5 Kontinuierliche Schwingungssysteme

Größe: px
Ab Seite anzeigen:

Download "5 Kontinuierliche Schwingungssysteme"

Transkript

1 31 Die bisher betrachteten diskreten Schwingungssysteme bestehen aus konentrierten massebehafteten Körpern, die an diskreten Stellen über Bindungen gekoppelt sind und damit über eine endliche Zahl f von unabhängigen Bewegungsfreiheiten verfügen. Diese lassen sich durch f verallgemeinerte Koordinaten beschreiben. Bei der Modellbildung erhält man eine dem Freiheitsgrad entsprechende Zahl von gewöhnlichen Differentialgleichungen weiter Ordnung, die für kleine Auslenkungen linearisiert werden können. Zusammen mit Bedingungen für die Anfangslage und -geschwindigkeit bilden sie ein Anfangswertproblem, dessen ösung sich als Superposition von Eigenlösungen darstellen lässt. Näherungsweise können damit auch Systeme mit verteilter Massen- und Steifigkeitsbelegung wie elastische Stäbe oder Balken modelliert werden, indem man diese in endliche Abschnitte diskretisiert, die selbst unverformbar sind und sich relativ ueinander bewegen können. Die Kopplung erfolgt über geeignete Bindungen und diskrete Steifigkeiten. Eine solche Modellierung wird umso genauer, je feiner diskretisiert wird, wodurch der Freiheitsgrad f wächst. Im Grenübergang f u einer eakten Modellierung kontinuierlicher Schwinger sind die verallgemeinerten Koordinaten durch stetige Verformungsfunktionen in Abhängigkeit des Ortes und der Zeit u erseten, die gewöhnlichen Differentialgleichungen gehen in partielle Differentialgleichungen beüglich Ort und Zeit über. Zur eindeutigen Festlegung des kontinuierlichen Schwingers sind die Anfangsbedingungen für die Verformungsfunktionen um problemspeifische Randbedingungen u ergänen. Typische Vertreter für eindimensionale kontinuierliche Schwinger sind die gespannte Saite, Stäbe mit ängs- und Torsionsschwingungen sowie Balken mit Transversalschwingungen.

2 Transversalschwingungen einer Saite Annahmen vorgespanntes, fadenförmiges Kontinuum (Dichte, Querschnitt A, Vorspannkraft S) w(, t) S biegeschlaff Vernachlässigung des Eigengewichts kleine Auslenkungen w Bewegungsgleichungen Momentaufnahme für einen gegebenen Zeitpunkt t Vereinfachung für kleine Auslenkungen w : w dw d tan 1 S w dl d d S ds sin w, cos 1 dl cos d d Vernachlässigung der Verschiebung in -Richtung ẇ. 2 w(, t) t 2, w 2 w(, t) 2 eindimensionale Wellengleichung ẇ. c 2 w mit c S A

3 33 Anfangsbedingungen Festlegen der Auslenkung an allen Orten für einen bestimmten Anfangseitpunkt t age: w(,) w () Geschwindigkeit: ẇ(,) ẇ () S Randbedingungen Festlegen der Auslenkung bw. Steigung an bestimmten Orten für alle Zeiten fester Rand freier Rand

4 ongitudinalschwingungen eines Stabes Annahmen homogener Stab (Dichte, Querschnitt A, Elastiitätsmodul E) Hooke sche Geset E u(, t) Bewegungsgleichungen Momentaufnahme für einen gegebenen Zeitpunkt t u N N dn d u du u.. 2 u(, t) t 2, u 2 u(, t) 2 eindimensionale Wellengleichung u.. c 2 u mit c E Anfangsbedingungen age: Geschwindigkeit: u(,) u () u. (,) u. () Randbedingungen fester Rand freier Rand

5 Torsionsschwingungen eines Rundstabes Annahmen homogener Stab (Dichte, Querschnitt A, polares Flächenträgheitsmoment I p, Schubmodul G) (, t) Hooke sche Geset G Bewegungsgleichungen Momentaufnahme für einen gegebenen Zeitpunkt t M d d M dm.. 2 (, t) t 2, 2 (, t) 2 eindimensionale Wellengleichung.. c 2 mit c G Anfangsbedingungen age: Geschwindigkeit: (,) (). (,). () Randbedingungen fester Rand freier Rand

