Frege löst diese Probleme, indem er zusätzlich zum Bezug (Bedeutung) sprachlicher Ausdrücke den Sinn einführt.

Größe: px
Ab Seite anzeigen:

Download "Frege löst diese Probleme, indem er zusätzlich zum Bezug (Bedeutung) sprachlicher Ausdrücke den Sinn einführt."

Transkript

1 1 Vorlesung: Denken und Sprechen. Einführung in die Sprachphilosophie handout zum Verteilen am (bei der sechsten Vorlesung) Inhalt: die in der 5. Vorlesung verwendeten Transparente mit Ergänzungen Thema: Bertrand Russells Kennzeichnungstheorie, Kritik an Russell durch Peter Strawson Martine Nida-Rümelin (A) Zusammenhang zu den früheren Vorlesungen: Eine Reihe von Paradoxien ergab sich aus der Annahme, dass Namen nur den Bezug herstellen und sonst keinen Beitrag leisten zur Bedeutung des Satzes, in dem sie vorkommen. Frege löst diese Probleme, indem er zusätzlich zum Bezug (Bedeutung) sprachlicher Ausdrücke den Sinn einführt. Russell schlägt eine radikale Lösung vor: - Namen sind nur Abkürzungen von Kennzeichnungen. - Kennzeichnungen sind überhaupt keine bezugnehmenden Ausdrücke. Sie dienen nur dazu allgemeine Aussagen zu machen, in denen nicht von bestimmten Einzeldingen die Rede ist. - Zur Begründung dieser zweiten These entwickelt er eine Theorie der logischen Struktur von Sätzen, in denen Kennzeichnungen vorkommen. (B) Zu Russells Theorie der logischen Struktur von Sätzen, in denen Kennzeichnungen vorkommen Beispiel 1: (B1) Der gegenwärtige König von Frankreich ist kahlköpfig. Es scheint, dass (B1) ein Gegenbeispiel ist gegen den Satz vom ausgeschlossenen Dritten. Argument für diese These: Terminologische Vorbemerkung: Ein sprachlicher Ausdruck sei als Individuenausdruck bezeichnet, wenn er dazu dient, auf ein Individuum Bezug zu nehmen. (Manche Individuenausdrücke haben de facto keinen Bezug!) Normalerweise nimmt man an, dass Namen und Kennzeichnungen Individuenausdrücke sind in diesem Sinne. Russell leugnet beides. (1) Voraussetzung (welche Russell leugnen wird!): "Der König von Frankreich" ist ein Individuenausdruck. (2) Ist "A" ein Individuenausdruck, dann ist ein Satz der Struktur "A hat die Eigenschaft F" genau dann wahr, wenn A unter den Dingen ist, die F haben. (3) Ist "A" ein Individuenausdruck, dann ist ein Satz der Struktur "A hat die Eigenschaft F" genau dann falsch, wenn A unter den Dingen ist, die F nicht haben. (4) Der König von Frankreich ist nicht unter den Kahlköpfigen. 1

2 2 (5) Der König von Frankreich ist nicht unter denen, die nicht kahlköpfig sind. Also gilt: (6) Der Satz B1 ist nicht wahr. (wegen (1), (2) und (4)) (7) Der Satz B1 ist nicht falsch. (wegen (1), (3) und (5)) im Widerspruch zum Prinzip des ausgeschlossenen Dritten, nach dem jeder sinnvolle Satz entweder wahr oder falsch ist. Russells Lösung: Kennzeichnungen im Allgemeinen (und also auch "der König von Frankreich") sind keine Individuenterme. Russells Analyse von B1: (B1) Der gegenwärtige König von Frankreich ist kahlköpfig. (B1') Es gibt ein x, sodass gilt: x ist gegenwärtig König von Frankreich und x ist kahlköpfig und jeder der gegenwärtig König von Frankreich ist, ist mit x identisch. In formallogischer Notation: Verwendete Abkürzungen: Kö (x): x ist gegenwärtig König von Frankreich Ka (x): x ist kahlköpfig : und : oder p q : wenn p dann q (materiale Implikation, vgl. Logik-Einführung) x Φ[x] : es gibt ein x sodass Φ[x] zum Beispiel: x (F(x) G(x)) : es gibt ein x sodass gilt: x hat die Eigenschaft F und x hat die Eigenschaft G. x Φ[x] : für alle x Φ[x] Formulierung von B1' in dieser Notation: x (Kö(x) Ka(x) y(kö(y) y=x)) Das oben formulierte Problem löst sich auf durch Ablehnung der Prämisse 1. Beispiel B2: (B2) Der Morgenstern ist identisch mit dem Abendstern. (B2') Es gibt ein x, für das gilt: x ist am Morgenhimmel besser sichtbar als alle anderen Himmelskörper und x ist am Abendhimmel besser sichtbar als alle anderen Himmelskörper und jedes Objekt, das die erste Eigenschaft hat, ist mit x identisch und jedes Objekt, das die zweite Eigenschaft hat, ist mit x identisch. 2

