- keine räumlichen Gradienten keine Transportprozesse wie Diffusion, Wärmeleitung. - Bilanz zwischen instationären Termen und Reaktionstermen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "- keine räumlichen Gradienten keine Transportprozesse wie Diffusion, Wärmeleitung. - Bilanz zwischen instationären Termen und Reaktionstermen"

Transkript

1 4. Zünd- und Löschvorgänge in homogenen Systemen - Zeitabhängige Verbrennungsprozesse, - keine räumlichen Gradienten keine Transportprozesse wie Diffusion, Wärmeleitung - Bilanz zwischen instationären Termen und Reaktionstermen Schwerpunkt liegt auf der Untersuchung reaktionskinetischer Vorgänge Einfluss der exothermen Wärmeentwicklung auf die Reaktionskinetik, Selbstbeschleunigung des Verbrennungssystems Theorie der thermischen Explosion Theorie der Explosion durch Kettenverzweigung 4-1-1

2 4.1 Explosionen in geschlossenen Systemen Grundgleichungen für die homogene Verbrennung bei konstantem Volumen Geschlossener Behälter mit homogenem, zündfähigen Gemisch. (räumlich konstanter Druck, räumlich konstante Temperatur und Zusammensetzung) Wärmezufuhr von außen bis zur Selbstzündung, danach adiabate Bedingungen. Werden Reibungsvorgänge und andere Wandeinflüsse vernachlässigt, werden auch nach der Selbstzündung keine Strömungsvorgänge in Gang gesetzt

3 Mathematische Beschreibung 1. Hauptsatz für geschlossenes System keine Zufuhr von Reibungsarbeit (z.b. durch Rührwerk), isochorer Prozess, nach der Selbstzündung ist das System adiabat: bzw

4 Die Konzentrationsgleichungen können mit umgeschrieben werden in Differentialgleichungen für die Massenbrüche: Dabei ist genutzt worden, dass die Dichte konstant ist

5 Definition der spezifischen inneren Energie eines Gemisches: Folgt für ihr vollständiges Differential: Da konstantes Volumen vorausgesetzt ist, lassen sich die spezifischen Wärmekapazitäten der Komponenten und eine gemittelte Wärmekapazität einführen: Daraus folgt die Temperaturgleichung: 4.1-5

6 Die rechten Seiten der Temperaturgleichung beschreiben die Wärmefreisetzung durch die chemischen Reaktionen. Die freigesetzte Wärme kann als Summe über das Produkt aus spezifischer innerer Energie und der Produktionsdichte der einzelnen Komponenten oder als Produkt der freiwerdenden Reaktionsenergie mit den Reaktionsgeschwindigkeiten der einzelnen Reaktionen geschrieben werden: 4.1-6

7 Durch das Gleichungssystem wird die homogene Verbrennung bei konstantem Volumen vollständig beschrieben, wenn die Zusammensetzung des Gemisches und die Temperatur zu Beginn gegeben ist Anfangsbedingungen

8 Beispiel: Zeigen Sie, dass sich die molare Reaktionsenergie von der molaren Reaktionsenthalpie nur durch unterscheidet. Lösung: Die molare Reaktionsenergie ist durch definiert. Wegen folgt mit gesuchte Zusammenhang: sofort der Bei äquimolaren Reaktionen ist und daher

9 4.1.2 Theorie der thermischen Explosion unter adiabaten Bedingungen Geschlossener, adiabater Behälter mit homogenem, brennbaren Gemisch. Die bei Reaktionsvorgängen freiwerdende Wärme wird die Temperatur erhöhen und eine Beschleunigung der Reaktionen bewirken. Als Resultat dieser positiven Rückkopplung wächst der chemische Umsatz nach kurzer Zeit rapide an. Unter vereinfachenden Annahmen für die Reaktionsgeschwindigkeit kann die Zeit berechnet werden, bei der die Temperatur einen bestimmten Grenzwert überschreitet Zündverzugszeit

10 Ausgangspunkt: Globalreaktion für Brennstoff und Sauerstoff mit der Reaktionsgeschwindigkeit: Massenbruchgleichungen: Temperaturgleichung:

11 Annahmen: Die molare Reaktionswärme (-Δu m ) und die spezifische Wärme c v seien konstant. Dann besteht zwischen den Massenbrüchen und der Temperatur eine einfache Kopplungsbeziehung: Anfangsbedingungen: Integral der Kopplungsbeziehung:

12 Entwicklung für kleine Abweichungen von der Anfangstemperatur und zusammensetzung: Mit dem dimensionslosen Störparameter ε werden neue Variablen y und z definiert, die von der Größenordnung sein sollen. Die integrierte Kopplungsbeziehung liefert dann den Zusammenhang: Der Störparameter wird aus der Problemstellung bestimmt

13 Der Exponentialterm in der Temperaturgleichung lässt sich mit der Taylorentwicklung schreiben als: Da der Störparameter klein sein soll, wird also der Fall sehr großer Akivierungsenergie betrachtet:

14 Mit lautet die Temperaturgleichung für große Aktivierungsenergie: Im Grenzfall ε 0 entfallen die Störungen der Massenbrüche, der Stoffverbrauch ist vernachlässigbar:

15 In dieser Gleichung haben die Terme vor dem letzten Exponentialausdruck die Dimension einer reziproken Zeit. Diese lässt sich als Zündverzugszeit t i interpretieren: Damit lautet die Gleichung für die dimensionslose Temperatur mit der Lösung:

16 In dieser Gleichung haben die Terme vor dem letzten Exponentialausdruck die Dimension einer reziproken Zeit. Diese lässt sich als Zündverzugszeit t i interpretieren: Damit lautet die Gleichung für die dimensionslose Temperatur mit der Lösung:

17 Beispiel: Leiten Sie aus der Differentialgleichung her. die Lösung Lösung: Durch Einführung der neuen Variable wird die Differentialgleichung lienear und lässt sich mit den Randbedingungen sofort integrieren zu:

18 Eingesetzt in die Definition folgt für die Temperatur: Die Temperatur wächst mit y sehr stark an, wenn sich die Zeit der Zündverzugszeit annähert. Die gefundene Lösung ist jedoch nur solange gültig, solange die Temperatur nur wenig von der Anfangstemperatur abweicht

19 Aktivierungsenergien von Bruttoreaktionen aus Messungen der Zündverzugszeiten, ermittelt auf Grundlage einer Eintragung der Zündverzugszeit in Arrhenius- Diagrammen (log t i oder ln ti über 1/T 0 ). Beschrieben wird durch diese Aktivierungsenergien die Selbstzündung bei relativ tiefen Temperaturen um 1000 o C. Die nachfolgende Verbrennung kann durch niedrigere Werte der Aktivierungsenergien beschrieben werden (Kettenverzweigung)

20 Berücksichtigung von Wärmeverlusten Um Wärmeverluste in dieser Theorie zu berücksichtigen, wird in der Temperaturgleichung Ein volumetrischer Wärmeverlust eingeführt: Darin ist t q die charakteristische Zeit des Wärmeverlustes insbesondere durch konvektiven Wärmeübergang zu den Wänden und durch Strahlung. Dabei muss eine gute Durchmischung des Reaktors gegeben sein, um räumliche Inhomogenitäten schnell auszugleichen. Offensichtlich liegt ein linearer Ansatz für den Wärmeübergang vor

21 Trägt man den Wärmeverlust zusammen mit der rechten Seite der Temperaturgleichung ohne Wärmeverluste in ein Diagramm, können drei Fälle unterschieden werden: a) kein Schnittpunkt Die durch die Reaktion erzeugte Wärme ist stets größer als der Wärmeverlust, es kommt zur Explosion. b) ein Berührpunkt Der Wärmeverlust kann nie größer als die Wärmeentwicklung durch die chemische Reaktion werden. Nach unendlich langer Zeit stellt sich, wenn man den Stoffverbrauch vernachlässigt, eine stationäre Lösung am Berührpunkt ein

22 c) zwei Schnittpunkte Die Temperatur wächst zunächst an, bis der erste Schnittpunkt der beiden Kurven erreicht ist. Den Stoffverbrauch unberücksichtigt gelassen, stabilisiert die Temperatur sich dort, der obere Schnittpunkt ist instabil. Wegen des Stoffverbrauch kann die abgegebene Wärme aber nicht für immer nachgeliefert werden. Der Reaktor kühlt auf lange Sicht aus

23 Führt man die asymptotische Entwicklung für den Reaktor mit Wärmeverlust durch, ergibt sich die Differentialgleichung aus der sich formal eine Induktionszeit bei Wärmeverlusten t i,q als Lösung des Integrals ableiten lässt

24 Beispiel: Ermitteln Sie die Induktionszeit t i,q auf der Grundlage von für einen Wert von α, der geringfügig kleiner ist, als derjenige, der den Schnittpunkt im Fall b) ergibt. Lösung: Im Fall b) gelten im Schnittpunkt der beiden Kurven für die stationäre Lösung die beiden Beziehungen und. Daraus folgt z = 1 und α = e. Für einen geringfügig kleineren Wert von z und α kann man schreiben, wobei ε wieder einen kleinen Parameter darstellt

25 Die Auswertung des Integrals liefert mit In der Nähe von α = e steigt daher das Verhältnis der Induktionszeiten mit und ohne Wärmeverlust stark an

26 4.1.3 Explosionsgrenzen bei der Wasserstoff-Oxidation Bei der vereinfachenden Annahme einer einzigen exothermen Reaktion ergibt sich unter adiabaten Bedingungen stets eine Explosion. Die Verhältnisse bei realen chemischen Reaktionen sind demgegenüber komplizierter

27 Die Kurve enthält drei Äste: Sind ursprünglich nur die stabilen Komponenten H 2 und O 2 vorhanden, müssen zunächst bei niedrigen Temperaturen durch Und die anschließende Dissoziation OH o -Radikale gebildet werden

28 Der trimolekulare erste Schritt ist mit einer Aktivierungsenergie von 212 kj/mol verbunden. Er wird durch höhere Temperatur und höheren Druck beschleunigt. Bei niedrigen Temperaturen und Drücken ist die Radikal-Produktion so gering, dass sie an den Wänden des Reaktionsgefäßes noch vor dem einsetzenden Kettenverzweigungsvorgang rekombinieren. Hinreichend hohe Drücke und Temperaturen sind notwendig, um der Kettenverzweigung einen Vorteil zu verschaffen. Es kommt zur Überschreitung der unteren Explosionsgrenze. Als Parameter geht das Oberflächen-Volumen-Verhältnis des Gefäßes in die Festlegung der Grenze ein. Die negative Steigung der Explosionsgrenze zeigt, dass bei niedrigeren Temperaturen ein höherer Druck erforderlich ist

29 Die mittlere Explosionsgrenze wird durch die Konkurrenz zwischen der Kettenverzweigungsreaktion und der Reaktion erklärt. Die zweite Reaktion wirkt zusammen mit der Folgereaktion als Kettenabbruch. Dieser Kettenabbruch läuft bei höheren Drücken relativ schneller ab, als die Kettenverzweigung, so dass bei konstanter Temperatur mit wachsendem Druck eine Explosion nicht mehr möglich ist

30 Die Reaktionsgeschwindigkeit der Kettenverzweigungsreaktion steigt mit der Temperatur an, die Kettenabbruchreaktion ist dagegen nahezu temperaturunabhängig. Daher macht sich die Konkurrenz zwischen beiden erst bei höherem Druck bemerkbar. Die Grenzkurve besitzt daher eine positive Steigung. Oberhalb Torr und bei Temperaturen bis 580 o C existiert ein Gebiet, in dem keine Explosion stattfindet. Die mittlere Explosionsgrenze ist nicht vom Oberflächen-Volumen-Verhältnis des Gefäßes abhängig

31 Erhöht man bei konstanter Temperatur weiterhin den Druck, wird die obere Explosionsgrenze überschritten. Bei höheren Drücken wird der Anteil der Radikale, die an der Wand rekombinieren, gegenüber denen, die im Gasvolumen gebildet werden, vermindert. Dann kann die Reaktion zusammen mit wieder zur Kettenverzweigung führen. Die obere Explosionsgrenze ist wieder vom Oberflächen-Volumen-Verhältnis des Gefäßes abhängig