6 Biegeschwingungen eines Balkens Annahmen schlanker Balken h (Dichte, Querschnitt A, aiales Flächenträgheitsmoment I, Elastiitätsmodul E) w(, t) Vernachlässigung der Schubverformung (Euler-Bernoulli-Balken) Vernachlässigung des Eigengewichts kleine Auslenkungen w Bewegungsgleichungen Momentaufnahme für einen gegebenen Zeitpunkt t d Vereinfachung für kleine Auslenkungen w : w dw tan 1 d cos 1 dl d M Q w dl Q dq M dm d Vernachlässigung des Massenträgheitsmoments ẇ. 2 w(, t) t 2, w IV 4 w(, t) 4 ẇ. EI A wiv

7 37 Anfangsbedingungen age: Geschwindigkeit: w(,) w () ẇ(,) ẇ () Randbedingungen feste Einspannung gelenkige agerung freier Rand

8 38

6 Eigenlösungen der eindimensionalen Wellengleichung

6 Eigenlösungen der eindimensionalen Wellengleichung 39 Kontinuierliche Systeme lassen sich als Schwinger mit unendlich vielen Freiheitsgraden interpretieren. Daher ist ein ähnliches ösungsverhalten wie bei linearen diskreten Systemen zu erwarten, d.h. die

Mehr

9 Erzwungene Schwingungen durch verteilte Kräfte

9 Erzwungene Schwingungen durch verteilte Kräfte 57 9 Erzwungene Schwingungen durch verteilte Kräfte Wirken auf ein kontinuierliches System verteilte zeitveränderliche Kräften bzw. Momente, entstehen erzwungene Schwingungen. In diesem Fall sind die partiellen

Mehr

8 Freie Schwingungen kontinuierlicher Systeme

8 Freie Schwingungen kontinuierlicher Systeme 51 Freie Schwingungen sind Lösungen der partiellen Differentialgleichung gegebene Anfangs- und Randbedingungen. Das Vorgehen ist die eindimensionale Wellengleichung und die Balkenbiegung einheitlich und

Mehr

10 Erzwungene Schwingungen durch inhomogene Randbedingungen

10 Erzwungene Schwingungen durch inhomogene Randbedingungen 63 10 Erzwungene Schwingungen durch inhomogene Randbedingungen Schwingungen eines kontinuierlichen Systems lassen sich nicht nur durch verteilte Kräfte, sondern auch durch zeitveränderliche Bindungen an

Mehr

D. Bestle Technische Mechanik III Schwingungen und Hydromechanik

D. Bestle Technische Mechanik III Schwingungen und Hydromechanik D. Bestle Technische Mechanik III Schwingungen und Hydromechanik Arbeitsunterlagen zur Vorlesung Oktober 2009 Lehrstuhl Technische Mechanik und Fahrzeugdynamik Prof. Dr. Ing. habil. D. Bestle Prinzip der

Mehr

D. Bestle Technische Mechanik III Schwingungen und Hydromechanik

D. Bestle Technische Mechanik III Schwingungen und Hydromechanik D. Bestle Technische Mechanik III Schwingungen und Hydromechanik Arbeitsunterlagen zur Vorlesung Lehrstuhl Technische Mechanik und Fahrzeugdynamik Prof. Dr. Ing. habil. Hon. Prof. (NUST) D. Bestle 1 Inhalt

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen http://www.free background wallpaper.com/background wallpaper water.php Partielle Differentialgleichungen 1 E Partielle Differentialgleichungen Eine partielle Differentialgleichung (Abkürzung PDGL) ist

Mehr

15 Knickung. Vorüberlegung L 2. Störung durch Auslenkung. Gleichgewichtsbetrachtung L 2 M A. Auslenkmoment Rückstellmoment. L w.