3 3 In formallogischer Notation: M(x): x ist am Morgenhimmel besser sichtbar als alle anderen Himmelskörper A(x): x ist am Abendhimmel besser sichtbar als alle anderen Himmelskörper x (M(x) A(x) y (M(y) y=x) y (A(y) y=x)) Diese Analyse löst Freges Problem der informativen Identitätsaussagen. Der Unterschied zwischen (1) Der Morgenstern ist identisch mit dem Abendstern. und (2) Der Morgenstern ist identisch mit dem Morgenstern. wird erklärt. (2) in formallogischer Notation (man ersetzt "A" in obiger Formulierung durch "M" und lässt Überflüssiges weg): x (M(x) y (M(y) y=x)) Diese Behauptung hat weniger empirischen Gehalt als die Übersetzung von (1), - wie gewünscht. Aber: (2) ist in dieser Übersetzung nicht logisch trivial. Dies ist ein Problem dieser Analyse (vgl. die Kritik von Strawson an Russell). Diese Lösung ist verschieden von Frege's Lösung. Ein wichtiger Unterschied: nach Frege nehmen wir Bezug auf die Venus, wenn wir den Ausdruck "Abendstern" oder "Morgenstern" verwenden, nach Russell dagegen sind diese Ausdrücke nicht bezugnehmend (sie sind keine Individuenausdrücke im erklärten Sinn). Beispiel B3 (B3) Das runde Viereck ist rund. B3 ist nach Meinong wahr. (Das runde Viereck subsistiert und hat die Eigenschaft rund zu sein.) Russells Analyse: (B3') Es gibt ein x, für das gilt: x ist rund und viereckig und x ist rund und jedes Ding, das rund und viereckig ist, ist mit x identisch. V(x): x ist viereckig; R(x) : x ist rund x (R(x) V(x) V(x) y ((R(y) V(y)) y=x)) B3 ist nach dieser Analyse falsch (es gibt nichts, das zugleich rund und viereckig ist). Der Vorzug dieser Analyse gegenüber Meinongs Vorschlag: ontologische Sparsamkeit (d.h. es werden nicht mehr Objekte postuliert als nötig) 3

4 4 Beispiel B4 (B4) Das runde Viereck existiert nicht. Russells Analyse: (B4') Es gibt kein x für das gilt: x ist rund und viereckig und x ist das einzige Ding mit dieser Eigenschaft. x (R(x) V(x) y ((R(y) V(y)) y=x)) [Exkurs (motiviert durch in der Vorlesung von einer Studentin gestellte Frage) : Nach Russell ist Existenz kein Prädikat. Das heisst "A existiert" ist nicht zu formalisieren als "Ex(A)" ("A hat die Eigenschaft zu existieren"), sondern als " x x=a" ("Es gibt etwas, das mit A identisch ist.") Wer ein Existenzprädikat akzeptiert könnte den obigen Satz in einem ersten Schritt so analysieren: x (R(x) V(x) y ((R(y) V(y) x=y) Ex(x)) Für einen Philosophen, der akzeptiert, dass es Dinge gibt, die nicht existieren (d.h. dass x ( Ex(x)) wahr ist), wäre diese Analyse annehmbar. Russell dagegen müsste das letzte Konjunktionsglied ersetzen durch " y y=x" und erhielte damit eine Aussage, die auch ohne Beachtung der vorderen Konjunktionsglieder trivial falsch ist. (" x ( y y=x)" ist trivial falsch, weil jedes x mit sich selbst identisch ist.) Diese Übersetzung ist deshalb als Übersetzung von B4 nicht überzeugend.] Durch diese Analyse ist das Problem der negativen Existenzsätze gelöst. - Das Problem bestand darin, dass man auf die Sache, die nicht existiert, nicht Bezug nehmen kann, um dann von ihr zu behaupten, dass sie nicht existiert. - Nach Russell wird aber in negierten Existenzsätzen ohnehin auf nichts Bezug genommen. Man behauptet nicht von einer Sache, dass sie nicht existiert. Vielmehr behauptet man nur, dass es nichts gibt mit bestimmten Eigenschaften. Beispiel B5 (B5a) Anna glaubt, dass der Morgenstern von der Sonne beleuchtet ist. (B5b) Anna glaubt, dass der Abendstern von der Sonne beleuchtet ist. Russells Analyse von B5a: (B5a') Anna glaubt, dass es ein x gibt, für das gilt: x ist am Morgenhimmel besser sichtbar als alle anderen Himmelsobjekte und x ist von der Sonne beleuchtet und es gibt nur ein x, das am Morgenhimmel besser sichtbar ist als alle anderen Objekte. (B5b') Anna glaubt, dass es ein x gibt, für das gilt: x ist am Abendhimmel besser sichtbar als alle anderen Himmelsobjekte und x ist von der Sonne beleuchtet und es gibt nur ein x, das am Abendhimmel besser sichtbar ist als alle anderen Objekte. 4