32 4.1.4 Zündung von Wasserstoff-Sauerstoff-Gemischen Um den Unterschied zwischen Kettenverzweigung und Kettenabbruch zu analysieren, soll der vereinfachte Mechanismus für die Zündung von Wasserstoff-Sauerstoff-Gemischen oder Wasserstoff-Luft- Gemischen betrachtet werden

33 Die Reaktionen 2 und 3 seien sehr schnell, wodurch O o und OH o in stationärem Zustand sind. Daher lassen sich die ersten drei Reaktionen zur Bruttoreaktionen I zusammenfassen: Die Bilanzgleichung für das H o -Radikal lautet:

34 Während der ersten Phase der Reaktion können die Temperaturerhöhung vernachlässigt und die Konzentrationen von H 2 und O 2 als konstant angenommen werden. Geeignete dimensionslose Variable für das Problem sind: Der Effektivitätsfaktor z 5 ist gegeben durch:

35 Für die dimensionslose Konzentration c erhält man die Bilanzgleichung mit der Anfangsbedingung: Die Lösung lautet: Die Zunahme des H o -Radikals ist exponentiell für κ < 2, linear für κ = 2 und erreicht einen stationären Grenzwert für κ >

36 Anders als für die Explosionstheorie auf Basis einer Globalreaktion kann durch die hier gefundene Lösung keine Zündverzugszeit definiert werden. Die Bedingung κ = 2 als Grenzlösung zwischen exponentiellem Wachstum und stationärem Verhalten fur große Zeiten definiert eine Cross-over-temperature T c zwischen der ersten und fünften Reaktion, definiert durch: Die Druckabhängigkeit der Temperatur ist als gestrichelte Linie im p,t-diagramm eingetragen

37 Unterhalb der cross-over-temperature T c dominiert die Kettenabbruchreaktion 5 im Vergleich zur Kettenverzweigungsreaktion 1: Die numerisch errechnete Zündverzugszeit als Funktion der Temperatur für zwei Elementarmechanismen aus 17 Reaktionen bzw. 8 Reaktionen und dem vereinfachten Drei-Schritt-Mechanismus aus Reaktione I, 5 und 7b zeigt das Bild. Die Zündverzugszeit steigt bei dem Druck von 0,1 bar im Bereich von 1500 K bis etwa 800 K zunächst langsam an, bei der Crossover-temperature von 790 K steigt sie stark zu sehr großen Werten an, wodurch eine Selbstzündung in technischen Systemen praktisch unmöglich ist

38 4.1.5 Explosionsgrenzen bei der Kohlenwasserstoff-Oxidation Abgesehen von Methan können Kohlenwasserstoffe schon bei Temperaturen von o C mit Sauerstoff eine Kettenreaktion auslösen. Man erkennt das für höhere Kohlenwasserstoffe typische NTC-Gebiet (negative temperature coefficient), in dem die Steigung der Zündverzugszeit negativ ist. Reguläres Verhalten zeigen die Zweige der Niedertemperatur- und der Hochtemperaturzündung

39 Niedertemperaturkinetik Ausgehend von dem zu oxidierenden Kohlenwasserstoff RH (n-heptan RH = C 7 H 16 ) wird mit O 2 nach ein erstes Radikal R o gebildet. Wenn bereits HO o 2 - und OH o - Radikale vorhanden sind, wird RH nach abgebaut. Wegen dieser schnellen Reaktionen bleiben die Radikalkonzentration klein, solange noch Brennstoff existiert

40 Das R o -Radikal reagiert im Niedertemperaturbereich mit O 2 zum Peroxyl RO 2 o das zum Hydroperoxid R OOH o über umstrukturiert wird. Mit O 2 kann dies zu reagieren, das in HOOR OOH o umgewandelt wird und mit zum Ketohydroperoxid HOOR O o zerfällt. Das OH o - Radikal reagiert in einer neuen Kette sofort mit dem Brennstoff

41 Das Ketohydroperoxid HOOR O o ist relativ stabil. Mit einer zweiten OH o - Abstraktion und einer Umwandlung zum Carbonyl-Radikal OOR O o nach beginnt eine neue Kettenverzweigung, die den Brennstoff langsam abbaut. Der NTC-Bereich ist durch eine Zwei-Stufen-Zündung gekennzeichnet. Bei der ersten Stufe läuft die Reaktionskette, wie vorstehend beschrieben, sehr schnell bis zum Ketohydroperoxid HOOR O o ab. Danach erfolgt in der zweiten Stufe eine langsame Phase, in der der Brennstoff abgebaut wird

42 Bei höheren Temperaturen wird dieser Weg nicht beschritten. Statt dessen zerfällt das R o -Radikal in kleinere Bruchstücke, die anschließend oxidiert werden und ebenfalls zur Kettenverzweigung führen

4.2 Reaktionsprozesse im gut durchmischten Strömungsreaktor

4.2 Reaktionsprozesse im gut durchmischten Strömungsreaktor 4.2 Reaktionsprozesse im gut durchmischten Strömungsreaktor Als Idealisierung von Verbrennungsprozessen soll ein Reaktor betrachtet werden, in den ein brennbares Gemisch hineinströmt und den es als verbranntes

Mehr

Bilanzgleichung der i-ten Komponente eines Systems mit r Reaktionen

Bilanzgleichung der i-ten Komponente eines Systems mit r Reaktionen 3.5 Die chemische Produktionsdichte Bilanzgleichung der i-ten Komponente eines Systems mit r Reaktionen und mit folgt Die rechte Seite der Gleichung wird als chemische Produktionsdichte bezeichnet: Sie

Mehr

Verbrennungsrechnung als kinetischer Simulationsansatz

Verbrennungsrechnung als kinetischer Simulationsansatz Verbrennungsrechnung als kinetischer Simulationsansatz Simulationsansatz mit CHEMCAD Die Daten für Flammpunkt, Zündtemperatur, Explosionsgrenzen diverser Stoffe sind weitestgehend bekannt. Methoden zur

Mehr

In der Mehrzahl der technischen Verbrennungsprozesse überwiegt die getrennte Zufuhr von Brennstoff und Sauerstoff in den Brennraum.