15 Knickung. Vorüberlegung L 2. Störung durch Auslenkung. Gleichgewichtsbetrachtung L 2 M A. Auslenkmoment Rückstellmoment. L w. 9 5 Knickung Die bisherigen Betrachtungen führten jeweils auf einen proportionalen Zusammenhang zwischen Belastung und Verformung. Dies gilt auch für Stäbe unter Druckspannungen, die dadurch gestaucht

Mehr

4. Wellenausbreitung

4. Wellenausbreitung Motivation: Beim Stab konnten Lösungen der Form gefunden werden. u x,t = f 1 x ct f 2 x ct Diese Lösungen beschreiben die Ausbreitung von Wellen im Stab. Die Funktionen f 1 x und f 2 x werden durch die

Mehr

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte)

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 8/9 K 6. Februar 9 Klausur in Technische Mechanik III Nachname Vorname Aufgabe (5 Punkte) Der

Mehr

Lösungen der Übungsaufgaben TM III

Lösungen der Übungsaufgaben TM III L Lösungen der Übungsaufgaben TM III Methoden der Analytischen Mechanik a) z l cos x l sin cos b) W e Gl cos Sl sin cos c) S G cot cos 4 a) W e (mg 4cx)x b) x mg 4c a) x x b) W e (Mg mg sin )x m M sin

Mehr

Technische Schwingungslehre

Technische Schwingungslehre Technische Schwingungslehre Von Dipl.-Math. M. Knaebel Professor an der Fachhochschule für Technik Esslingen 5., überarbeitete und erweiterte Auflage Mit 219 Bildern, 41 Beispielen und 73 Aufgaben B. G.

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 13.,15. und 29. Mai 2009 Transversalschwingungen

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Aus diesem Ausdruck erhalten wir zwei unabhängige gewöhnliche lineare Differentialgleichungen für T und X:

Aus diesem Ausdruck erhalten wir zwei unabhängige gewöhnliche lineare Differentialgleichungen für T und X: Eindimensionale Kontinuumsschwingungen II Kontinuumsmechanik 05. Übungsblatt, WS 2012/13, S. 1 1 Balkenschwingung Wir beginnen mit der Herleitung der Bewegungsdifferentialgleichung / Feldgleichung für

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 16/17, 25.2.217 1. Aufgabe: (TM3) a g y a S v S ϕ x m P A 1111111 1111111 1111 1111 Die abgebildete homogene

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

= = > > Aufgabe 1 (6 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IV Profs. P. Eberhard / M. Hanss WS 2014/15 K 2

= = > > Aufgabe 1 (6 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IV Profs. P. Eberhard / M. Hanss WS 2014/15 K 2 Institut für Technische und Num. Mechanik Technische Mechanik IV Profs. P. Eberhard / M. Hanss WS 014/15 K 1. Februar 015 Klausur in Technische Mechanik IV Nachname, Vorname E-Mail-Adresse (Angabe freiwillig)

Mehr

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2.

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2. 4. Balken Balken sind eindimensionale Idealisierungen für Bauteile, die Längskräfte, Querkräfte und Momente übertragen können. Die Querschnittsabmessungen sind klein gegenüber der Länge. Beispiele: Brücken

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Definition. Eine partielle Differentialgleichung ist eine Dgl., in der partielle Ableitungen einer gesuchten Funktion z = z(x 1, x 2,..., x n ) mehrerer unabhängiger Variabler

Mehr

Übungsaufgaben Mathematik III MST

Übungsaufgaben Mathematik III MST Übungsaufgaben Mathematik III MST Lösungen zu Blatt Differentialgleichungen Prof. Dr. B.Grabowski Zu Aufgabe ) Zu a) lassifizieren Sie folgende Differentialgleichungen nach folgenden riterien: -Ordnung

Mehr

EINLEITUNG MAGNETSCHWEBETECHNIK

EINLEITUNG MAGNETSCHWEBETECHNIK EINLEITUNG Magnetschwebebahnen sind Transportmittel der Zukunft. Hohe Beschleunigungen und Geschwindigkeiten bedeuten eine Verbesserung der Mobilität im Transportwesen. Die Probleme dieser noch jungen

Mehr

Aufgabe 1 (7 Punkte) y x y x. Prüfungsklausur Technische Mechanik III. Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (7 Punkte) y x y x. Prüfungsklausur Technische Mechanik III. Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynaik TM III Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 3. März 08 Failiennae, Vornae Matrikel-Nuer Prüfungsklausur Technische Mechanik III Fachrichtung. Die Prüfung ufasst

Mehr

3. Erzwungene gedämpfte Schwingungen

3. Erzwungene gedämpfte Schwingungen 3. Erzwungene gedämpfte Schwingungen 3.1 Schwingungsgleichung 3.2 Unwuchtanregung 3.3 Weganregung 3.4 Komplexe Darstellung 2.3-1 3.1 Schwingungsgleichung F(t) m Bei einer erzwungenen gedämpften Schwingung

Mehr

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte)

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IIIII Profs. P. Eberhard, M. Hanss WS 114 P 1. Februar 14 Bachelor-Prüfung in Technischer Mechanik IIIII Nachname, Vorname Matr.-Nummer Fachrichtung

Mehr

2. Elastische Bettung

2. Elastische Bettung Baustatik (Master) - WS17/18 2. Elastische Bettung 2.1 Bauwerk-Baugrund-Interaktion 2.2 Steifemodul und Bettungsmodul 2.3 Differentialgleichung elastisch gebetteter Balken 2.4 Lösung der Differentialgleichung

Mehr

Mathematik Teil 2: Differentialgleichungen

Mathematik Teil 2: Differentialgleichungen Mathematik Teil 2: Differentialgleichungen M. Gutting Fakultät IV, Department Mathematik 19. Juni 2017 Natürliches Wachstum/Zerfall Wachstum/Zerfall (Zinsen, Population / Radioaktiver Zerfall) verhält

Mehr

Motivation. Differentialgleichungen der Kontinuumsmechanik. Inhalt. Modulbeschreibung

Motivation. Differentialgleichungen der Kontinuumsmechanik. Inhalt. Modulbeschreibung Motivation Differentialgleichungen der Kontinuumsmechanik Kurt Frischmuth Institut für Mathematik der Universität Rostock Die Vorlesung wird auf Wunsch der Fakultät für Maschinenbau angeboten. Sie soll

Mehr

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3)

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3) Aufgabe 1 (Seite 1 von 3) Das unten abgebildete System befindet sich im Schwerefeld (Erdbeschleunigung g). Es besteht aus einer Rolle (Masse m, Radius r), die über zwei Federn (Federsteifigkeit c) und

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Probeklausur Technische Universität München 1 Fakultät für Physik 1 Kurze Fragen [20 Punkte] Beantworten Sie folgende Fragen. Für jede richtige Antwort

Mehr

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L Physikalisches Fortgeschrittenenpraktikum Gitterschwingungen Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen Im Versuch Gitterschwingungen werden die Schwingungen von Atomen in einem

Mehr

4 Erzwungene Schwingungen konservativer Schwingungssysteme

4 Erzwungene Schwingungen konservativer Schwingungssysteme 23 4 Erzwungene Schwingungen konservativer Schwingungssysteme Die allgemeine Lösung einer inhomogenen linearen Schwingungsgleichung findet man durch Überlagerung der homogenen Lösung (freie Schwingungen)

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differentialgleichungssysteme Prof. Dr. Wandinger

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Eine Waschmaschine hat einen mit Feder und Dämpfer gelagerten Motor (Masse m), an dem ohne Unwucht die Trommel befestigt ist. Wieviel Wäsche m u kann geschleudert werden, wenn

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differenzialgleichungssysteme 5.1-1 1.1 Grundlagen

Mehr

3.3 Eindimensionale Wellengleichung

3.3 Eindimensionale Wellengleichung 3.3. Eindimensionale Wellengleichung 77 3.3 Eindimensionale Wellengleichung Die Wellengleichung lautet c 2 u(x,t) = 2 u t 2(x,t) für alle x Ω Rn, t R, wobei c > 0 eine Konstante ist. Schauen wir uns diese

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:

Mehr

Kontinuierliche Systeme und diskrete Systeme

Kontinuierliche Systeme und diskrete Systeme Kontinuierliche Systeme und diskrete Systeme home/lehre/vl-mhs-1/inhalt/folien/vorlesung/1_disk_kont_sys/deckblatt.tex Seite 1 von 24. p.1/24 Inhaltsverzeichnis Grundbegriffe ingenieurwissenschaftlicher

Mehr

11. Stabilitätsprobleme

11. Stabilitätsprobleme 11. Stabilitätsprobleme 11.1 Einführung Bisher wurden statische Systeme im stabilen Gleichgewicht betrachte (siehe Abbildung 11.1.1, links). Bei der Berechnung von Lagerkräften und - momenten, Schnittgrößen

Mehr

9 Mehrkörpersysteme. Anwendungsbeispiele

9 Mehrkörpersysteme. Anwendungsbeispiele 63 Bei vielen technischen Fragestellungen kann man die Verformungen der Maschinenteile gegenüber den durch Lager ermöglichten Bewegungen vernachlässigen. Die daraus resultierenden Modelle bezeichnet man

Mehr

Das Geheimnis. der Kaffeetasse

Das Geheimnis. der Kaffeetasse Das Geheimnis der Kaffeetasse Uttendorf 2005 Lutz Justen Überblick Der Kaffeetasseneffekt was ist das? Einige (nicht-numerische!) Experimente Modellierung: Lineare Elastizitätsgleichung Numerik: FEM Testrechnungen

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2.