5 5 Diese Analyse löst das Problem der intensionalen Kontexte. (1) Rätselhaft war, dass ein ursprünglich wahrer Satz durch Ersetzung eines Ausdrucks durch einen koreferentiellen Ausdruck falsch werden kann. Nach Russell kann man aber B5b nicht aus B5a gewinnen, indem man einen Ausdruck durch einen korefentiellen Ausdruck ersetzt. Der Grund: "der Abendstern" und "der Morgenstern" sind keine bezugnehmenden Ausdrücke (können damit auch nicht korefentiell sein) und kommen in einer angemessenen Analyse gar nicht mehr vor. (2) Positive Lösung: bei dieser Analyse ist klar, worin der Unterschied im Inhalt des Glaubens von Anna gemäss (B5a) und gemäss (B5b) besteht. (C) Eine kurze Darstellung der Kritik von Strawson an der Theorie von Russell Russells Grundfehler nach Strawson: Er sucht nach einem Wahrheitswert für den Satz B1, sollte aber nach den Wahrheitswerten von konkreten Behauptungen fragen, die man mittels eines gegebenen Satzes unter verschiedenen Umständen machen kann. Strawson verbindet diesen Einwand mit einer grundsätzlichen Kritik an Russells Methode. - Primäre Träger von Wahrheitswerten sind nicht Sätze, sondern konkrete Behauptungen, die jemand mithilfe eines Satzes macht. - Sätze haben nur in einem abgleiteten Sinne einen Wahrheitswert. - Ein Satz ist bei einer bestimmten Gelegenheit wahr genau dann, wenn die behauptende Äusserung des Satzes bei dieser Gelegenheit eine wahre Behauptung ist. - Nur die sogenannten ewigen Sätze haben unabhängig von der Äusserungssituation einen Wahrheitswert. - Ein Satz kann auch dann sinnvoll sein (eine Bedeutung haben), wenn er in einer gegebenen Situation nicht dazu verwendet werden kann, eine Behauptung zu machen. Beispiel dafür ist das obige Beispiel B1 ("Der gegenwärtige König von Frankreich ist kahlköpfig") - B1 ist ein sinnvoller Satz, weil klar ist unter welchen Bedingungen er dazu verwendet werden könnte, eine Behauptung zu machen (nämlich wenn Frankreich gegenwärtig eine Monarchie wäre). 2 Formulierungen des Prinzips des ausgeschlossenen Dritten (AD1) Jeder Behauptungssatz ist entweder wahr oder falsch. (AD2) Jede gelungene Behauptung ist entweder wahr oder falsch. Nach Strawson ist AD1 nicht akzeptabel: 5

6 6 Sätze haben keinen Wahrheitswert unabhängig von ihrem konkreten Gebrauch. Also muss man (AD1) umformulieren in: (AD1') Jede behauptende Äusserung eines sinnvollen Satzes ist entweder wahr oder falsch.. Aber dieses Prinzip AD1' ist falsch. Gegenbeispiel: Die behauptende Äusserung von B1 heute. Wer heute B1 behauptend äussert, dem ist es nach Strawson nicht gelungen eine Behauptung zu machen. Daher hat er nichts Wahrheitswertfähiges gesagt.. (AD2) ist annehmbar. Aber (B1) ist für dieses Prinzip kein Problem. Dass Frankreich heute eine Monarchie ist, ist nach Strawson eine Präsupposition jeder behauptenden Äusserung von B1, gehört aber nicht zum Inhalt einer solchen behauptenden Äusserung. Dabei hat Strawson den folgenden Präsuppositionsbegriff im Sinn: Die Behauptung B präsupponiert, dass q genau dann wenn gilt: B hat genau dann einen Wahrheitswert, wenn q. 6

1 Zur Erinnerung: Freges referenzielle Semantik. Christian Nimtz // 2 Das Argument vom Erkenntniswert

1 Zur Erinnerung: Freges referenzielle Semantik. Christian Nimtz  // 2 Das Argument vom Erkenntniswert Programm Christian Nimtz www.nimtz.net // lehre@nimtz.net Klassische Fragen der Sprachphilosophie Kapitel 4: Frege über Sinn und Bedeutung[ F] 1 Zur Erinnerung: Freges referenzielle Semantik 2 Das Argument

Mehr

Was kann PL? Klassische Analyse Prädikat Qualitätsanzeiger (am Prädikat) Der Weihnachtsmann existiert nicht.

Was kann PL? Klassische Analyse Prädikat Qualitätsanzeiger (am Prädikat) Der Weihnachtsmann existiert nicht. 1 Philosophisches Problem: Gibt es den Weihnachtsmann? 2 Was kann PL? 1. Die Formulierung von Thesen präzisieren, z.b. (Ü 11): Zwischen zwei Zeitpunkten liegt immer noch ein dritter wird zu x [ y [F x

Mehr

Was es gibt und wie es ist

Was es gibt und wie es ist Was es gibt und wie es ist Dritte Sitzung Existenzfragen 0. Zur Erinnerung Benjamin Schnieder Philosophisches Seminar der Universität Hamburg 0 1 Was ist die Ontologie? Platons Bart Eine Standard-Antwort

Mehr

Präsuppositionen. Vorlesung: Linguistische Pragmatik Prof. Dr. M. Krifka und PD Dr. U. Sauerland

Präsuppositionen. Vorlesung: Linguistische Pragmatik Prof. Dr. M. Krifka und PD Dr. U. Sauerland Präsuppositionen Vorlesung: Linguistische Pragmatik Prof. Dr. M. Krifka und PD Dr. U. Sauerland U. Sauerland (ZAS Berlin) Presup 1 Ling. Pragmatik 1 / 23 Einführung Ein Beispiel (1) Das Baby hat vor einer

Mehr

Wenn alle Bären pelzig sind und Ned ein Bär ist, dann ist Ned pelzig.

Wenn alle Bären pelzig sind und Ned ein Bär ist, dann ist Ned pelzig. 2.2 Logische Gesetze 19 auch, was für Sätze logisch wahr sein sollen. Technisch gesehen besteht zwar zwischen einem Schluss und einem Satz selbst dann ein deutlicher Unterschied, wenn der Satz Wenn...dann

Mehr

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 1 Vorbemerkungen Mathematische Begriffe und Argumentationsweisen sind in vielen Fällen nötig, wo man über abstrakte Objekte sprechen und

Mehr

Anselm von Canterbury

Anselm von Canterbury Anselm von Canterbury *1034 in Aosta/Piemont Ab 1060 Novize, dann Mönch der Benediktinerabtei Bec ab 1078: Abt des Klosters von Bec 1093: Erzbischof von Canterbury *1109 in Canterbury 1076 Monologion (

Mehr

Erläuterung zum Satz vom ausgeschlossenen Widerspruch

Erläuterung zum Satz vom ausgeschlossenen Widerspruch TU Dortmund, Wintersemester 2010/11 Institut für Philosophie und Politikwissenschaft C. Beisbart Aristoteles, Metaphysik Der Satz vom ausgeschlossenen Widerspruch (Buch 4/Γ; Woche 4: 8. 9.11.2010) I. Der

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Prof. Dr. Ansgar Beckermann Wintersemester 2001/2 Allgemeines vorab Wie es abläuft Vorlesung (Grundlage: Ansgar Beckermann. Einführung in die Logik. (Sammlung Göschen Bd. 2243)

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Prof. Dr. Sebastian Iwanowski GTI22 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 2: Logik, Teil 2.2: Prädikatenlogik FH Wedel Prof. Dr. Sebastian Iwanowski

Mehr

Prof. Christian Nimtz // erlangen.de. Sprachphilosophie Grundfragen und Grundprobleme

Prof. Christian Nimtz  // erlangen.de. Sprachphilosophie Grundfragen und Grundprobleme Programm des Kapitel 1 Prof. Christian Nimtz www.nimtz.net // christian.nimtz@phil.uni erlangen.de Theoretische Philosophie der Gegenwart Teil II: Sprachphilosophie 1. Sprachphilosophie Grundfragen und

Mehr

mathe plus Aussagenlogik Seite 1

mathe plus Aussagenlogik Seite 1 mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet

Mehr

1. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

1. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. Christian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 1. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 1.1: Gehen Sie die Inhalte

Mehr

Sudoku. Warum 6? Warum 6?

Sudoku. Warum 6? Warum 6? . / Sudoku Füllen Sie die leeren Felder so aus, dass in jeder Zeile, in jeder Spalte und in jedem x Kästchen alle Zahlen von bis stehen.. / Warum?. / Warum?. / Geschichte der Logik Syllogismen (I) Beginn

Mehr

y(p F x) gebunden und in den Formeln F xy

y(p F x) gebunden und in den Formeln F xy Wirkungsbereich (Skopus) eines Quantors i bzw. i nennen wir die unmittelbar auf i bzw. i folgende Formel. Wir sagen, eine IV i kommt in einer Formel A gebunden vor, wenn sie unmittelbar auf oder folgt

Mehr

19 Übersetzung umgangssprachlicher Sätze in die Sprache PL

19 Übersetzung umgangssprachlicher Sätze in die Sprache PL 19 Übersetzung umgangssprachlicher Sätze in die Sprache PL Erinnerung Man kann die logischen Eigenschaften der Sätze einer Sprache L, deren Logik wir gut verstehen, zur Beurteilung der logischen Eigenschaften

Mehr

Syntax und Semantik von PL1

Syntax und Semantik von PL1 Bromand Logik II 44 Syntax und Semantik von PL1 ç Q ist eine Wff, v eine Variable von PL1 und P ist eine der Formeln @v Q oder %v Q. Ein Satz ist eine Wff in der keine Variablen frei vorkommen. 1. Die

Mehr

Analyse ethischer Texte

Analyse ethischer Texte WEITERBILDUNGSSTUDIENGANG ANGEWANDTE ETHIK SOMMERSEMESTER 2005 Prof. Dr. Kurt Bayertz Analyse ethischer Texte 23. Juli 2005 I. Was sind Argumente? Zunächst eine allgemeine Charakterisierung von Argumenten

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren

Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren µfsr, TU Dresden Version vom 11. Oktober 2016, Fehler, Ideen, Anmerkungen und Verbesserungsvorschläge bitte an benedikt.bartsch@myfsr.de

Mehr

1 Einführung Aussagenlogik

1 Einführung Aussagenlogik 1 Einführung Aussagenlogik Denition 1. Eine Aussage ist ein Aussagesatz, der entweder wahr oder falsch ist. Welche der folgenden Sätze ist eine Aussage? 3+4=7 2*3=9 Angela Merkel ist Kanzlerin Stillgestanden!

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 Universität Hamburg Department Mathematik Boolesche Algebra Hans Joachim Oberle Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 http://www.math.uni-hamburg.de/home/oberle/vorlesungen.html

Mehr

sich die Schuhe zubinden können den Weg zum Bahnhof kennen die Quadratwurzel aus 169 kennen

sich die Schuhe zubinden können den Weg zum Bahnhof kennen die Quadratwurzel aus 169 kennen Programm Christian Nimtz www.nimtz.net // lehre@nimtz.net Grundfragen der Erkenntnistheorie Kapitel 2: Die klassische Analyse des Begriffs des Wissens 1 Varianten des Wissens 2 Was ist das Ziel der Analyse

Mehr

1 Die referenzielle Semantik und Freges Theorie des Sinns. Christian Nimtz // 2 Russells Grundideen

1 Die referenzielle Semantik und Freges Theorie des Sinns. Christian Nimtz  // 2 Russells Grundideen Programm Christian Nimtz www.nimtz.net // lehre@nimtz.net Klassische Fragen der Sprachphilosophie Kapitel 5: Russell über Kennzeichnungen 1 Die referenzielle Semantik und Freges Theorie des Sinns 3 Russells

Mehr

Klassische Aussagenlogik

Klassische Aussagenlogik Eine Einführung in die Logik Schon seit Jahrhunderten beschäftigen sich Menschen mit Logik. Die alten Griechen und nach ihnen mittelalterliche Gelehrte versuchten, Listen mit Regeln zu entwickeln, welche

Mehr

Frege und Russell über singuläre Terme

Frege und Russell über singuläre Terme Johannes Gutenberg-Universität Mainz Philosophisches Seminar Proseminar: Theoretische Philosophie II Leitung: Prof. Dr. Ralf Busse Wintersemester 2012/13 Frege und Russell über singuläre Terme Ingmar Ehler

Mehr

Metaphysik und die gegenwärtige Metaphysik. Quine über Existenz (Woche 14: )

Metaphysik und die gegenwärtige Metaphysik. Quine über Existenz (Woche 14: ) TU Dortmund, Wintersemester 2010/11 Institut für Philosophie und Politikwissenschaft C. Beisbart Aristoteles Metaphysik und die gegenwärtige Metaphysik 1. Einführung Quine über Existenz (Woche 14: 24.-25.1.2011)

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Rhetorik und Argumentationstheorie.

Rhetorik und Argumentationstheorie. Rhetorik und Argumentationstheorie 2 [frederik.gierlinger@univie.ac.at] Teil 2 Was ist ein Beweis? 2 Wichtige Grundlagen Tautologie nennt man eine zusammengesetzte Aussage, die wahr ist, unabhängig vom

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

Philosophische Semantik

Philosophische Semantik Wir behaupten, daß es möglich ist, daß zwei Sprecher genau im selben Zustand (im engen Sinne) sind, obwohl die Extension von A im Ideolekt des einen sich von der Extension von A im Ideolekt des anderen

Mehr

2 Der Beweis. Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises

2 Der Beweis. Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises 2 Der Beweis Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises Satz und Beweis Ein mathematischer Satz besteht aus einer Voraussetzung und einer Behauptung. Satz und Beweis Ein mathematischer

Mehr

Christian Nimtz // 2 Freges theoretischer Begriff der Bedeutung F. Klassische Fragen der Sprachphilosophie

Christian Nimtz  // 2 Freges theoretischer Begriff der Bedeutung F. Klassische Fragen der Sprachphilosophie Programm Christian Nimtz www.nimtz.net // lehre@nimtz.net Klassische Fragen der Sprachphilosophie 1 Zur Erinnerung: Wo wir stehen 2 Freges theoretischer Begriff der Bedeutung F Kapitel 3: Freges referezielle

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.7 200//29 :58:57 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Konvergenz einer reellen oder komplexen Folge gegen

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Paradoxien der Replikation

Paradoxien der Replikation Joachim Stiller Paradoxien der Replikation Alle Rechte vorbehalten Paradoxien Die Paradoxien (Wiki) Hier einmal Auszüge aus dem Wiki-Artikel zum Begriff Paradoxon Ein Paradox(on) (auch Paradoxie, Plural

Mehr

These der Erklärungslücke: In einem zu klärenden Sinne von Erklärung ist eine solche Erklärung im Fall von Bewusstseinsphänomenen

These der Erklärungslücke: In einem zu klärenden Sinne von Erklärung ist eine solche Erklärung im Fall von Bewusstseinsphänomenen 1 Worum es geht: Erklärung der Eigenschaften eines Gegenstandes (Makrogegenstand) aufgrund seiner internen Struktur (Mirkostruktur). Voraussetzung: Es ist in gewöhnlichen Fällen im Prinzip möglich, die

Mehr

Anselms Gottesbeweis und die Logik. und überhaupt: Beweise

Anselms Gottesbeweis und die Logik. und überhaupt: Beweise Anselms Gottesbeweis und die Logik und überhaupt: Beweise Inhalt 1) Vorbemerkungen zur Logik (und Wissenschaft) 2) Vorbemerkungen zu Gottesbeweisen und zu Anselm von Canterbury 3) Anselms Ontologisches

Mehr

Aristoteles Satz vom Widerspruch. Prof. Dr. Gregor Nickel: Philosophie der Mathematik. (Vorlesung im Sommersemester 2016)

Aristoteles Satz vom Widerspruch. Prof. Dr. Gregor Nickel: Philosophie der Mathematik. (Vorlesung im Sommersemester 2016) Aristoteles Satz vom Widerspruch Prof. Dr. Gregor Nickel: Philosophie der Mathematik (Vorlesung im Sommersemester 2016) Stand: 15.06.2016 Karsten Berg Ja, er gilt absolut! In der Logik und damit auch der

Mehr

Paradoxien der falschen Meinung in Platons "Theätet"

Paradoxien der falschen Meinung in Platons Theätet Geisteswissenschaft Anonym Paradoxien der falschen Meinung in Platons "Theätet" Essay Paradoxien der falschen Meinung in Platons Theätet Einleitung (S.1) (I) Wissen und Nichtwissen (S.1) (II) Sein und

Mehr

Wie beweise ich etwas? 9. Juli 2012

Wie beweise ich etwas? 9. Juli 2012 Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Wie beweise ich etwas? 9. Juli 2012 1 Was ist ein Beweis? 1.1 Ein Beispiel Nimm einen Stift und ein Blatt Papier und zeichne fünf

Mehr

Aussagen (und damit indirekt auch Aussagesätze) können wahr oder falsch sein. Wahr und falsch sind Wahrheitswerte von Aussagen.

Aussagen (und damit indirekt auch Aussagesätze) können wahr oder falsch sein. Wahr und falsch sind Wahrheitswerte von Aussagen. 2 Aussagenlogik (AL) 2 Aussagenlogik (AL) 2. Wahrheitsfunktionale Konnektoren [ Gamut 28-35, Partee -6 ] Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungssätze bringen das Zutreffen

Mehr

13 Übersetzung umgangssprachlicher Sätze in die Sprache AL

13 Übersetzung umgangssprachlicher Sätze in die Sprache AL 13 Übersetzung umgangssprachlicher Sätze in die Sprache AL Lässt sich die Kenntnis der logischen Eigenschaften der Sätze von AL auch zur Beurteilung umgangssprachlicher Sätze und Argumente nutzen? Grundsätzliches

Mehr

Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden:

Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden: Übungsaufgaben 1. Aufgabe 1 Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden: a. x ist eine gerade Zahl. Aussageform b. 10 ist Element der Menge A.

Mehr

Klausur zur Vorlesung Mathematische Logik

Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 13. Februar 2014 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik Musterlösung Aufgabe 1 (Aussagenlogik

Mehr

1 Aussagenlogik und Mengenlehre

1 Aussagenlogik und Mengenlehre 1 Aussagenlogik und engenlehre 1.1 engenlehre Definition (Georg Cantor): nter einer enge verstehen wir jede Zusammenfassung von bestimmten wohl unterschiedenen Objekten (m) unserer Anschauung oder unseres

Mehr

7 Gültigkeit und logische Form von Argumenten

7 Gültigkeit und logische Form von Argumenten 7 Gültigkeit und logische Form von Argumenten Zwischenresümee 1. Logik ist ein grundlegender Teil der Lehre vom richtigen Argumentieren. 2. Speziell geht es der Logik um einen spezifischen Aspekt der Güte

Mehr

Sprachspiel - Lebensform - Weltbild

Sprachspiel - Lebensform - Weltbild Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt Christian Kellner 22. Mai 2006 Bei Fragen: Gleich fragen! :) Ludwig Wittgenstein Leben Werk Sprache Einführung Realistische Semantik Sprachspiele

Mehr

Logik und Missbrauch der Logik in der Alltagssprache

Logik und Missbrauch der Logik in der Alltagssprache Logik und Missbrauch der Logik in der Alltagssprache Wie gewinnt man in Diskussionen? Carmen Kölbl SS 2004 Seminar: " Logik auf Abwegen: Irrglaube, Lüge, Täuschung" Übersicht logische Grundlagen Inferenzregeln

Mehr

Weitere Beweistechniken und aussagenlogische Modellierung

Weitere Beweistechniken und aussagenlogische Modellierung Weitere Beweistechniken und aussagenlogische Modellierung Vorlesung Logik in der Informatik, HU Berlin 2. Übungsstunde Aussagenlogische Modellierung Die Mensa versucht ständig, ihr Angebot an die Wünsche

Mehr

1. Wir gehen aus vom Anfang des Prologes des Johannes-Evangeliums:

1. Wir gehen aus vom Anfang des Prologes des Johannes-Evangeliums: Prof. Dr. Alfred Toth Der semiotische Schöpfungsprozesses 1. Wir gehen aus vom Anfang des Prologes des Johannes-Evangeliums: Darin wird folgendes berichtet: Zeile 1: Das Wort, d.h. das Zeichen, ist primordial

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

Erinnerung 1. Erinnerung 2

Erinnerung 1. Erinnerung 2 Erinnerung 1 Ein Argument ist eine Folge von Aussagesätzen, mit der der Anspruch verbunden ist, dass ein Teil dieser Sätze (die Prämissen) einen Satz der Folge (die Konklusion) in dem Sinne stützen, dass

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Komplexe Zahlen 5 Lineare Algebra 6 Lineare Programme 2 Grundlegende

Mehr

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016 Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe16 Ronja Düffel 21. März 2016 Logik und Beweise Wozu Beweise in der Informatik?... um Aussagen wie 1 Das Programm erfüllt die gewünschte Aufgabe.

Mehr

Wenn Jesse James abgedrückt hätte, wäre Bill Bullock gestorben.

Wenn Jesse James abgedrückt hätte, wäre Bill Bullock gestorben. KK5: Metaphysik 5. Fragenzettel (K) 1. Angenommen, Jesse James bedroht bei einem Banküberfall, der unblutig abläuft, den Kassierer Bill Bullock mit seinem Revolver. Betrachten Sie das kontrafaktische Konditio-

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 11 Einleitung Es wird eine 15-minütige Mikroklausur geschrieben. i) Sei D R oderd C. Wann heißt

Mehr

Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben

Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Fachbereich Mathematik Vorkurs Mathematik WS 2012/13 Dies ist eine Sammlung von Aufgaben, die hauptsächlich Mittelstufenstoff wiederholen. Dabei

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Stetige Funktionen, Binomischer Lehrsatz

Stetige Funktionen, Binomischer Lehrsatz Vorlesung 13 Stetige Funktionen, Binomischer Lehrsatz 13.1 Funktionenfolgen Wir verbinden nun den Grenzwertbegriff mit dem Funktionsbegriff. Es seien (a n ) n N eine reelle Folge und f : R R eine Funktion.

Mehr

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7 Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 29.09. - Freitag 9.10.2015 Vorlesung 2 Mengen, Zahlen, Logik Kai Rothe Technische Universität Hamburg-Harburg Mittwoch 30.09.2015 Mengen.................................

Mehr

Philosophische Semantik. SS 2009 Manuel Bremer. Vorlesung 1. Einleitung und Überblick

Philosophische Semantik. SS 2009 Manuel Bremer. Vorlesung 1. Einleitung und Überblick Philosophische Semantik SS 2009 Manuel Bremer Vorlesung 1 Einleitung und Überblick Was alles ist philosophische Semantik? 1. Verständnismöglichkeiten von philosophische Semantik 2. Die Frage nach der Bedeutung

Mehr

Brückenkurs. Beweise. Anja Haußen Brückenkurs, Seite 1/23

Brückenkurs. Beweise. Anja Haußen Brückenkurs, Seite 1/23 Brückenkurs Beweise Anja Haußen 30.09.2016 Brückenkurs, 30.09.2016 Seite 1/23 Inhalt 1 Einführung 2 Sätze 3 Beweise 4 direkter Beweis Brückenkurs, 30.09.2016 Seite 2/23 Einführung Die höchste Form des

Mehr

1 Sprechweisen und Symbole der Mathematik

1 Sprechweisen und Symbole der Mathematik 1 Sprechweisen und Symbole der Mathematik Übersicht 1.1 Junktoren......................................................... 1 1.2 Quantoren......................................................... 4 1.3

Mehr

Konvergenz, Filter und der Satz von Tychonoff

Konvergenz, Filter und der Satz von Tychonoff Abschnitt 4 Konvergenz, Filter und der Satz von Tychonoff In metrischen Räumen kann man topologische Begriffe wie Stetigkeit, Abschluss, Kompaktheit auch mit Hilfe von Konvergenz von Folgen charakterisieren.

Mehr

F u n k t i o n e n Gleichungssysteme

F u n k t i o n e n Gleichungssysteme F u n k t i o n e n Gleichungssysteme Diese Skizze ist aus Leonardo da Vincis Tagebuch aus dem Jahre 149 und zeigt wie sehr sich Leonardo für Proportionen am Menschen interessierte. Ob er den Text von

Mehr

1.2 Eigenschaften der ganzen Zahlen

1.2 Eigenschaften der ganzen Zahlen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen

Mehr

Vorlesung: Sprechen und Denken. Eine Einführung in die Sprachphilosophie Martine Nida-Rümelin München, WS 2003/2004 Dienstag, den 16.12.

Vorlesung: Sprechen und Denken. Eine Einführung in die Sprachphilosophie Martine Nida-Rümelin München, WS 2003/2004 Dienstag, den 16.12. 1 Vorlesung: Sprechen und Denken. Eine Einführung in die Sprachphilosophie Martine Nida-Rümelin München, WS 2003/2004 Dienstag, den 16.12.03 1. Teil: Referentielle und attributiver Verwendung von Kennzeichnungen

Mehr

die Klärung philosophischer Sachfragen und Geschichte der Philosophie

die Klärung philosophischer Sachfragen und Geschichte der Philosophie Programm Christian Nimtz www.nimtz.net // christian.nimtz@phil.uni erlangen.de Theoretische Philosophie der Gegenwart 1 2 3 Unser Programm in diesem Semester Einführung Man unterscheidet in der Philosophie

Mehr

3.1 Die Grenzen von AL

3.1 Die Grenzen von AL 3 Prädikatenlogik der. Stufe (PL) Teil I 3 Prädikatenlogik der. Stufe (PL) Teil I 3. Die Grenzen von AL [ Partee 95-97 ] Schluss AL- Schema Prädikatenlogische Struktur Alle Logiker sind Pedanten. φ x [

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Christian Nimtz //

Christian Nimtz  // Programm Christian Nimtz www.nimtz.net // lehre@nimtz.net Klassische Fragen der Sprachphilosophie Kapitel 10: Grice über Bedeutung 2 Grices Erklärung von Sprecherbedeutung 3 Probleme für Grices Erklärung

Mehr

Antinomien, die keine sind 1

Antinomien, die keine sind 1 Antinomien, die keine sind 1 Viktor Weichbold (2012 2014) (1) Antinomien sind logische Scheinprobleme, die durch fehlerhaften (irrationalen) Sprachgebrauch entstehen. Sie lassen sich zuverlässig vermeiden,

Mehr

Repetitionsaufgaben Termumformungen

Repetitionsaufgaben Termumformungen Kantonale Fachschaft Mathematik Repetitionsaufgaben Termumformungen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Vorbemerkung... 1 B) Lernziele... 1 C)

Mehr

Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004

Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004 Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004 In der letzten Vorlesung haben wir gesehen, wie man die einzelnen Zahlenbereiche aufbaut. Uns fehlen nur noch die reellen Zahlen (siehe

Mehr

LOGIK I (WS 2015/16) 165. Teil II. Prädikatenlogik

LOGIK I (WS 2015/16) 165. Teil II. Prädikatenlogik LOGIK I (WS 2015/16) 165 Teil II Prädikatenlogik LOGIK I (WS 2015/16) 167 Kapitel 8 Prädikatenlogische Repräsentierung In Kapitel 2 haben wir als eine Kategorie komplexer aber aussagenlogisch unzerlegbarer

Mehr

Einführung in die Mathematik (Vorkurs 1 )

Einführung in die Mathematik (Vorkurs 1 ) Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2008/09 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagen und Beweise

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

1 Geometrie - Lösungen von linearen Gleichungen

1 Geometrie - Lösungen von linearen Gleichungen Übungsmaterial Geometrie - Lösungen von linearen Gleichungen Lineare Gleichungen sind von der Form y = f(x) = 3x + oder y = g(x) = x + 3. Zwei oder mehr Gleichungen bilden ein Gleichungssystem. Ein Gleichungssystem

Mehr

Aussagenlogik-Boolesche Algebra

Aussagenlogik-Boolesche Algebra Aussagenlogik-Boolesche Algebra 1 Aussagen In der Mathematik und in der Logik werden Sätze der Umgangssprache nur unter bestimmten Bedingungen Aussagen genannt. Sätze nennt man Aussagen, wenn sie etwas

Mehr

Logik: aussagenlogische Formeln und Wahrheitstafeln

Logik: aussagenlogische Formeln und Wahrheitstafeln FH Gießen-Friedberg, Sommersemester 2010 Lösungen zu Übungsblatt 1 Diskrete Mathematik (Informatik) 7./9. April 2010 Prof. Dr. Hans-Rudolf Metz Logik: aussagenlogische Formeln und Wahrheitstafeln Aufgabe

Mehr

Prof. Dr. Tim Henning

Prof. Dr. Tim Henning Prof. Dr. Tim Henning Vorlesung Einführung in die Metaethik 127162001 Mittwoch, 11.30-13.00 Uhr M 18.11 19.10.2016 PO 09 / GymPO PO 14 / BEd 1-Fach-Bachelor: BM4 KM2 Bachelor Nebenfach (neu): KM2 KM2 Lehramt:

Mehr

Vorkurs Mathematik Logik und Beweise

Vorkurs Mathematik Logik und Beweise Vorkurs Mathematik Logik und Beweise Axel Wagner 30. September 2012 Diese Arbeit basiert in Teilen auf dem Beweis-Vortrag von Bärbel Jansen und Winnifred Wollner, in bearbeiteter Fassung von Casper Goch.

Mehr

Kapitel 1.5. Ein adäquater Kalkül der Aussagenlogik. Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls

Kapitel 1.5. Ein adäquater Kalkül der Aussagenlogik. Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Kapitel 1.5 Ein adäquater Kalkül der Aussagenlogik Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Mathematische Logik (WS 2012/13) Kapitel 1.5: Kalküle 1/30 Syntaktischer

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Descartes, Dritte Meditation

Descartes, Dritte Meditation Descartes, Dritte Meditation 1. Gewissheiten: Ich bin ein denkendes Wesen; ich habe gewisse Bewusstseinsinhalte (Empfindungen, Einbildungen); diesen Bewusstseinsinhalten muss nichts außerhalb meines Geistes

Mehr

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten:

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: Aussagen Aussagen Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: verbale Aussage formale Aussage Wahrheitswert 1) 201 ist teilbar durch 3 3 201 wahre Aussage (w.a.) 2)

Mehr

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 2 Prof. Dr. Markus Schweighofer 11.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 2.1: Behauptung:

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Identität in der Zeit II von der Substanzontologie zur Prozeßontologie

Identität in der Zeit II von der Substanzontologie zur Prozeßontologie Identität in der Zeit II von der Substanzontologie zur Prozeßontologie [Dies ist nicht-zitierfähiges Lehrmaterial!] Uwe Scheffler [Technische Universität Dresden] Juni 2013 Das Ding mit der Zeit Zeit ist

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr