Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009"

Transkript

1 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung. Welche der folgenden Aussagen sind richtig bzw. falsch? Lösung: Die Antworten lauten: a) Ja! b) Ja! a) Der Spaltenraum von A wird von den ersten r Spalten von U aufgespannt. b) Jeder Vektor y im Kern von A T steht senkrecht auf jeder Spalte von A. c) Der Kern von A T wird von den letzten n r Spalten von U aufgespannt. d) Der Spaltenraum von A T wird von den ersten r Spalten von V aufgespannt. e) Der Kern von A wird von den letzten m r Spalten von V aufgespannt. c) Nein! Der Kern von A T wird von den letzten m r Spalten von U aufgespannt. d) Ja! e) Nein! Der Kern von A wird von den letzten n r Spalten von V aufgespannt. Aufgabe 36: Thema: Zu einer Matrix assoziierte Unterräume Sei A eine m n Matrix mit Rang r. Welche der folgenden Aussagen sind richtig bzw. falsch? a) Es gilt dim BildA = r und dim KerA = m r. b) Es gilt dim BildA T = r und dim KerA T = n r. c) Es gilt dim BildA T = r und dim KerA T = m r. d) Es gilt BildA = (KerA T ) und BildA T = (KerA). e) Das lineare Gleichungssystem Ax = b ist genau dann lösbar, wenn aus A T y = 0 stets b T y = 0 folgt.

2 Lösung: Die Antworten lauten: a) Nein! dim KerA = n r b) Nein! dim KerA T = m r c) Ja! d) Ja! e) Ja! Aufgabe 37: Thema: Eigenschaften schiefsymmetrischer Matrizen Sei A eine n n Matrix mit A T = A, d. h. A ist schiefsymmetrisch. Welche Aussagen sind richtig? a) Die Spur von A, tr A, ist gleich null. b) Es gilt det A = 0 für n = 2. c) Es gilt det A = 0 für n = 3. d) Es gilt Ax x = 0 für alle x R n. e) Wenn λ R ein Eigenwert von A ist, dann folgt λ = 0. Lösung: Die Antworten lauten: f) exp A ist eine orthogonale Matrix. g) Es gilt det (exp A) = exp (tra) = e 0 = 1. a) Ja! b) Nein! Beispiel A = ( ) c) Ja! d) Ja! e) Ja! f) Ja! g) Ja!

3 Aufgabe 38: Thema: Orthonormalsystem und orthogonale Projektion Sei V ein euklidischer Raum und U = span{u 1,..., u n } ein Unterraum, wobei {u 1,..., u n } ein Orthonormalsystem sei. Welche Aussagen sind richtig? a) Wenn v V und v u i = 0 für i = 1,..., n, dann ist v = 0. b) Die orthogonale Projektion P v U eines Vektors v V ist eindeutig bestimmt und es gilt: P v = n i=1 (v u i)u i. c) Für v, w V gilt: P v P w = n i=1 (v u i)(w u i ). d) Wenn v V, dann gilt: v 2 = n i=1 (v u i) 2. e) Wenn v U, dann gilt: v 2 = n i=1 (v u i) 2. Lösung: Die Antworten lauten: a) Nein! b) Ja! c) Ja! d) Nein! e) Ja! Aufgabe 39: Thema: Determinate, Eigenwerte, definite Matrizen Welche Aussagen sind richtig? a) Eine n n Matrix A ist genau dann negativ definit, wenn A nur negative Eigenwerte hat. a 11 a 12 a 13 b) Die 3 3 Matrix A = a 21 a 22 a 23 sei positiv definit, dann a 31 a 32 a 33 gilt: ( ) a11 a a 11 > 0, det 12 > 0, det (A) > 0. a 21 a 22 c) Für n n Matrizen A, B gilt: det (A + B) = det A + det B. Lösung: Die Antworten lauten: a) Ja! b) Ja! c) Nein!