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2. - 1 - Gewöhnliche Differentialgleichungen Teil I: Überblick Ein großer Teil der Grundgesetze der Phsik ist in Form von Gleichungen formuliert, in denen Ableitungen phsikalischer Größen vorkommen. Als Beispiel

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: ) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung: Bei fortgeschrittenen

Mehr

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte T1: Klassische Mechanik, SoSe2007 Prof. Dr. Jan von Delft Theresienstr. 37, Zi. 420 Dr. Vitaly N. Golovach vitaly.golovach@physik.lmu.de Endklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2007 (28.

Mehr

Wellengleichung. Johannes Wallmann. 23. Juni 2015

Wellengleichung. Johannes Wallmann. 23. Juni 2015 Wellengleichung Johannes Wallmann 23. Juni 2015 1 Einleitung Die Wellengleichung ist eine partielle Differentialgleichung zweiter Ordnung. Sie modelliert die Schwingungen eines elastischen Körpers (z.b.

Mehr

7.2 Die Wellengleichung

7.2 Die Wellengleichung 66 7 Partielle Differenzialgleichungen 7.2 Die Wellengleichung Die schwingende Saite Bei der schwingenden Saite handelt es sich um einen frei verformbaren, gewichtslosen Faden, der unter Spannung steht

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Schallgeschwindigkeit in Gasen ******

Schallgeschwindigkeit in Gasen ****** V050510 5.5.10 ****** 1 Motivation Mittels Oszilloskop wird die Zeit gemessen, die ein Schallwellenimpuls nach seiner Erzeugung m Lautsprecher bis zum Empfänger (Mikrofon) braucht. 2 Experiment Abbildung

Mehr

Euler-Bernoulli-Balken

Euler-Bernoulli-Balken Euler-Bernoulli-Balken 2 2.1 Einführende Bemerkungen Ein Balken ist als langer prismatischer Körper, der schematisch in Abb. 2.1 dargestellt ist, definiert. Die folgenden Ableitungen unterliegen hierbei

Mehr

11 Balkenbiegung Technische Mechanik Balkenbiegung

11 Balkenbiegung Technische Mechanik Balkenbiegung 11 Balkenbiegung Balkenbiegung 2 Motivation / Einführung Ziele: Berechnung der Balkendurchbiegung (Deformation) Berechnung der Schnittgrößen für statisch unbestimmte Systeme Balken Definition Stabförmig;

Mehr

Kapitel 5: Mechanische Wellen

Kapitel 5: Mechanische Wellen Kapitel 5: Mechanische Wellen 5.1 Was sind Wellen? 5.2 Beschreibung der eindimensionalen Wellenausbreitung 5.3 Harmonische Wellen 5.4 Berechnung der Ausbreitungsgeschwindigkeit 5.5 Wellen im Festkörper

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

Elastizität Hooke sches Gesetz

Elastizität Hooke sches Gesetz Elastizität Hooke sches Gesetz Im linearen (elastischen) Bereich gilt: Die Spannung ist proportional zur Dehnung F E A E l l Die Proportionalitätskonstante heißt: Elastizitätsmodul. Das makroskopische

Mehr

Aufgabe 1: (18 Punkte)

Aufgabe 1: (18 Punkte) MODULPRÜFUNG TECHNISCHE MECHANIK IV (PO 2004) VOM 26.07.2011 Seite 1 Aufgabe 1: (18 Punkte) Zwei Massenpunkte m 1 = 5 kg und m 2 = 2 kg sind durch ein dehnstarres und massenloses Seil über eine reibungsfrei

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: f = 3N) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung:

Mehr

Kapitel 5: Mechanische Wellen

Kapitel 5: Mechanische Wellen Kapitel 5: Mechanische Wellen 5.1 Was sind Wellen? 5.2 Beschreibung der eindimensionalen Wellenausbreitung 5.3 Harmonische Wellen 5.4 Berechnung der Ausbreitungsgeschwindigkeit 5.5 Wellen im Festkörper