In der Mehrzahl der technischen Verbrennungsprozesse überwiegt die getrennte Zufuhr von Brennstoff und Sauerstoff in den Brennraum. 7 Laminare und turbulente Diffusionsflammen In der Mehrzahl der technischen Verbrennungsprozesse überwiegt die getrennte Zufuhr von Brennstoff und Sauerstoff in den Brennraum. Erst im Brennraum findet

Mehr

Kettenreaktionen. Kapitel 2. In diesem Kapitel sollen die folgenden Fragen beantwortet werden:

Kettenreaktionen. Kapitel 2. In diesem Kapitel sollen die folgenden Fragen beantwortet werden: Kapitel 2 Kettenreaktionen In diesem Kapitel sollen die folgenden Fragen beantwortet werden: Was versteht man unter einer Kettenreaktion? Welches sind die verschiedenen Typen von Reaktionsschritten, die

Mehr

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14

Mehr

4.3 Reaktionsgeschwindigkeit und Katalysator

4.3 Reaktionsgeschwindigkeit und Katalysator 4.3 Reaktionsgeschwindigkeit und Katalysator - Neben der thermodynamischen Lage des chemischen Gleichgewichts ist der zeitliche Ablauf der Reaktion, also die Geschwindigkeit der Ein- Einstellung des Gleichgewichts,

Mehr

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) adiabatische Flammentemperatur Verständnis des thermodynamischen Gleichgewichts Definition von K X, K c, K p Berechnung von K

Mehr

2.1 Massenbilanz bei chemischen Stoffumwandlungen. 2.2 Energiebilanz bei chemischen Stoffumwandlungen

2.1 Massenbilanz bei chemischen Stoffumwandlungen. 2.2 Energiebilanz bei chemischen Stoffumwandlungen Inhalt von Kapitel 2 2.1-0 2. Chemische Stoffumwandlungen 2.1 Massenbilanz bei chemischen Stoffumwandlungen 2.2 Energiebilanz bei chemischen Stoffumwandlungen 2.2.1 Energiebilanz 2.2.2 Die Bildungsenthalpie

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

7.2 Energiebilanz bei chemischen Stoffumwandlungen

7.2 Energiebilanz bei chemischen Stoffumwandlungen 7.2 Energiebilanz bei chemischen Stoffumwandlungen Betrachtung eines Reaktionsgefäßes mit eintretenden Edukten und austretenden Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft (kinetische

Mehr

) auf dem Band auf Osiris zu, während Osiris sich auf dem Weg in die Unterwelt mit der Geschwindigkeit 0.35 Schoinen pro Stunde (v 2 = 1 m s

) auf dem Band auf Osiris zu, während Osiris sich auf dem Weg in die Unterwelt mit der Geschwindigkeit 0.35 Schoinen pro Stunde (v 2 = 1 m s 1 Das Rätsel vom Käfer auf dem Gummiband Die alten Ägypter glaubten angeblich, Osiris habe am Tempel in Luor ein unsichtbares Gummiband der Länge L = 1m befestigt, auf dessen Anfang er einen Scarabaeus

Mehr

Haushaltsbrenner bei Gasherden und boilern

Haushaltsbrenner bei Gasherden und boilern 6 Laminare und turbulente Vormischflammen Vormischverbrennung wird industriell eingesetzt, wo eine intensive Verbrennung auf kleinstem Raum stattfinden soll. Beispiele: Ottomotor stationäre Gasturbinen

Mehr

Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft. Massen-, Energie- und Entropieströme treten in die Kammer ein bzw. aus.

Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft. Massen-, Energie- und Entropieströme treten in die Kammer ein bzw. aus. 7.2 Energiebilanz bei chemischen Stoffumwandlungen 2.2-1 Betrachtung eines Reaktionsgefäßes mit eintretenden Edukten und austretenden Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft Massen-,

Mehr

[A] = c(a) in den Einheiten mol/l (1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration

[A] = c(a) in den Einheiten mol/l (1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration 1 Ableitung des Massenwirkungsgesetzes Mit dem Umfüllexperiment haben wir herausgefunden, dass die Stoffmengen oder die Stoffmengenkonzentrationen im Gleichgewicht auf einen Grenzwert zulaufen. Außerdem

Mehr

Übungen PC - Kinetik - Seite 1 (von 5)

Übungen PC - Kinetik - Seite 1 (von 5) Übungsaufgaben PC: Kinetik 1) Für die Umlagerung von cis- in trans-dichlorethylen wurde die Halbwertszeit 245 min gefunden; die Reaktion gehorcht einem Geschwindigkeitsgesetz erster Ordnung. Wie viel g

Mehr

Mitschrift zu Wärmetransportphänomene bei Prof. Polifke SoSe 2010

Mitschrift zu Wärmetransportphänomene bei Prof. Polifke SoSe 2010 Inhalt 1. Einführung... 3 2. Grundbegriffe der Wärmeleitung... 3 2.1. Fourier sches Gesetz... 3 2.2. Fourier sche DGL... 3 3. Stationäre Wärmeleitung... 4 3.1. Wärmeleitung in einfachen Geometrien... 4

Mehr

PCI (Biol./Pharm.) Thermodyn. Musterlösung Übung 5 H.P. Lüthi / R. Riek HS Musterlösung Übung 5

PCI (Biol./Pharm.) Thermodyn. Musterlösung Übung 5 H.P. Lüthi / R. Riek HS Musterlösung Übung 5 Musterlösung Übung 5 ufgabe 1: Enthalpieänderungen bei Phasenübergängen Es ist hilfreich, zuerst ein Diagramm wie das folgende zu konstruieren: (Die gesuchten Werte sind in den umrandeten oxen.) sub X