4 Aufgabe 40: Thema: Normalengleichungssystem Sei A eine m n Matrix. Betrachten Sie das Normalengleichungssystem A T Ax = A T b für b R m. Welche Aussagen sind richtig? a) Das Normalengleichungssystem ist für alle b R m lösbar. Lösung: Die Antworten lauten: a) Ja! b) Nein! b) Für b = 0 hat das System stets nur die triviale Lösung. c) Ax ist eindeutig bestimmt, auch wenn es mehrere Lösungen x R n gibt. d) Gilt Rang von A gleich n, dann ist A T A positiv definit. e) Ist A eine symmetrische n n Matrix, dann ist jede Lösung des Systems auch Lösung von Ax = b. c) Ja! Seien x 1 und x 2 Lösungen der Gleichung A T Ax = A T b. Dann folgt daraus d) Ja! Rang von A gleich n, daraus folgt: A T A(x 1 x 2 ) = 0 (x 1 x 2 )A T A(x 1 x 2 ) = 0 A(x 1 x 2 ) 2 = 0 A(x 1 x 2 ) = 0 Ax 1 = Ax 2 Ax = 0 x = 0. A T Ax x = Ax 2 0 für x 0 Zudem wissen wir, dass die Matrix A T A positiv semidefinit ist und somit ist A T A positiv definit. e) Nein! Beispiel: A sei die Nullmatrix.

5 Aufgabe 41: Thema: Positiv definite Matrizen Sei A eine symmetrische n n Matrix. Welche Aussagen sind richtig? a) Gilt det A > 0, dann ist A positiv definit. b) Ist A positiv definit, dann gilt det A > 0. c) Hat das homogene System Ax = 0 eine nichttriviale Lösung, dann ist A nicht positiv definit. d) Ist A positiv definit, dann ist das Gleichungssystem Ax = b für alle b R n eindeutig lösbar. Lösung: Die Antworten lauten: ( ) 1 0 a) Nein! Beispiel: A = 0 1 b) Ja! Da die Matrix A positiv definit ist, sind alle ihre Eigenwerte größer Null. Da die Determinante von A sich schreiben läßt als das Produkt der Eigenwerte von A ist auch die Determinante größer Null. c) Ja! Wenn das homogene System Ax = 0 eine nicht triviale Lösung hat, sind die Spalten von A linear abhängig. Daraus folgt, dass die Determinante von A gleich Null ist und somit muss mindestens ein Eigenwert von A gleich Null sein, so dass die Matrix nicht positiv definit sein kann. d) Ja! Wenn die Matrix A positiv definit ist, gilt det A 0. Daraus folgt A ist invertierbar und somit ist das Gleichungssystem eindeutlich lösbar. Aufgabe 42: Thema: Offene und abgeschlossene Mengen in R Welche Mengen sind offen in R? a) {x R x 2 > 5} b) {x R x 2 < 5} c) {1, 2, 3,... } Welche Mengen sind abgeschlossen in R? Lösung: Die Antworten lauten: a) Ja! d) {x R x 2 5} e) {x R x 2 5} f) {1, 2, 3,...} b) Nein! Die Menge läßt sich auch schreiben als [0, 5).

6 c) Nein! d) Ja! e) Ja! f) Ja! Aufgabe 43: Thema: Differenzierbarkeit Lösung: a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist? b) Wie hängen Differenzierbarkeit und Stetigkeit zusammen? c) Welche Voraussetzung an die partiellen Ableitungen impliziert die Differenzierbarkeit? d) Welche geometrische Interpretation hat der Gradient von f an der Stelle x 0? e) Wie berechnet man den Gradienten? f) Was besagt der Satz von Schwarz? g) Was ist eine Richtungsableitung? h) Was ist ein lokales Minimum bzw. ein lokales Maximum einer Funktion vom R n nach R? i) Welches Gleichungssystem muss man lösen, um solche lokalen Extremwerte zu finden? j) Was ist eine positiv (bzw. negativ) definite (n n)-matrix? k) Was ist die Hesse-Matrix einer Funktion f : R n R? l) Was folgt, wenn der Gradient an einer Stelle x 0 im Innern des Definitionsbereiches verschwindet und die Hessematrix dort positiv definit ist? Was gilt, wenn sie dort negativ definit ist? a) Eine Funktion f : R n R heißt differenzierbar an der Stelle x 0, falls es eine lineare Abbildung a : R n R gibt, so dass wobei o : R n R mit o(h) h f(x) = f(x 0 ) + a(x x 0 ) + o(x x 0 ), h 0 0. b) Differenzierbare Funktionen sind stetig, aber nicht umgekehrt. Bsp: f : R R, x x ist stetig an x 0 = 0, aber nicht differenzierbar an der Stelle.