Mehr

Erstabgabe Übung nicht abgegeben

Erstabgabe Übung nicht abgegeben Erstabgabe Übung 5 6 5 4 1 nicht abgegeben T. Kießling: Auswertung von Messungen und Fehlerrechnung - Gauß`sche Fehlerfortpflanzung, Beispiele 0.11.017 Vorlesung 06-1 Zweitabgabe Übung 4 6 5 4 1 nicht

Mehr

Die Lösungen einer autonomen Differentialgleichung zweiter Ordnung,

Die Lösungen einer autonomen Differentialgleichung zweiter Ordnung, Phasenebene Die Lösungen einer autonomen Differentialgleichung zweiter Ordnung, können als Kurven u = f (u, u ), t (u(t), v(t)), v = u, in der sogenannten Phasenebene visualisiert werden. Dabei verläuft

Mehr

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit:

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit: C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel

Mehr

Differenzialgleichungen erster Ordnung

Differenzialgleichungen erster Ordnung Differenzialgleichungen erster Ordnung Fakultät Grundlagen Mai 2011 Fakultät Grundlagen Differenzialgleichungen erster Ordnung Übersicht Grundsätzliches 1 Grundsätzliches Geometrische Deutung Numerik 2

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

Versuchsprotokoll: Modellierung molekularer Schwingungen

Versuchsprotokoll: Modellierung molekularer Schwingungen Versuchsprotokoll: Modellierung molekularer Schwingungen Teammitglieder: Nicole Schai und Cristina Mercandetti Datum: 11.12.12 Versuchsleiter: Claude Ederer 1. Einleitung Dieser Versuch befasste sich mit

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

Technische Mechanik III Übung WS 2004 / Klausur Teil 2. Linz, 21. Jänner Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift:

Technische Mechanik III Übung WS 2004 / Klausur Teil 2. Linz, 21. Jänner Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift: Technische Mechanik III Übung WS 004 / 005 Klausur Teil Institut für Robotik o. Univ.-Prof. Dr.-Ing. Hartmut Bremer Tel.: +43/73/468-9786 Fax: +43/73/468-979 bremer@mechatronik.uni-linz.ac.at Sekretariat:

Mehr

A 2. c 11. Aufgabe 1 (12 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IV Prof. Dr.-Ing. Prof. E.h. P. Eberhard SS 2010 P 1

A 2. c 11. Aufgabe 1 (12 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IV Prof. Dr.-Ing. Prof. E.h. P. Eberhard SS 2010 P 1 Institut für Technische und Num. Mechanik Technische Mechanik IV Prof. Dr.-Ing. Prof. E.h. P. Eberhard SS P Klausur/Prüfung in Technischer Mechanik IV Nachname Vorname Matr.-Nummer Fachrichtung 8. Juli

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

15 Eindimensionale Strömungen

15 Eindimensionale Strömungen 97 Durch Druckunterschiede entstehen Strömungen, die sich auf unterschiedliche Weise beschreiben lassen. Bei der Lagrange schen oder materiellen Beschreibung betrachtet man das einelne Fluidteilchen, das

Mehr

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr

Probe-Klausur Technische Mechanik B

Probe-Klausur Technische Mechanik B Haburg, den 8.. Prof. Dr.-Ing. habil. Thoas Kletschkowski Hochschule für Angewandte Wissenschaften Haburg Fakultät Technik und Inforatik Departent Fahreugtechnik und Flugeugbau Berliner Tor 9 99 Haburg

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 12 Gewöhnliche Differentialgleichungen 121 Einführende Beispiele und Grundbegriffe Beispiel 1 ( senkrechter Wurf ) v 0 Ein Flugkörper werde zum Zeitpunkt t = 0 in der Höhe s = 0 t = 0 s = 0 mit der Startgeschwindigkeit

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

5.2 Mechanische Wellen

5.2 Mechanische Wellen - 250-5.2 Mechanische Wellen 5.2.1 Lineare Kette Bereits im Kapitel Schwingungen hatten wir ein Modell diskutiert, in dem Massen durch Federn verbunden sind. Diese Schwingungen können sich auch über die

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 1.12.

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 1.12. Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik Name: Vorname(n): Matrikelnummer: Bitte... SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 1.12.217 Arbeitszeit: 15 min Aufgabe

Mehr

Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 2009 V: PD. Dr. M. Eschrig Ü: Dr. habil. W.

Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 2009 V: PD. Dr. M. Eschrig Ü: Dr. habil. W. Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 009 V: PD. Dr. M. Eschrig Ü: Dr. habil. W. Lang Lösungen der Klausur vom 4. September 009 Aufgabe : Pendelnde Hantel

Mehr

20. Partielle Differentialgleichungen Überblick

20. Partielle Differentialgleichungen Überblick - 1-0. Partielle Differentialgleichungen Überblick Partielle Differentialgleichungen (PDE = partial differential equation) sind Differentialgleichungen mit mehreren unabhängigen Variablen (und einer abhängigen

Mehr

Inhaltsverzeichnis. Vorwort. 1 Statik des starren Körpers 1

Inhaltsverzeichnis. Vorwort. 1 Statik des starren Körpers 1 Inhaltsverzeichnis Vorwort V 1 Statik des starren Körpers 1 Grundüberlegungen zu Kräften und Gleichgewicht 1 1.1 Allgemeine Überlegungen 1 1.1.1 Kraft, Schnittprinzip 1 1.1.2 Schnittbilder 1 1.1.3 Einteilung

Mehr

Inhaltsverzeichnis. 1 Fragestellungen der Dynamik... 1

Inhaltsverzeichnis. 1 Fragestellungen der Dynamik... 1 1 Fragestellungen der Dynamik... 1 2 Bewegungen ihre Ursachen und Folgen... 5 2.1 Vieles ist in Bewegung... 5 2.2 Ursachen für Bewegungen... 6 2.3 Folgen von Bewegungen... 7 2.4 Idealisierungen... 8 2.4.1

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

Differentialgleichungen sind überall!

Differentialgleichungen sind überall! Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-r.de/fakultaeten/nat Fak I/abels/Aktuelles.html Tag der Mathematik am Albrecht-Altdorfer-Gymnasium

Mehr

k = 1, 2,..., n (4.44) J k ϕ

k = 1, 2,..., n (4.44) J k ϕ 236 4 Torsionsschwinger und Längsschwinger ( J1 J2) M J M J2/ J1= 02, 10 0,5 8 1 + 6 2 max 4 5 2 10 2 bezogenes Moment 0 Bild 45 1 2 5 10 relatives Spiel ctϕ S/ M10 Maximales Moment infolge Spiel im Antrieb

Mehr

Potentielle Energie, P.d.v.K. und P.d.v.V.

Potentielle Energie, P.d.v.K. und P.d.v.V. IBSD Institut für Baustatik und Baudynamik Fachbereich Bauingenieurwesen Potentielle Energie, P.d.v.K. und P.d.v.V. Fachgebiet Baustatik 2. Februar 26 Inhaltsverzeichnis 1 Die potentielle Energie 1 1.1

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 17 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 017 Prof. Dr.-Ing.

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 8..04 Arbeitszeit: 0 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4

Mehr

Gewöhnliche Differentialgleichungen Woche 1

Gewöhnliche Differentialgleichungen Woche 1 Gewöhnliche Differentialgleichungen Woche Einführung. Modelle Eine gewöhnliche Differentialgleichung gibt eine Relation zwischen einer unbekannten Funktion und deren Ableitung(en). Nun kann man unendlich

Mehr

4.6 Schwingungen mit mehreren Freiheitsgraden

4.6 Schwingungen mit mehreren Freiheitsgraden Dieter Suter - 36 - Physik B3 4.6 Schwingungen mit mehreren Freiheitsgraden 4.6. Das Doppelpendel Wir betrachten nun nicht mehr einzelne, unabhängige harmonische Oszillatoren, sondern mehrere, die aneinander

Mehr

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 12/13, 13.02.2013 1. Aufgabe: (TM III) Um vom Boden aufzustehen, rutscht ein Mensch mit konstanter Geschwindigkeitv

Mehr

Partielle Differentialgleichungen Prüfung am

Partielle Differentialgleichungen Prüfung am Partielle Differentialgleichungen Prüfung am 27.04.2017 Name, Vorname Matrikelnummer Unterschrift Dauer: 60 Minuten. Keine Unterlagen, kein Handy/PC, kein Taschenrechner, keine Gruppenarbeit. Bitte schreiben

Mehr