Mehr

Übung 4. SS 2013 Übung - Einführung in die Verbrennung - Methling, Özuylasi 1

Übung 4. SS 2013 Übung - Einführung in die Verbrennung - Methling, Özuylasi 1 Ziel: Grundlagen der chemischen Reaktionskinetik verstehen Verstehen qualitativer Reaktionsverläufe Aufstellung des Zeitgesetzes Umgang mit nicht reagierenden Stoßpartner (M) Berechnung Geschwindigkeitskoeffizient

Mehr

Verbrennungstheorie und Modellierung

Verbrennungstheorie und Modellierung Verbrennungstheorie und Modellierung Institut für Technische Verbrennung RWTH-Aachen Prof. Dr.-Ing. Norbert Peters Grundsätzliche Flammentypen Verbrennungsmoden Diffusionsflammen z.b. Kerzenflammen, Dieselmotoren

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

1. Die Wellengleichung

1. Die Wellengleichung 1. Die Wellengleichung Die Wellengleichung ist eine partielle Differenzialgleichung für das Schallfeld. Sie lässt sich durch Linearisierung aus der Massenbilanz, der Impulsbilanz und der Energiebilanz

Mehr

Lösungen 10 (Kinetik)

Lösungen 10 (Kinetik) Chemie I WS 2003/2004 Lösungen 10 (Kinetik) Aufgabe 1 Verschiedenes 1.1 Als Reaktionsgeschwindigkeit v c wird die Ableitung der Konzentration eines Reaktanden A nach der Zeit t, dividiert durch dessen

Mehr

Übungsaufgaben Technische Thermodynamik

Übungsaufgaben Technische Thermodynamik Gernot Wilhelms Übungsaufgaben Technische Thermodynamik 2., aktualisierte Auflage Mit 36 Beispielen und 154 Aufgaben HANSER Inhaltsverzeichnis 1 Grundlagen der Thermodynamik 11 1.1 Aufgabe der Thermodynamik

Mehr

Grundlagen: Die Zersetzung von Ameisensäure in konzentrierter Schwefelsäure verläuft nach folgendem Mechanismus:

Grundlagen: Die Zersetzung von Ameisensäure in konzentrierter Schwefelsäure verläuft nach folgendem Mechanismus: A 35: Zersetzung von Ameisensäure Aufgabe: Für die Zersetzung von Ameisensäure in konzentrierter Schwefelsäure sind die Geschwindigkeitskonstante bei 30 und 40 C sowie der präexponentielle Faktor und die

Mehr

PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test

PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test 1. Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Lösungswärme wird dieses Vorgespräch durch einen Multiple Choice

Mehr

4.3 Reaktionsgeschwindigkeit und Katalysator

4.3 Reaktionsgeschwindigkeit und Katalysator 4.3 Reaktionsgeschwindigkeit und Katalysator Neben der thermodynamischen Lage des chemischen Gleichgewichts ist der zeitliche Ablauf der Reaktion, also die Geschwindigkeit der Einstellung des Gleichgewichts,

Mehr

Thermodynamik. Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen.

Thermodynamik. Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen. Thermodynamik Was ist das? Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen. Gesetze der Thermodynamik Erlauben die Voraussage, ob eine bestimmte

Mehr

1 Aufwärmen nach den Ferien

1 Aufwärmen nach den Ferien Physikalische Chemie II Lösung 23. September 206 Aufwärmen nach den Ferien. Ermitteln Sie die folgenden Integrale. Partielle Integration mit der Anwendung der generellen Regel f g = fg fg (in diesem Fall

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme 6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher mit der

Mehr

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts 9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts Die Strömung tritt mit dem Zustand 1 in die Rohrleitung ein. Für ein aus der Rohrstrecke herausgeschnittenes Element

Mehr

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen)

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen) Versuch Nr.53 Messung kalorischer Größen (Spezifische Wärmen) Stichworte: Wärme, innere Energie und Enthalpie als Zustandsfunktion, Wärmekapazität, spezifische Wärme, Molwärme, Regel von Dulong-Petit,

Mehr

Betrachtung der Stoffwerte und ihrer Bezugstemperatur. Von Franz Adamczewski

Betrachtung der Stoffwerte und ihrer Bezugstemperatur. Von Franz Adamczewski Betrachtung der Stoffwerte und ihrer Bezugstemperatur Von Franz Adamczewski Inhaltsverzeichnis Einleitung... 3 Bezugstemperatur... 4 Eintrittstemperatur des Kühlmediums 4 Austrittstemperatur des Kühlmediums

Mehr

Überlegungen zur Leistung und zum Wirkungsgrad von Solarkochern

Überlegungen zur Leistung und zum Wirkungsgrad von Solarkochern Überlegungen zur Leistung und zum Wirkungsgrad von Solarkochern (Dr. Hartmut Ehmler) Einführung Die folgenden Überlegungen gelten ganz allgemein für Solarkocher, unabhängig ob es sich um einen Parabolkocher,

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 4. Teil Finite-Volumen-Methode

Mehr

(a) Lösen Sie die Differentialgleichung unter Verwendung der Mathematica-Funktion DSolve.

(a) Lösen Sie die Differentialgleichung unter Verwendung der Mathematica-Funktion DSolve. Institut für Physikalische Chemie Methodenkurs Anwendungen von Mathematica und Matlab in der Physikalischen Chemie im WS 205/206 Prof Dr Stefan Weber, Dr Till Biskup Aufgabenblatt zum Teil (Mathematica)

Mehr

1 Halbwertszeit einer allgemeinen Reaktion m-ter Ordnung

1 Halbwertszeit einer allgemeinen Reaktion m-ter Ordnung Physikalische Chemie II Lösung 5 6. Oktober 25 Halbwertszeit einer allgemeinen Reaktion m-ter Ordnung Für c = c B =... = c gilt c (t) = c B (t) =... = c(t) und das Geschwindigkeitsgesetz lautet dc(t) =

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) 10.1 Systemdefinition Eine

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 200 Abbildungen und 7 Tabellen Springer Inhaltsverzeichnis Liste der Formelzeichen XV 1 Grundlagen der Technischen Thermodynamik 1 1.1 Gegenstand und Untersuchungsmethodik

Mehr

Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo

Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine und Anorganische Chemie Universität des Saarlandes E-Mail: a.rammo@mx.uni-saarland.de innere Energie U Energieumsatz bei

Mehr

Nichtlineare Prozesse in der Elektrochemie II

Nichtlineare Prozesse in der Elektrochemie II Nichtlineare Prozesse in der Elektrochemie II 5. Stabilität und Instabilität Neue (dissipative) Strukturen entstehen, wenn der bisherige stationäre Zustand, der den thermodynamischen Zweig repräsentiert,

Mehr

Bruttoreaktionen sagen nichts darüber aus, wie der Umsatz tatsächlich abläuft.

Bruttoreaktionen sagen nichts darüber aus, wie der Umsatz tatsächlich abläuft. 7. Chemische Stoffumwandlungen 7.1 Massenbilanz bei chemischen Stoffumwandlungen Bruttoreaktionen, z. B. die Knallgasreaktion H 2 + ½ O 2 = H 2 O, beschreiben die Mengenverhätnisse beim Umsatz H 2 zu O

Mehr

Merkzettel Verbrennungstechnik

Merkzettel Verbrennungstechnik Merkzettel Verbrennungstechnik Julian0 SS 2010 ALLE Angaben ohne Gewähr (Bemerkung: bedeutet, dass der Teil in einer der Altklausuren vorkam (pro Klausur ein anfügen).) 1 Prozess der Verbrennung Zerstäubung

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Bestimmung der Geschwindigkeitskonstanten einer Esterverseifung

Bestimmung der Geschwindigkeitskonstanten einer Esterverseifung Versuchsprotokoll: Bestimmung der Geschwindigkeitskonstanten einer Esterverseifung Gruppe 10 29.06.2013 Patrik Wolfram TId:20 Alina Heidbüchel TId:19 1 Inhaltsverzeichnis 1 Einleitung... 3 2 Theorie...

Mehr

Aufgabe: Man bestimme die Geschwindigkeitskonstante für den Zerfall des Diacetonalkohols bei 293 und 303 K.

Aufgabe: Man bestimme die Geschwindigkeitskonstante für den Zerfall des Diacetonalkohols bei 293 und 303 K. A 31 Zersetzung von Diacetonalkohol Aufgabe: Man bestimme die Geschwindigkeitskonstante für den Zerfall des Diacetonalkohols bei 293 und 303 K. Grundlagen: Diacetonalkohol (ρ (20 C) = 0,931 g/cm 3 ) zerfällt

Mehr

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p:

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p: 8. Mehrkomponentensysteme 8.1 Partielle molare Größen Experiment 1 unter Umgebungsdruck p: Fügen wir einer Menge Wasser n mit Volumen V (molares Volumen v m =V/n) bei einer bestimmten Temperatur T eine

Mehr

Chemische Oszillationen

Chemische Oszillationen Ludwig Pohlmann Thermodynamik offener Systeme und Selbstorganisationsphänomene SS 007 Chemische Oszillationen. Chemische (Formal-)Kinetik Die chemische Kinetik untersucht die Geschwindigkeit und den Mechanismus

Mehr

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1. Das chemische Gleichgewicht Eine chemische Reaktion läuft in beiden Richtungen ab. Wenn

Mehr

die Wachstumsrate ist proportional zur Anzahl der vorhandenen Individuen.

die Wachstumsrate ist proportional zur Anzahl der vorhandenen Individuen. Exponentielles Wachstum und Zerfall Angenommen, man möchte ein Modell des Wachstums oder Zerfalls einer Population erarbeiten, dann ist ein Gedanke naheliegend: die Wachstumsrate ist proportional zur Anzahl

Mehr

12 Der erste Hauptsatz der Thermodynamik für geschlossene Systeme

12 Der erste Hauptsatz der Thermodynamik für geschlossene Systeme Der erste Hauptsatz der Thermodynamik für geschlossene Systeme Der erste Hauptsatz ist die thermodynamische Formulierung des Satzes von der Erhaltung der Energie. Er besagt, daß Energie weder erzeugt noch

Mehr

Thermodynamik & Kinetik

Thermodynamik & Kinetik Thermodynamik & Kinetik Inhaltsverzeichnis Ihr versteht die Begriffe offenes System, geschlossenes System, isoliertes System, Enthalpie, exotherm und endotherm... 3 Ihr kennt die Funktionsweise eines Kalorimeters

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1 II. Wärmelehre II.2. Die auptsätze der Wärmelehre Physik für Mediziner 1 1. auptsatz der Wärmelehre Formulierung des Energieerhaltungssatzes unter Einschluss der Wärmenergie: die Zunahme der Inneren Energie

Mehr

Klausur Technische Chemie SS 2007 Prof. M. Schönhoff // PD Dr. C. Cramer-Kellers Klausur zur Vorlesung

Klausur Technische Chemie SS 2007 Prof. M. Schönhoff // PD Dr. C. Cramer-Kellers Klausur zur Vorlesung Klausur zur Vorlesung Technische Chemie: Reaktionstechnik 9.7.2007 9:00 Uhr bis 11.00 Uhr Name, Vorname Geburtsdatum Studiengang/Semester Matrikelnummer Hinweis: Alle Ansätze und Rechenwege sind mit Worten

Mehr

Inhaltsverzeichnis. Formelzeichen...

Inhaltsverzeichnis. Formelzeichen... Inhaltsverzeichnis Formelzeichen... xv 1 Einführung. Technische Anwendungen... 1 1.1 Die verschiedenen Arten der Wärmeübertragung... 1 1.1.1 Wärmeleitung... 2 1.1.2 Stationäre, geometrisch eindimensionale

Mehr

Übung 1. Göksel Özuylasi Tel.: Torsten Methling Tel.

Übung 1. Göksel Özuylasi   Tel.: Torsten Methling   Tel. Göksel Özuylasi Email: goeksel.oezuylasi@dlr.de Tel.: 0711 6862 8098 Torsten Methling Email: torsten.methling@dlr.de Tel.: 0711 6862 277 WS 2013/14 Übung - Einführung in die Verbrennung - Özuylasi, Methling

Mehr

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 1. Übung (KW 15/16) Eisblumen )

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 1. Übung (KW 15/16) Eisblumen ) 1. Übung (KW 15/16) Aufgabe 1 (T 2.3 Eisblumen ) Eine Schaufensterscheibe in Reinholdshain, einem Ortsteil von Dippoldiswalde, hat die Dicke d. Die Wärmeleitfähigkeit des Glases ist λ, die Wärmeübergangskoeffizienten

Mehr

Mathematische Modelle in der Biologie Biologische Wellen: Einzelspeziesmodell - Teil 1

Mathematische Modelle in der Biologie Biologische Wellen: Einzelspeziesmodell - Teil 1 Mathematische Modelle in der Biologie Biologische Wellen: Einzelspeziesmodell - Teil 1 Andrea Schneider 05.02.2013 Literatur: J.D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer

Mehr

C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung. rechte Seite der DG ist unabhängig von x

C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung. rechte Seite der DG ist unabhängig von x C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung (a) Trivialfall: rechte Seite der DG ist unabhängig von x Integration: Substitution auf linker Seite: Lösung: Fazit: Das Lösen von

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

3. Diffusion und Brechungsindex

3. Diffusion und Brechungsindex 3. Diffusion und Brechungsinde Die Diffusion in und aus einer Schicht ist die Grundlage vieler Sensoreffekte, wobei sich die einzelnen Sensoren dann nur noch in der Art der Übersetzung in ein meßbares

Mehr

9.4 Lineare gewöhnliche DGL

9.4 Lineare gewöhnliche DGL 9.4 Lineare gewöhnliche DGL Allgemeinste Form einer gewöhnlichen DGL: Falls linear in ist, sprechen wir von einer "linearen" DGL: und eine Matrix zeitabhängigen Komponenten ein zeitabhängiger Vektor In

Mehr

Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan

Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Zustandsgleichung....... 2 2.2. Koexistenzgebiet........ 3 2.3. Kritischer

Mehr

Eine chemische Reaktion läuft ab, wenn reaktionsfähige Teilchen mit genügend Energie zusammenstoßen.

Eine chemische Reaktion läuft ab, wenn reaktionsfähige Teilchen mit genügend Energie zusammenstoßen. 1) DEFINITIONEN DIE CHEMISCHE REAKTION Eine chemische Reaktion läuft ab, wenn reaktionsfähige Teilchen mit genügend Energie zusammenstoßen. Der Massenerhalt: Die Masse ändert sich im Laufe einer Reaktion

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Thermodynamik des Kraftfahrzeugs Bearbeitet von Cornel Stan 1. Auflage 2012. Buch. xxiv, 598 S. Hardcover ISBN 978 3 642 27629 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 1087 g Weitere Fachgebiete > Technik

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

8. Reale Gase D1-1. Bereiten Sie folgende Themengebiete vor

8. Reale Gase D1-1. Bereiten Sie folgende Themengebiete vor D1-1 8. Reale Gase Bereiten Sie folgende Themengebiete vor Modell des idealen Gases, ideales Gasgesetz reales Gas, van der Waals-Gleichung, Virialgleichungen pv- und pt-diagramme, kritische Isotherme kinetische

Mehr

2. Fluide Phasen. 2.1 Die thermischen Zustandsgrößen Masse m [m] = kg

2. Fluide Phasen. 2.1 Die thermischen Zustandsgrößen Masse m [m] = kg 2. Fluide Phasen 2.1 Die thermischen Zustandsgrößen 2.1.1 Masse m [m] = kg bestimmbar aus: Newtonscher Bewegungsgleichung (träge Masse): Kraft = träge Masse x Beschleunigung oder (schwere Masse) Gewichtskraft

Mehr

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung)

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Versuch Nr. 57 Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Stichworte: Dampf, Dampfdruck von Flüssigkeiten, dynamisches Gleichgewicht, gesättigter Dampf, Verdampfungsenthalpie, Dampfdruckkurve,

Mehr

1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure

1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure 1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure In diesem Versuch soll der Satz von Hess (die umgesetzte Wärmemenge ist bei einer chemischen Reaktion unabhängig vom Weg)

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Musteraufgaben ab 08 Pflichtteil Aufgabe Seite / BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ())

Mehr

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3 Inhaltsverzeichnis Formelzeichen...XIII 1 Einleitung...1 2 Einheiten physikalischer Größen...3 3 Systeme...6 3.1 Definition von Systemen...6 3.2 Systemarten...7 3.2.1 Geschlossenes System...7 3.2.2 Offenes

Mehr

ST Der Stirling-Motor als Wärmekraftmaschine

ST Der Stirling-Motor als Wärmekraftmaschine ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische

Mehr

Fragen zum Versuch 11a Kinetik Rohrzuckerinversion:

Fragen zum Versuch 11a Kinetik Rohrzuckerinversion: Fragen zum Versuch 11a Kinetik Rohrzuckerinversion: 1. Die Inversion von Rohrzucker ist: a. Die Umwandlung von Rohrzucker in Saccharose b. Die katalytische Spaltung in Glucose und Fructose c. Das Auflösen

Mehr

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr

Für eine allgemeine chemische Reaktion mit der stöchiometrischen Gleichung. aa + bb cc + dd

Für eine allgemeine chemische Reaktion mit der stöchiometrischen Gleichung. aa + bb cc + dd 5. Reationsineti 96 5. Reationsineti 5. Die Geschwindigeit chemischer Reationen Die Umsatzgeschwindigeit ω ist definiert als: dλ ω = [mol s - ] mit λ = Umsatzvariable (Gleichung 86) Für eine allgemeine

Mehr

Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Prof. Dr. U. Schollwöck Sommersemester 2013

Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Prof. Dr. U. Schollwöck Sommersemester 2013 Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Klausur Prof. Dr. U. Schollwöck Sommersemester 2013 Matrikelnummer: Aufgabe 1 2 3 4 5 6 Summe Punkte Note: WICHTIG! Schreiben

Mehr

Chemische Verbrennung

Chemische Verbrennung Christopher Rank Sommerakademie Salem 2008 Gliederung Die chemische Definition Voraussetzungen sgeschwindigkeit Exotherme Reaktion Reaktionsenthalpie Heizwert Redoxreaktionen Bohrsches Atommodell s Elektrochemie:

Mehr

4.1.2 Quantitative Definition durch Wärmekapazitäten

4.1.2 Quantitative Definition durch Wärmekapazitäten 4 Energie Aus moderner (mikroskopischer Sicht ist klar, daß die Summe U der kinetischen Energien der Moleküle eines Gases (und ggf. ihrer Wechselwirkungsenergien eine thd. Zustandsgröße des Gases ist,

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

Einfache Differentialgleichungen (algebraische Lösung)

Einfache Differentialgleichungen (algebraische Lösung) Einfache Differentialgleichungen (algebraische Lösung) 0. Definition, Einschränkung Definition: Sei die Funktion mit Gleichung = f() n-mal differenzierbar. Gilt F(,,,,, (n) ) = 0 (für alle ), so erfüllt

Mehr

endotherme Reaktionen

endotherme Reaktionen Exotherme/endotherme endotherme Reaktionen Edukte - H Produkte Exotherme Reaktion Edukte Produkte + H Endotherme Reaktion 101 Das Massenwirkungsgesetz Das Massenwirkungsgesetz Gleichgewicht chemischer

Mehr

Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen der Aufgaben A 1.1 und A 1.

Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen der Aufgaben A 1.1 und A 1. 1 Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen der Aufgaben A 1.1 und A 1.2 klaus_messner@web.de www.elearning-freiburg.de 2 Aufgabe A 1.1

Mehr

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!!

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!! Aufgabe (60 Punkte, TTS & TTD) Bitte alles LESBAR verfassen!!!. In welcher Weise ändern sich intensive und extensive Zustandsgrößen bei der Zerlegung eines Systems in Teilsysteme?. Welche Werte hat der

Mehr

2. Chemische Reaktionen und chemisches Gleichgewicht

2. Chemische Reaktionen und chemisches Gleichgewicht 2. Chemische Reaktionen und chemisches Gleichgewicht 2.1 Enthalpie (ΔH) Bei chemischen Reaktionen reagieren die Edukte zu Produkten. Diese unterscheiden sich in der inneren Energie. Es gibt dabei zwei

Mehr

Bernhard Härder. Einführung in die PHYSIKALISCHE CHEMIE ein Lehrbuch Chemische Thermodynamik W/ WESTAR.P WISSENSCHAFTEN. Skripte, Lehrbücher Band 2

Bernhard Härder. Einführung in die PHYSIKALISCHE CHEMIE ein Lehrbuch Chemische Thermodynamik W/ WESTAR.P WISSENSCHAFTEN. Skripte, Lehrbücher Band 2 Bernhard Härder Einführung in die PHYSIKALISCHE CHEMIE ein Lehrbuch Chemische Thermodynamik Skripte, Lehrbücher Band 2 W/ WESTAR.P WISSENSCHAFTEN Inhaltsverzeichnis Vorwort zur ersten Auflage Vorwort zur

Mehr

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2 Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2 10. Temperaturabhängigkeit der Reaktionsgeschwindigkeit: Arrhenius-Beziehung Thema In diesem Versuch

Mehr

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 25/6 Dörte Hansen Seminar 1 Dissipative Kräfte I Reibung Wenn wir in der theoretischen Mechanik die Bewegung eines Körpers beschreiben wollen,

Mehr

Lineare Differentialgleichungen 1. Ordnung

Lineare Differentialgleichungen 1. Ordnung Lineare Differentialgleichungen 1. Ordnung Eine lineare Differentialgleichung 1. Ordnung hat folgende Gestalt: +f() = r(). Dabei sind f() und r() gewisse, nur von abhängige Funktionen. Wichtig: sowohl

Mehr

201 Wärmeleitfähigkeit von Gasen

201 Wärmeleitfähigkeit von Gasen 01 Wärmeleitfähigkeit von Gasen 1. Aufgaben 1.1 Messen Sie die relative Wärmeleitfähigkeit x / 0 (bezogen auf Luft bei äußerem Luftdruck) für Luft und CO in Abhängigkeit vom Druck p. Stellen Sie x / 0

Mehr

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Ü 11.1 Nachrechnung eines Otto-ergleichsprozesses (1) Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Anfangstemperatur T 1 288 K Anfangsdruck p 1 1.013 bar Maximaltemperatur

Mehr

Abb. 1: Exotherme und endotherme Reaktionen Quelle: http://www.seilnacht.com/lexikon/aktivi.htm#diagramm

Abb. 1: Exotherme und endotherme Reaktionen Quelle: http://www.seilnacht.com/lexikon/aktivi.htm#diagramm Energie bei chemischen Reaktionen Chemische Reaktionen sind Stoffumwandlungen bei denen Teilchen umgeordnet und chemische Bindungen gespalten und neu geknüpft werden, wodurch neue Stoffe mit neuen Eigenschaften

Mehr

Grundlagen der Wärmelehre

Grundlagen der Wärmelehre Ausgabe 2007-09 Grundlagen der Wärmelehre (Erläuterungen) Die Wärmelehre ist das Teilgebiet der Physik, in dem Zustandsänderungen von Körpern infolge Zufuhr oder Abgabe von Wärmeenergie und in dem Energieumwandlungen,

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 1. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 1. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 2, Teil 1 Prof. Dr. Ing. Heinz Pitsch Kapitel 2, Teil 1: Übersicht 2 Zustandsgrößen 2.1 Thermische Zustandsgrößen 2.1.1 Masse und Molzahl 2.1.2 Spezifisches

Mehr

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert. Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,

Mehr

1 Debye-Abschirmung. 1.1 Grundlagen. Φ = q r exp ( r/λ D), λ D =

1 Debye-Abschirmung. 1.1 Grundlagen. Φ = q r exp ( r/λ D), λ D = 1 Debye-Abschirmung Bringt man eine zusätzliche estladung in ein Plasma ein, so wird deren elektrisches Feld durch die Ladungen des Plasmas mit entgegengesetztem Vorzeichen abgeschirmt. Die charakteristische

Mehr