7 c) Wenn alle partiellen Ableitungen existieren und stetig sind, dann ist f differenzierbar. d) Die Richtung des Gradienten von f an der Stelle x 0 ist die Richtung des steilsten Anstieges von f, und seine Länge ist dieser steilste Anstieg. ( ) T f e) grad f = x 1, f x 2,, f x n. f) Satz von Schwarz: Sei f : R n R zweimal stetig differenzierbar, dann gilt für alle v, w R n : D 2 f(x)(v, w) = D 2 f(x)(w, v). D.h. die Bilinearform D 2 f(x) ist symmetrisch und damit ist dann auch D 2 f(x) eine symmetrische Matrix: 2 xi xj f(x) = 2 xj xi f(x). g) Sei v ein Vektor; Die Richtungsableitung v f(x 0 ) eine Funktion f an der Stelle x 0 ist die Variation dieser Funktion in der Richtung v. v f(x 0 ) = t f(x 0 + tv) t=0 = grad f(x 0 ) v. Man bezeichnet auch die partielle Ableitung als Richtungsableitung. h) Ein lokales Minimum einer Funktion f ist ein Punkt x 0, zu dem es eine Umgebung V (x 0 ) gibt mit der Bedingung x V (x 0 ) : f(x) f(x 0 ). Ebenso ist ein lokales Maximum einer Funktion f ein Punkt x 0, zu dem es eine Umgebung V (x 0 ) gibt mit der Bedingung x V (x 0 ) : f(x) f(x 0 ) i) Um solche lokalen Extremwert zu finden, sucht man nach kritischen Punkten, das heißt, man löst die Gleichung f(x) = 0. Dann ist zu entscheiden, ob es sich um einen Sattelpunkt oder ein lokales Extremum handelt. j) Eine symmetrische Matrix A heißt positiv definit, falls die Eigenwerte von A alle positiv sind. Eine symmetrische Matrix A heißt negativ definit, falls die Eigenwerte von A alle negativ sind. k) Die Hesse-Matrix von f ist die die Ableitung des Gradienten dieser Funktion. ( ) f(x) D 2 f(x) = xj xi l) Wenn der Gradient an einer Stelle x 0 im Innern des Definitionsbereiches einer Funktion f verschwindet und die Hessematrix dort positiv definit ist, dann ist f ein lokales Minimum, wenn die Hessematrix dort statt dessen negativ definit ist, ist der Punkt ein lokales Maximum. i,j

8 Aufgabe 44: Für welche α R sind die folgenden Matrizen positiv (bzw. negativ) definit: a) A := ( α) b) c) d) B := C := ( ) α 4 4 2α ( ) 1 α α 1 2α 2 0 α D := α 0 1 Tipp: Falls x 2 + px + q = 0, so gilt für die beiden Lösungen x 1 und x 2, dass x 1 + x 2 = p x 1 x 2 = q Lösung: a) Für α < 0 ist A positiv definit, für α > 0 negativ definit. b) Das charakteristische Polynom ist in dem Fall λ 2 3αλ + 2α 2 16 = 0 Seien λ 1 und λ 2 die Eigenwerte von B. Sie sind Lösungen der oberen Gleichung, und es ist dann klar, daß { λ 1 + λ 2 = 3α λ 1 λ 2 = 2α 2 16 B ist positiv definit, wenn λ 1 > 0 und λ 2 > 0, das heißt (α 2 8) > 0 und α > 0, also wenn α ] 8, + [. B ist negativ definit, wenn λ 1 < 0 und λ 2 < 0, das heißt (α 2 8) > 0 und α < 0, also wenn α ], 8[.

