Essen Barbara König Übungsleitung: Dennis Nolte, Harsh Beohar Barbara König Logik 1 Das heutige Programm: Organisatorisches Vorstellung Ablauf

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 21: Relationen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben.

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben. 2 Aussagenlogik () 2.3 Semantik von [ Gamut 4-58, Partee 7-4 ] Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s und s 2 unterschiedliche Wahrheitswerte haben. Beispiel: Es regnet.

Mehr

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch Belegungen, Wahrheitsfunktionen 1. Wie viele binäre Funktionen gibt es auf der Menge {0, 1} (d.h., Funktionen von {0, 1} 2 nach {0, 1})? Geben Sie alle diese Funktionen an, und finden Sie sinnvolle Namen

Mehr

- Theorie der uninterpretierten

- Theorie der uninterpretierten Theorie der uninterpretierten Funktionen Entscheidungsverfahren mit Anwendungen in der Softwareverifikation STEPHAN FALKE INSTITUT FÜR THEORETISCHE INFORMATIK (ITI) 0 KIT 13. Universität Mai 2013 des S.

Mehr

Einführung in die Logik, Übungsklausur 2016/07/11

Einführung in die Logik, Übungsklausur 2016/07/11 Institut für Theoretische Informatik ITI Dr. Jürgen Koslowski Einführung in die Logik, Übungsklausur 2016/07/11 Diese Aufgaben werden in der Extra-Übung am Freitag, 2016-07-15, 13:15, im SN 19.4 besprochen,

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

Informatik I Tutorium WS 07/08

Informatik I Tutorium WS 07/08 Informatik I Tutorium WS 07/08 Vorlesung: Prof. Dr. F. Bellosa Übungsleitung: Dipl.-Inform. A. Merkel Tutorium: 2 Tutor: Jens Kehne Tutorium 7: Dienstag,. Dezember 2007 Agenda des heutigen Tutoriums Übersicht

Mehr

Allgemeingültige Aussagen

Allgemeingültige Aussagen Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt

Mehr

8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem

8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem 8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem 8.1 Der Kompaktheitssatz Kompaktheitssatz Endlichkeitssatz Der Kompaktheitssatz ist auch unter dem Namen Endlichkeitssatz bekannt. Unter Verwendung

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 19. Oktober 2017 1/27 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage

Mehr

Klausur zur Vorlesung Mathematische Logik

Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 13. Februar 2014 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik Musterlösung Aufgabe 1 (Aussagenlogik

Mehr

Hilbert-Kalkül (Einführung)

Hilbert-Kalkül (Einführung) Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle

Mehr

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Ralf Moeller Hamburg Univ. of Technology Boole'sche Algebra Äquivalenzen als "Transformationsgesetze" Ersetzbarkeitstheorem Zentrale

Mehr

Ordnungsrelationen auf Mengen. Beispiel einer Ordnungsrelation. Spezielle Elemente von Ordnungen. Spezielle Elemente von Ordnungen

Ordnungsrelationen auf Mengen. Beispiel einer Ordnungsrelation. Spezielle Elemente von Ordnungen. Spezielle Elemente von Ordnungen Ordnungsrelationen auf Mengen! Eine (partielle) Ordnungsrelation oder kurz Ordnung O auf einer Menge M ist eine Relation, die reflexiv, antisymmetrisch und transitiv ist. Beispiel: M = { 1, 2, 3 }, O =

Mehr

Vorlesung Logik Wintersemester 2015/16 Universität Duisburg-Essen. Wer sind wir? Barbara König Übungsleitung: Dennis Nolte, Dr.

Vorlesung Logik Wintersemester 2015/16 Universität Duisburg-Essen. Wer sind wir? Barbara König Übungsleitung: Dennis Nolte, Dr. Vorlesung Logik Wintersemester 2015/16 Universität Duisburg-Essen Barbara König Übungsleitung: Dennis Nolte, Dr. Harsh Beohar Barbara König Logik 1 Barbara König Logik 2 Wer sind wir? Das heutige Programm:

Mehr

Zur Semantik der Junktorenlogik

Zur Semantik der Junktorenlogik Zur Semantik der Junktorenlogik Elementare Logik I Michael Matzer Inhaltsverzeichnis 1 Präliminarien 2 2 Tautologien, Kontradiktionen und kontingente Sätze von J 2 2.1 Tautologien von J................................

Mehr

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser Informatik A Prof. Dr. Norbert Fuhr fuhr@uni-duisburg.de auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische

Mehr

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch 5.9 Permutationsgruppen Definition 103 Eine Permutation ist eine bijektive Abbildung einer endlichen Menge auf sich selbst; o. B. d. A. sei dies die Menge U := {1, 2,..., n}. S n (Symmetrische Gruppe für

Mehr

6. Boolesche Algebren

6. Boolesche Algebren 6. Boolesche Algebren 6.1 Definitionen Eine Boolesche Algebra ist eine Algebra S,,,, 0, 1,, sind binäre, ist ein unärer Operator, 0 und 1 sind Konstanten. Es gilt: 1 und sind assoziativ und kommutativ.

Mehr

Eine Aussage ist ein Satz der Umgangssprache, der wahr oder falsch sein kann. Man geht von dem Folgenden aus:

Eine Aussage ist ein Satz der Umgangssprache, der wahr oder falsch sein kann. Man geht von dem Folgenden aus: Karlhorst Meyer Formallogik Die Umgangssprache ist für mathematische Bedürfnisse nicht exakt genug. Zwei Beispiele: In Folge können u. U. Beweise, die in Umgangssprache geschrieben werden, nicht vollständig,

Mehr

Brückenkurs Mathematische Grundlagen. 1 Aussagenlogik. FU Berlin, Institut für Informatik, WS 2008/09

Brückenkurs Mathematische Grundlagen. 1 Aussagenlogik. FU Berlin, Institut für Informatik, WS 2008/09 FU Berlin, Institut für Informatik, WS 2008/09 Brückenkurs Mathematische Grundlagen für Bioinformatik-, Informatik- und Nebenfach-Studenten 1 Aussagenlogik Eine logische Aussage ist ein Satz, der entweder

Mehr

Übung 4: Aussagenlogik II

Übung 4: Aussagenlogik II Übung 4: Aussagenlogik II Diskrete Strukturen im Wintersemester 2013/2014 Markus Kaiser 8. Januar 2014 1/10 Äquivalenzregeln Identität F true F Dominanz F true true Idempotenz F F F Doppelte Negation F

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Aussagenlogik. Mengenlehre. Relationen. Funktionen. Zahlentheorie. Vollständige Induktion. Reihen. Zahlenfolgen. WS 2016/17 Torsten Schreiber

Aussagenlogik. Mengenlehre. Relationen. Funktionen. Zahlentheorie. Vollständige Induktion. Reihen. Zahlenfolgen. WS 2016/17 Torsten Schreiber Mengenlehre Aussagenlogik Relationen Zahlentheorie Funktionen Vollständige Induktion Zahlenfolgen Reihen 193 Definition einer Menge: Beziehungsjunktoren: ist Element, d.h. Wert und Format stimmen überein

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Christina Kohl Alexander Maringele

Mehr

Informatik 3 Übung 09 Georg Kuschk

Informatik 3 Übung 09 Georg Kuschk Informatik 3 Übung 09 Georg Kuschk 9.1) Das Tupel ( {1,2,3,5,6,10,15,}, kgv, ggt, inv,, 1 ) mit inv()=/ ist eine boolesche Algebra, wenn für alle,y,z M folgende 7 Regeln gelten ( Zur besseren Übersicht

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker II (Sommersemester 2004) Lösungen zu Aufgabenblatt

Mehr

Grundbegriffe der Informatik Tutorium 14

Grundbegriffe der Informatik Tutorium 14 Grundbegriffe der Informatik Tutorium 14 Tutorium Nr. 16 Philipp Oppermann 11. Februar 2015 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Institut für Informatik

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0.

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0. Def 4 Eine Menge K mit zwei Abbildungen + : K K K und : K K K (heißen Addition und Multiplikation; wir werden a b bzw a+b statt (a,b), +(a,b) schreiben) ist ein kommutativer Ring, falls: (R1) (K, +) ist

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Seminar zum Thema Kryptographie

Seminar zum Thema Kryptographie Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 1.1 Konventionen.................................. 3 1.2 Wiederholung.................................. 3

Mehr

Der kleine Satz von Fermat

Der kleine Satz von Fermat Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................

Mehr

Logik erster Stufe FO

Logik erster Stufe FO Logik erster Stufe FO Sonderstellung als die Logik für die Grundlegung der Mathematik natürliche Semantik (Tarski) und große Ausdrucksstärke vollständige Beweiskalküle (Gödelscher Vollständigkeitssatz)

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Teil 3: Logik 1 Aussagenlogik Einleitung Eigenschaften Äquivalenz Folgerung Normalformen 2 Prädikatenlogik Wenn eine Karte

Mehr

Deduktion in der Aussagenlogik

Deduktion in der Aussagenlogik Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches. Was folgt logisch aus dieser Theorie? Deduktion: aus

Mehr

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen 09.10.2014 Herzlich Willkommen zum 2. Teil des Vorschaukurses für Mathematik! Organisatorisches Der Vorkurs besteht aus sechs Blöcken

Mehr