9 c) Das charakteristische Polynom ist in dem Fall λ 2 2λ + 1 α 2 = 0 Seien λ 1 und λ 2 die Eigenwerte von C. Sie sind Lösungen der oberen Gleichung, und es ist dann klar daß { λ 1 + λ 2 = 2 λ 1 λ 2 = 1 α 2 (1) C ist positiv definit, wenn λ 1 > 0 und λ 2 > 0, das heißt (1 α 2 ) > 0 (wir haben schon λ 1 + λ 2 = 2) und α ] 1, +1[. C ist negativ definit, wenn λ 1 < 0 und λ 2 < 0, das ist unmöglich weil λ 1 +λ 2 = 2 und dann ist C nie negativ definit. d) Das charakteristische Polynom ist in dem Fall (2α 2 λ)(2 λ)(1 λ) (2 λ)α 2 = 0 (2) (2 λ) ( λ 2 (2α 2 + 1)λ + α 2) = 0 (3) { λ 3 = 2 (4) λ 1, λ2 lösen λ 2 (2α 2 + 1)λ + α 2 = 0 Wir haben dann { λ 1 + λ 2 = 2α λ 1 λ 2 = α 2 D ist positiv definit, wenn λ 1 > 0 und λ 2 > 0, das heißt α 0. Wegen λ 3 = 2 > 0 ist D nie negativ definit.as ist unmöglich weil λ 1 + λ 2 > 0. Aufgabe 45: Thema: Differenzierbarkeit bei vektorwertigen Funktionen Lösung: a) Wie ist Differenzierbarkeit für Funktionen von R n nach R m definiert? b) Nennen Sie ein hinreichendes Kriterium für Differenzierbarkeit! c) Was versteht man unter der Jacobimatrix einer differenzierbaren Abbildung an einer Stelle x 0? d) Was besagt die mehrdimensionale Kettenregel? e) Sind differenzierbare Abbildungen immer stetig? f) Wie sind Polarkoordinaten im R 2 definiert? g) Was sind Kugel-, was Zylinderkoordinaten?

10 a) Eine Funktion f : R n R m heißt differenzierbar in einem Punkt x 0 R n, falls es eine lineare Abblidung a : R n R m gibt, so dass wobei o : R n R m mit o(h) h f(x) = f(x 0 ) + a(x x 0 ) + o(x x 0 ), h 0 0. b) f ist differenzierbar genau dann wenn f partiell differenzierbar nach alle Variablen ist und alle partielle Ableitungen stetig sind. c) Die Jacobimatrix einer differenzierbaren Abbildung an einer Stelle x 0 ist die Darstellung von Df(x 0 ) in Matrixform. ( ) Df(x 0 ) = f i (x 0 ) xj d) Sei g : R p R n und f : R n R m, D(f g)(x) = (Df) (g(x)) (Dg(x)) Bemerkung: Dg ist eine (n p) Matrix, Df ist eine (m n) Matrix, und D(f g) ist eine (m p) Matrix. f 1 f 1 f x 1 x 2 1 g 1 g 1 g x n x 1 x 2 1 x p f 2 f 2 f x 1 x 2 2 g x n 2 g 2 g x 1 x 2 2 x p Df =, Dg = f m g x 2 n x 2 f m x 1 f m x n e) Ja, differenzierbare Abbildungen sind immer stetig. f) Definition von Polarkoordinaten im R 2 : Sei M ein Punkt im R 2 mit Koordinaten (x, y) im kanonischen Koordinatensystem. Man nennt r = x 2 + y 2 den Abstand zwischen M und dem Ursprungspunkt O = (0, 0) von R 2, und θ den Winkel zwischen die x Achse und OM. Die Polarkoordinaten von M sind (r, θ), ihre Verbindung mit den kartesischen Kordinaten von M ist { x = r cos(θ) y = r sin(θ) g) Definition von Zylinderkoordinaten im R 3 : Sei M ein Punkt im R 3 mit Koordinaten (x, y, z) im kanonischen Koordinatsystem. Man nennt r = x 2 + y 2 die Abstand zwischen der Projektion N von M auf den (x, y)-ebene und dem Ursprungspunkt O = (0, 0, 0) von R 3, und θ den Winkel zwischen der x Achse und ON. Die Zylinderkoordinaten von M sind (r, θ, z) und ihre Verbindung mit den kartesische Kordinate von M ist x = r cos(θ) y = r sin(θ) z = z i,j g n x 1 g n x p

11 Definition von Kugelkoordinaten im R 3 : Sei M ein Punkt im R 3 mit Koordinaten (x, y, z) im kanonischen Koordinatensystem. Man nennt r = x2 + y 2 + z 2 den Abstand zwischen M und dem Ursprungspunkt O = (0, 0, 0) von R 3, N die Projektion von M auf den (x, y) Achse, θ den Winkel zwischen x-achse und ON, und φ den Winkel zwischen den y-achse und OM. Die Kugelkoordinaten von M sind (r, φ, θ) und ihre Verbindung mit den kartesischen Kordinaten von M ist x = r sin(φ) cos(θ) y z = r sin(φ) sin(θ) = r cos(φ) Aufgabe 46: Geben Sie den Satz von Gauß an Lösung: a) einmal mit Differentialoperatoren und b) und einmal mit ausgeschriebenen partiellen Ableitungen und ausgeschriebenem Skalarprodukt. a) Sei Ω R n eine beschränkte, offene Menge und Ω sein Rand, unter Voraussetzung daß es eine glatte Fläche ist; (in dem Sinn, daß der Rand Ω eine lokale, Stetig differenzierbare Parametrisierung besitzt). Wir bezeichnen mit N(x) die äußere Normale auf Ω, dann gilt für ein stetig differenzierbares Vektorfeld V (x) auf Ω div (V (x)) dx = V (x) N(x)da b) Die Gleichung ist explizit ( n ) V i (x) dx = x i Ω Ω i=1 Ω Ω ( n ) V i (x)n i (x) da wobei V (x) = (V 1 (x), V 2 (x),, V n (x)) and N(x) = (N 1 (x), N 2 (x),, N n (x)). Aufgabe 47: Geben Sie die Formel für die Integration einer Funktion f : R 2 R über einer Kurve γ : [0, 1] R 2 an. Lösung: Die Formel für die Integration der Funktion f : R 2 R über eine stetige differenzierbare Kurve γ : [0, 1] R 2 ist. 1 fdl = f(γ(t)) γ(t) dt γ 0 Aufgabe 48: Geben Sie das Flächenelement bei der Integration über eine Graphenfläche g : [0, 1] 2 R an. Lösung: Laut Skript ist das Flächenelement bei der Integration über eine Graphenfläche g : [0, 1] R 2 gegeben durch 1 + g 2. i=1

12 Aufgabe 49: a) Was ist die Definition einer orthogonalen linearen Abbildung f : R n R n? Lösung: b) Wann ist eine Matrix A R n,n orthogonal? a) Eine orthogonale lineare Abbildung f : R n R n ist eine längentreue Abbildung ( f(x) = x für alle x R n ). b) Eine Matrix A R n,n ist orthogonal, falls A 1 = A T. Aufgabe 50: Geben Sie die Formel der Taylorentwicklung einer Funktion f : R n R bis zur Ordnung 2 an. Lösung: Die Formel der Taylorentwicklung einer Funktion f : R n R an der Stelle x 0 bis zur Ordnung 2 lautet: f(x) = f(x 0 ) + grad f(x 0 ) (x x 0 ) wobei D 2 f die Hesse-Matrix ist. ( D 2 f(x 0 )(x x 0 ) ) (x x 0 ) + O( x x 0 3 ) Frohe Festtage!

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

5.10. Mehrdimensionale Extrema und Sattelpunkte

5.10. Mehrdimensionale Extrema und Sattelpunkte 5.1. Mehrdimensionale Extrema und Sattelpunkte Zur Erinnerung: Eine Funktion f von einer Teilmenge A des R n nach R hat im Punkt a ein (strenges) globales Maximum, falls f( x ) f( a ) (bzw. f( x ) < f(

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Quadratische Formen und Definitheit

Quadratische Formen und Definitheit Universität Basel Wirtschaftswissenschaftliches Zentrum Quadratische Formen und Definitheit Dr. Thomas Zehrt Inhalt: 1. Quadratische Formen 2. Quadratische Approximation von Funktionen 3. Definitheit von

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

Übungen zur Analysis II Blatt 27 - Lösungen

Übungen zur Analysis II Blatt 27 - Lösungen Prof. Dr. Torsten Wedhorn SoSe 22 Daniel Wortmann Übungen zur Analysis II Blatt 27 - Lösungen Aufgabe 5: 6+6+6* Punkte Bestimme alle lokalen Extrema der folgenden Funktionen: a b c* f : R 3 R g : R 2 R

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

Wirtschaftsmathematik Formelsammlung

Wirtschaftsmathematik Formelsammlung Wirtschaftsmathematik Formelsammlung Binomische Formeln Stand März 2015 (a + b) 2 = a 2 +2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) (a b) =a 2 b 2 Fakultät (Faktorielle) n! =1 2 3 4 (n 1) n Intervalle Notation

Mehr

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R, B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema In diesem Kapitel befassen wir uns mit der Ableitung von Funktionen f : R m R n. Allein die Schreibweise

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Kritischer Punkt. Kritischer Punkt 1-1

Kritischer Punkt. Kritischer Punkt 1-1 Kritischer Punkt Für eine skalare Funktion f bezeichnet man x als kritischen Punkt, wenn grad f (x) = (0,..., 0)textt. Ist f zweimal stetig differenzierbar, so wird der Typ des kritischen Punktes, d.h.

Mehr

Extrema von Funktionen mit zwei Variablen

Extrema von Funktionen mit zwei Variablen Extrema von Funktionen mit zwei Variablen Es gilt der Satz: Ist an einer Stelle x,y ) f x x,y ) = und f y x,y ) = und besteht außerdem die Ungleichung f xx x,y )f yy x,y ) f xy x,y ) >, so liegt an dieser

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW Universität Bonn, Institut für Angewandte Mathematik Dr. Antje Kiesel WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW 08.03.2013 Matrikelnummer Platz Name Vorname 1 2 3 4 5 6

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher

Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher Technische Universität Chemnitz 1. Juli 20 Fakultät für Mathematik Höhere Mathematik I.2 Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher 1. Durch ein

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Lösungsskizzen zur Klausur

Lösungsskizzen zur Klausur sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h.

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h. Lineare Abbildungen Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls (1) u, v V : f( u + v) = f( u) + f( v). (2) v V α K : f(α v) = αf( v).

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

40 Lokale Extrema und Taylor-Formel

40 Lokale Extrema und Taylor-Formel 198 VI. Differentialrechnung in mehreren Veränderlichen 40 Lokale Extrema und Taylor-Formel Lernziele: Resultate: Satz von Taylor und Kriterien für lokale Extrema Methoden aus der linearen Algebra Kompetenzen:

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012 Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.0 Aufgabe : Entscheiden Sie in dieser Aufgabe, ob die Aussagen wahr oder falsch sind. Begründungen sind nicht erforderlich. Ein korrekt gesetztes

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des

Mehr

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1 Aufgabe. Bestimmen Sie das Exponential expa) der Matrix ) 5 6 A = Mat, R). 4. Wir bestimmen das charakterische Polynom f A t) = t t = t )t + ). ). Eigenvektor zu EW ist v = ). Eigenvektor zu EW ist v =

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Computer Vision SS 2011. Skript

Computer Vision SS 2011. Skript Computer Vision SS 211 Skript (Work in Progress) Simon Hawe & Martin Kleinsteuber Skript: Manuel Wolf Inhaltsverzeichnis 1 Einführung 1 1.1 Was ist ein Bild?................................. 1 1.2 Wie

Mehr

Analysis II WS 11/12 Serie 9 Musterlösung

Analysis II WS 11/12 Serie 9 Musterlösung Analysis II WS / Serie 9 Musterlösung Aufgabe Bestimmen Sie die kritischen Punkte und die lokalen Extrema der folgenden Funktionen f : R R: a fx, y = x + y xy b fx, y = cos x cos y Entscheiden Sie bei

Mehr

Analysis II. Vorlesung 48. Die Hesse-Form

Analysis II. Vorlesung 48. Die Hesse-Form Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 48 Die Hesse-Form Wir sind natürlich auch an hinreichenden Kriterien für das Vorliegen von lokalen Extrema interessiert. Wie schon im eindimensionalen

Mehr

1. Klausur. für bau immo tpbau

1. Klausur. für bau immo tpbau 1. Klausur Höhere Mathematik I/II für bau immo tpbau Wichtige Hinweise Die Bearbeitungszeit beträgt 120 Minuten. Verlangt und gewertet werden alle 6 Aufgaben. Bei Aufgabe 1 2 sind alle Lösungswege und

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung

Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung Jörn Loviscach Versionsstand: 29. Juni 2009, 18:41 1 Partielle Ableitungen, Gradient Die Ableitung einer Funktion f an einer

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Höhere Mathematik III für Wirtschaftsinformatiker

Höhere Mathematik III für Wirtschaftsinformatiker TU Ilmenau Institut für Mathematik Prof. Dr. S. Vogel Höhere Mathematik III für Wirtschaftsinformatiker Funktionen von mehreren Variablen. Grenzwerte und Stetigkeit Betrachtet werden Funktionen f : D f

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

26. Höhere Ableitungen

26. Höhere Ableitungen 26. Höhere Ableitungen 331 26. Höhere Ableitungen Im letzten Kapitel haben wir gesehen, wie man für Abbildungen zwischen mehrdimensionalen Räumen das Konzept der Differenzierbarkeit definieren und für

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01 Kapitel Komplexe Zahlen Motivation: die Gleichung x = hat offensichtlich keine reellen Lösungen, da x 0 für jedes reelle x gilt Um auch diese Gleichung lösen zu können, muß man neue Zahlen einführen: die

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? 1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

6 Symmetrische und hermitesche Matrizen

6 Symmetrische und hermitesche Matrizen $Id: quadrat.tex,v.0 0/06/9 :47:4 hk Exp $ $Id: orthogonal.tex,v.4 0/06/9 3:46:46 hk Exp $ 6 Symmetrische und hermitesche Matrizen 6.3 Quadratische Funktionen und die Hauptachsentransformation Wir sind

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

1. Methode der Finiten Elemente

1. Methode der Finiten Elemente 1. Methode der Finiten Elemente 1.1 Innenraumprobleme 1.2 Außenraumprobleme 1.3 Analysen 1.4 Bewertung Prof. Dr. Wandinger 5. Numerische Methoden Akustik 5.1-1 1.1 Innenraumprobleme 1.1.1 Schwache Formulierung

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

Lineare Algebra I: Eine Landkarte

Lineare Algebra I: Eine Landkarte Bild F Algebra I: Eine Landkarte Faser Versuch einer Übersicht der Themen und Zusammenhänge der n Algebra 1. 1 Algebra I: Bild F Faser Sei B Basis von V. Jedes v V läßt sich eindeutig aus den Basisvektoren

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R.

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R. Übung 6 1) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 + bx 2 + c mit a, b, c R und nennen diesen V. Die Vektoren f 1 (x) = 2x 4 + 2x 2 + 2 und f 2 (x) = 3x 4 + x 2 + 4 sind in diesem Vektorraum

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

Übungen zu Funktionen mehrerer Veränderlicher. Lösungen zu Übung Betrachten Sie die durch. y 1 + x 2. z = gegebene Fläche.

Übungen zu Funktionen mehrerer Veränderlicher. Lösungen zu Übung Betrachten Sie die durch. y 1 + x 2. z = gegebene Fläche. Übungen zu Funktionen mehrerer Veränderlicher 5.1 Betrachten Sie die durch Lösungen zu Übung 5 gegebene Fläche. z = y 1 + x 2 (a) Zeichnen Sie die Höhenlinien in ein Koordinatensystem. (b) Veranschaulichen

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr