Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009"

Transkript

1 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung. Welche der folgenden Aussagen sind richtig bzw. falsch? Lösung: Die Antworten lauten: a) Ja! b) Ja! a) Der Spaltenraum von A wird von den ersten r Spalten von U aufgespannt. b) Jeder Vektor y im Kern von A T steht senkrecht auf jeder Spalte von A. c) Der Kern von A T wird von den letzten n r Spalten von U aufgespannt. d) Der Spaltenraum von A T wird von den ersten r Spalten von V aufgespannt. e) Der Kern von A wird von den letzten m r Spalten von V aufgespannt. c) Nein! Der Kern von A T wird von den letzten m r Spalten von U aufgespannt. d) Ja! e) Nein! Der Kern von A wird von den letzten n r Spalten von V aufgespannt. Aufgabe 36: Thema: Zu einer Matrix assoziierte Unterräume Sei A eine m n Matrix mit Rang r. Welche der folgenden Aussagen sind richtig bzw. falsch? a) Es gilt dim BildA = r und dim KerA = m r. b) Es gilt dim BildA T = r und dim KerA T = n r. c) Es gilt dim BildA T = r und dim KerA T = m r. d) Es gilt BildA = (KerA T ) und BildA T = (KerA). e) Das lineare Gleichungssystem Ax = b ist genau dann lösbar, wenn aus A T y = 0 stets b T y = 0 folgt.

2 Lösung: Die Antworten lauten: a) Nein! dim KerA = n r b) Nein! dim KerA T = m r c) Ja! d) Ja! e) Ja! Aufgabe 37: Thema: Eigenschaften schiefsymmetrischer Matrizen Sei A eine n n Matrix mit A T = A, d. h. A ist schiefsymmetrisch. Welche Aussagen sind richtig? a) Die Spur von A, tr A, ist gleich null. b) Es gilt det A = 0 für n = 2. c) Es gilt det A = 0 für n = 3. d) Es gilt Ax x = 0 für alle x R n. e) Wenn λ R ein Eigenwert von A ist, dann folgt λ = 0. Lösung: Die Antworten lauten: f) exp A ist eine orthogonale Matrix. g) Es gilt det (exp A) = exp (tra) = e 0 = 1. a) Ja! b) Nein! Beispiel A = ( ) c) Ja! d) Ja! e) Ja! f) Ja! g) Ja!

3 Aufgabe 38: Thema: Orthonormalsystem und orthogonale Projektion Sei V ein euklidischer Raum und U = span{u 1,..., u n } ein Unterraum, wobei {u 1,..., u n } ein Orthonormalsystem sei. Welche Aussagen sind richtig? a) Wenn v V und v u i = 0 für i = 1,..., n, dann ist v = 0. b) Die orthogonale Projektion P v U eines Vektors v V ist eindeutig bestimmt und es gilt: P v = n i=1 (v u i)u i. c) Für v, w V gilt: P v P w = n i=1 (v u i)(w u i ). d) Wenn v V, dann gilt: v 2 = n i=1 (v u i) 2. e) Wenn v U, dann gilt: v 2 = n i=1 (v u i) 2. Lösung: Die Antworten lauten: a) Nein! b) Ja! c) Ja! d) Nein! e) Ja! Aufgabe 39: Thema: Determinate, Eigenwerte, definite Matrizen Welche Aussagen sind richtig? a) Eine n n Matrix A ist genau dann negativ definit, wenn A nur negative Eigenwerte hat. a 11 a 12 a 13 b) Die 3 3 Matrix A = a 21 a 22 a 23 sei positiv definit, dann a 31 a 32 a 33 gilt: ( ) a11 a a 11 > 0, det 12 > 0, det (A) > 0. a 21 a 22 c) Für n n Matrizen A, B gilt: det (A + B) = det A + det B. Lösung: Die Antworten lauten: a) Ja! b) Ja! c) Nein!

4 Aufgabe 40: Thema: Normalengleichungssystem Sei A eine m n Matrix. Betrachten Sie das Normalengleichungssystem A T Ax = A T b für b R m. Welche Aussagen sind richtig? a) Das Normalengleichungssystem ist für alle b R m lösbar. Lösung: Die Antworten lauten: a) Ja! b) Nein! b) Für b = 0 hat das System stets nur die triviale Lösung. c) Ax ist eindeutig bestimmt, auch wenn es mehrere Lösungen x R n gibt. d) Gilt Rang von A gleich n, dann ist A T A positiv definit. e) Ist A eine symmetrische n n Matrix, dann ist jede Lösung des Systems auch Lösung von Ax = b. c) Ja! Seien x 1 und x 2 Lösungen der Gleichung A T Ax = A T b. Dann folgt daraus d) Ja! Rang von A gleich n, daraus folgt: A T A(x 1 x 2 ) = 0 (x 1 x 2 )A T A(x 1 x 2 ) = 0 A(x 1 x 2 ) 2 = 0 A(x 1 x 2 ) = 0 Ax 1 = Ax 2 Ax = 0 x = 0. A T Ax x = Ax 2 0 für x 0 Zudem wissen wir, dass die Matrix A T A positiv semidefinit ist und somit ist A T A positiv definit. e) Nein! Beispiel: A sei die Nullmatrix.

5 Aufgabe 41: Thema: Positiv definite Matrizen Sei A eine symmetrische n n Matrix. Welche Aussagen sind richtig? a) Gilt det A > 0, dann ist A positiv definit. b) Ist A positiv definit, dann gilt det A > 0. c) Hat das homogene System Ax = 0 eine nichttriviale Lösung, dann ist A nicht positiv definit. d) Ist A positiv definit, dann ist das Gleichungssystem Ax = b für alle b R n eindeutig lösbar. Lösung: Die Antworten lauten: ( ) 1 0 a) Nein! Beispiel: A = 0 1 b) Ja! Da die Matrix A positiv definit ist, sind alle ihre Eigenwerte größer Null. Da die Determinante von A sich schreiben läßt als das Produkt der Eigenwerte von A ist auch die Determinante größer Null. c) Ja! Wenn das homogene System Ax = 0 eine nicht triviale Lösung hat, sind die Spalten von A linear abhängig. Daraus folgt, dass die Determinante von A gleich Null ist und somit muss mindestens ein Eigenwert von A gleich Null sein, so dass die Matrix nicht positiv definit sein kann. d) Ja! Wenn die Matrix A positiv definit ist, gilt det A 0. Daraus folgt A ist invertierbar und somit ist das Gleichungssystem eindeutlich lösbar. Aufgabe 42: Thema: Offene und abgeschlossene Mengen in R Welche Mengen sind offen in R? a) {x R x 2 > 5} b) {x R x 2 < 5} c) {1, 2, 3,... } Welche Mengen sind abgeschlossen in R? Lösung: Die Antworten lauten: a) Ja! d) {x R x 2 5} e) {x R x 2 5} f) {1, 2, 3,...} b) Nein! Die Menge läßt sich auch schreiben als [0, 5).

6 c) Nein! d) Ja! e) Ja! f) Ja! Aufgabe 43: Thema: Differenzierbarkeit Lösung: a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist? b) Wie hängen Differenzierbarkeit und Stetigkeit zusammen? c) Welche Voraussetzung an die partiellen Ableitungen impliziert die Differenzierbarkeit? d) Welche geometrische Interpretation hat der Gradient von f an der Stelle x 0? e) Wie berechnet man den Gradienten? f) Was besagt der Satz von Schwarz? g) Was ist eine Richtungsableitung? h) Was ist ein lokales Minimum bzw. ein lokales Maximum einer Funktion vom R n nach R? i) Welches Gleichungssystem muss man lösen, um solche lokalen Extremwerte zu finden? j) Was ist eine positiv (bzw. negativ) definite (n n)-matrix? k) Was ist die Hesse-Matrix einer Funktion f : R n R? l) Was folgt, wenn der Gradient an einer Stelle x 0 im Innern des Definitionsbereiches verschwindet und die Hessematrix dort positiv definit ist? Was gilt, wenn sie dort negativ definit ist? a) Eine Funktion f : R n R heißt differenzierbar an der Stelle x 0, falls es eine lineare Abbildung a : R n R gibt, so dass wobei o : R n R mit o(h) h f(x) = f(x 0 ) + a(x x 0 ) + o(x x 0 ), h 0 0. b) Differenzierbare Funktionen sind stetig, aber nicht umgekehrt. Bsp: f : R R, x x ist stetig an x 0 = 0, aber nicht differenzierbar an der Stelle.

7 c) Wenn alle partiellen Ableitungen existieren und stetig sind, dann ist f differenzierbar. d) Die Richtung des Gradienten von f an der Stelle x 0 ist die Richtung des steilsten Anstieges von f, und seine Länge ist dieser steilste Anstieg. ( ) T f e) grad f = x 1, f x 2,, f x n. f) Satz von Schwarz: Sei f : R n R zweimal stetig differenzierbar, dann gilt für alle v, w R n : D 2 f(x)(v, w) = D 2 f(x)(w, v). D.h. die Bilinearform D 2 f(x) ist symmetrisch und damit ist dann auch D 2 f(x) eine symmetrische Matrix: 2 xi xj f(x) = 2 xj xi f(x). g) Sei v ein Vektor; Die Richtungsableitung v f(x 0 ) eine Funktion f an der Stelle x 0 ist die Variation dieser Funktion in der Richtung v. v f(x 0 ) = t f(x 0 + tv) t=0 = grad f(x 0 ) v. Man bezeichnet auch die partielle Ableitung als Richtungsableitung. h) Ein lokales Minimum einer Funktion f ist ein Punkt x 0, zu dem es eine Umgebung V (x 0 ) gibt mit der Bedingung x V (x 0 ) : f(x) f(x 0 ). Ebenso ist ein lokales Maximum einer Funktion f ein Punkt x 0, zu dem es eine Umgebung V (x 0 ) gibt mit der Bedingung x V (x 0 ) : f(x) f(x 0 ) i) Um solche lokalen Extremwert zu finden, sucht man nach kritischen Punkten, das heißt, man löst die Gleichung f(x) = 0. Dann ist zu entscheiden, ob es sich um einen Sattelpunkt oder ein lokales Extremum handelt. j) Eine symmetrische Matrix A heißt positiv definit, falls die Eigenwerte von A alle positiv sind. Eine symmetrische Matrix A heißt negativ definit, falls die Eigenwerte von A alle negativ sind. k) Die Hesse-Matrix von f ist die die Ableitung des Gradienten dieser Funktion. ( ) f(x) D 2 f(x) = xj xi l) Wenn der Gradient an einer Stelle x 0 im Innern des Definitionsbereiches einer Funktion f verschwindet und die Hessematrix dort positiv definit ist, dann ist f ein lokales Minimum, wenn die Hessematrix dort statt dessen negativ definit ist, ist der Punkt ein lokales Maximum. i,j

8 Aufgabe 44: Für welche α R sind die folgenden Matrizen positiv (bzw. negativ) definit: a) A := ( α) b) c) d) B := C := ( ) α 4 4 2α ( ) 1 α α 1 2α 2 0 α D := α 0 1 Tipp: Falls x 2 + px + q = 0, so gilt für die beiden Lösungen x 1 und x 2, dass x 1 + x 2 = p x 1 x 2 = q Lösung: a) Für α < 0 ist A positiv definit, für α > 0 negativ definit. b) Das charakteristische Polynom ist in dem Fall λ 2 3αλ + 2α 2 16 = 0 Seien λ 1 und λ 2 die Eigenwerte von B. Sie sind Lösungen der oberen Gleichung, und es ist dann klar, daß { λ 1 + λ 2 = 3α λ 1 λ 2 = 2α 2 16 B ist positiv definit, wenn λ 1 > 0 und λ 2 > 0, das heißt (α 2 8) > 0 und α > 0, also wenn α ] 8, + [. B ist negativ definit, wenn λ 1 < 0 und λ 2 < 0, das heißt (α 2 8) > 0 und α < 0, also wenn α ], 8[.

9 c) Das charakteristische Polynom ist in dem Fall λ 2 2λ + 1 α 2 = 0 Seien λ 1 und λ 2 die Eigenwerte von C. Sie sind Lösungen der oberen Gleichung, und es ist dann klar daß { λ 1 + λ 2 = 2 λ 1 λ 2 = 1 α 2 (1) C ist positiv definit, wenn λ 1 > 0 und λ 2 > 0, das heißt (1 α 2 ) > 0 (wir haben schon λ 1 + λ 2 = 2) und α ] 1, +1[. C ist negativ definit, wenn λ 1 < 0 und λ 2 < 0, das ist unmöglich weil λ 1 +λ 2 = 2 und dann ist C nie negativ definit. d) Das charakteristische Polynom ist in dem Fall (2α 2 λ)(2 λ)(1 λ) (2 λ)α 2 = 0 (2) (2 λ) ( λ 2 (2α 2 + 1)λ + α 2) = 0 (3) { λ 3 = 2 (4) λ 1, λ2 lösen λ 2 (2α 2 + 1)λ + α 2 = 0 Wir haben dann { λ 1 + λ 2 = 2α λ 1 λ 2 = α 2 D ist positiv definit, wenn λ 1 > 0 und λ 2 > 0, das heißt α 0. Wegen λ 3 = 2 > 0 ist D nie negativ definit.as ist unmöglich weil λ 1 + λ 2 > 0. Aufgabe 45: Thema: Differenzierbarkeit bei vektorwertigen Funktionen Lösung: a) Wie ist Differenzierbarkeit für Funktionen von R n nach R m definiert? b) Nennen Sie ein hinreichendes Kriterium für Differenzierbarkeit! c) Was versteht man unter der Jacobimatrix einer differenzierbaren Abbildung an einer Stelle x 0? d) Was besagt die mehrdimensionale Kettenregel? e) Sind differenzierbare Abbildungen immer stetig? f) Wie sind Polarkoordinaten im R 2 definiert? g) Was sind Kugel-, was Zylinderkoordinaten?

10 a) Eine Funktion f : R n R m heißt differenzierbar in einem Punkt x 0 R n, falls es eine lineare Abblidung a : R n R m gibt, so dass wobei o : R n R m mit o(h) h f(x) = f(x 0 ) + a(x x 0 ) + o(x x 0 ), h 0 0. b) f ist differenzierbar genau dann wenn f partiell differenzierbar nach alle Variablen ist und alle partielle Ableitungen stetig sind. c) Die Jacobimatrix einer differenzierbaren Abbildung an einer Stelle x 0 ist die Darstellung von Df(x 0 ) in Matrixform. ( ) Df(x 0 ) = f i (x 0 ) xj d) Sei g : R p R n und f : R n R m, D(f g)(x) = (Df) (g(x)) (Dg(x)) Bemerkung: Dg ist eine (n p) Matrix, Df ist eine (m n) Matrix, und D(f g) ist eine (m p) Matrix. f 1 f 1 f x 1 x 2 1 g 1 g 1 g x n x 1 x 2 1 x p f 2 f 2 f x 1 x 2 2 g x n 2 g 2 g x 1 x 2 2 x p Df =, Dg = f m g x 2 n x 2 f m x 1 f m x n e) Ja, differenzierbare Abbildungen sind immer stetig. f) Definition von Polarkoordinaten im R 2 : Sei M ein Punkt im R 2 mit Koordinaten (x, y) im kanonischen Koordinatensystem. Man nennt r = x 2 + y 2 den Abstand zwischen M und dem Ursprungspunkt O = (0, 0) von R 2, und θ den Winkel zwischen die x Achse und OM. Die Polarkoordinaten von M sind (r, θ), ihre Verbindung mit den kartesischen Kordinaten von M ist { x = r cos(θ) y = r sin(θ) g) Definition von Zylinderkoordinaten im R 3 : Sei M ein Punkt im R 3 mit Koordinaten (x, y, z) im kanonischen Koordinatsystem. Man nennt r = x 2 + y 2 die Abstand zwischen der Projektion N von M auf den (x, y)-ebene und dem Ursprungspunkt O = (0, 0, 0) von R 3, und θ den Winkel zwischen der x Achse und ON. Die Zylinderkoordinaten von M sind (r, θ, z) und ihre Verbindung mit den kartesische Kordinate von M ist x = r cos(θ) y = r sin(θ) z = z i,j g n x 1 g n x p

11 Definition von Kugelkoordinaten im R 3 : Sei M ein Punkt im R 3 mit Koordinaten (x, y, z) im kanonischen Koordinatensystem. Man nennt r = x2 + y 2 + z 2 den Abstand zwischen M und dem Ursprungspunkt O = (0, 0, 0) von R 3, N die Projektion von M auf den (x, y) Achse, θ den Winkel zwischen x-achse und ON, und φ den Winkel zwischen den y-achse und OM. Die Kugelkoordinaten von M sind (r, φ, θ) und ihre Verbindung mit den kartesischen Kordinaten von M ist x = r sin(φ) cos(θ) y z = r sin(φ) sin(θ) = r cos(φ) Aufgabe 46: Geben Sie den Satz von Gauß an Lösung: a) einmal mit Differentialoperatoren und b) und einmal mit ausgeschriebenen partiellen Ableitungen und ausgeschriebenem Skalarprodukt. a) Sei Ω R n eine beschränkte, offene Menge und Ω sein Rand, unter Voraussetzung daß es eine glatte Fläche ist; (in dem Sinn, daß der Rand Ω eine lokale, Stetig differenzierbare Parametrisierung besitzt). Wir bezeichnen mit N(x) die äußere Normale auf Ω, dann gilt für ein stetig differenzierbares Vektorfeld V (x) auf Ω div (V (x)) dx = V (x) N(x)da b) Die Gleichung ist explizit ( n ) V i (x) dx = x i Ω Ω i=1 Ω Ω ( n ) V i (x)n i (x) da wobei V (x) = (V 1 (x), V 2 (x),, V n (x)) and N(x) = (N 1 (x), N 2 (x),, N n (x)). Aufgabe 47: Geben Sie die Formel für die Integration einer Funktion f : R 2 R über einer Kurve γ : [0, 1] R 2 an. Lösung: Die Formel für die Integration der Funktion f : R 2 R über eine stetige differenzierbare Kurve γ : [0, 1] R 2 ist. 1 fdl = f(γ(t)) γ(t) dt γ 0 Aufgabe 48: Geben Sie das Flächenelement bei der Integration über eine Graphenfläche g : [0, 1] 2 R an. Lösung: Laut Skript ist das Flächenelement bei der Integration über eine Graphenfläche g : [0, 1] R 2 gegeben durch 1 + g 2. i=1

12 Aufgabe 49: a) Was ist die Definition einer orthogonalen linearen Abbildung f : R n R n? Lösung: b) Wann ist eine Matrix A R n,n orthogonal? a) Eine orthogonale lineare Abbildung f : R n R n ist eine längentreue Abbildung ( f(x) = x für alle x R n ). b) Eine Matrix A R n,n ist orthogonal, falls A 1 = A T. Aufgabe 50: Geben Sie die Formel der Taylorentwicklung einer Funktion f : R n R bis zur Ordnung 2 an. Lösung: Die Formel der Taylorentwicklung einer Funktion f : R n R an der Stelle x 0 bis zur Ordnung 2 lautet: f(x) = f(x 0 ) + grad f(x 0 ) (x x 0 ) wobei D 2 f die Hesse-Matrix ist. ( D 2 f(x 0 )(x x 0 ) ) (x x 0 ) + O( x x 0 3 ) Frohe Festtage!

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW Universität Bonn, Institut für Angewandte Mathematik Dr. Antje Kiesel WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW 08.03.2013 Matrikelnummer Platz Name Vorname 1 2 3 4 5 6

Mehr

Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher

Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher Technische Universität Chemnitz 1. Juli 20 Fakultät für Mathematik Höhere Mathematik I.2 Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher 1. Durch ein

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h.

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h. Lineare Abbildungen Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls (1) u, v V : f( u + v) = f( u) + f( v). (2) v V α K : f(α v) = αf( v).

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012 Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.0 Aufgabe : Entscheiden Sie in dieser Aufgabe, ob die Aussagen wahr oder falsch sind. Begründungen sind nicht erforderlich. Ein korrekt gesetztes

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Analysis II. Vorlesung 48. Die Hesse-Form

Analysis II. Vorlesung 48. Die Hesse-Form Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 48 Die Hesse-Form Wir sind natürlich auch an hinreichenden Kriterien für das Vorliegen von lokalen Extrema interessiert. Wie schon im eindimensionalen

Mehr

Analysis II WS 11/12 Serie 9 Musterlösung

Analysis II WS 11/12 Serie 9 Musterlösung Analysis II WS / Serie 9 Musterlösung Aufgabe Bestimmen Sie die kritischen Punkte und die lokalen Extrema der folgenden Funktionen f : R R: a fx, y = x + y xy b fx, y = cos x cos y Entscheiden Sie bei

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01 Kapitel Komplexe Zahlen Motivation: die Gleichung x = hat offensichtlich keine reellen Lösungen, da x 0 für jedes reelle x gilt Um auch diese Gleichung lösen zu können, muß man neue Zahlen einführen: die

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Höhere Mathematik III für Wirtschaftsinformatiker

Höhere Mathematik III für Wirtschaftsinformatiker TU Ilmenau Institut für Mathematik Prof. Dr. S. Vogel Höhere Mathematik III für Wirtschaftsinformatiker Funktionen von mehreren Variablen. Grenzwerte und Stetigkeit Betrachtet werden Funktionen f : D f

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

1. Klausur. für bau immo tpbau

1. Klausur. für bau immo tpbau 1. Klausur Höhere Mathematik I/II für bau immo tpbau Wichtige Hinweise Die Bearbeitungszeit beträgt 120 Minuten. Verlangt und gewertet werden alle 6 Aufgaben. Bei Aufgabe 1 2 sind alle Lösungswege und

Mehr

Computer Vision SS 2011. Skript

Computer Vision SS 2011. Skript Computer Vision SS 211 Skript (Work in Progress) Simon Hawe & Martin Kleinsteuber Skript: Manuel Wolf Inhaltsverzeichnis 1 Einführung 1 1.1 Was ist ein Bild?................................. 1 1.2 Wie

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

1. Methode der Finiten Elemente

1. Methode der Finiten Elemente 1. Methode der Finiten Elemente 1.1 Innenraumprobleme 1.2 Außenraumprobleme 1.3 Analysen 1.4 Bewertung Prof. Dr. Wandinger 5. Numerische Methoden Akustik 5.1-1 1.1 Innenraumprobleme 1.1.1 Schwache Formulierung

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

7 Lineare Abbildungen und Lineare Gleichungssysteme

7 Lineare Abbildungen und Lineare Gleichungssysteme 7 LINEARE ABBILDUNGEN UND LINEARE GLEICHUNGSSYSTEME 5 7 Lineare Abbildungen und Lineare Gleichungssysteme 7 Lineare Abbildungen 7 Abbildungen: Eine Verallgemeinerungen des Funktionsbegriffs Bemerkung:

Mehr

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Artur Trzewik sw562@uni-essen.de v1., 26.3.1998 korrigiert 16. Februar 2 Zusammenfassung Warnung: für die Richtigkeit der Definitionnen

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11 Mathematik für Wirtschaftswissenschaftler, WS / Musterlösungen zu Aufgabenblatt Aufgabe 76: Bestimmen Sie mittels Gauß-Elimination die allgemeine Lösung der folgenden linearen Gleichungssysteme Ax b: a)

Mehr

Übungen zu Funktionen mehrerer Veränderlicher. Lösungen zu Übung Betrachten Sie die durch. y 1 + x 2. z = gegebene Fläche.

Übungen zu Funktionen mehrerer Veränderlicher. Lösungen zu Übung Betrachten Sie die durch. y 1 + x 2. z = gegebene Fläche. Übungen zu Funktionen mehrerer Veränderlicher 5.1 Betrachten Sie die durch Lösungen zu Übung 5 gegebene Fläche. z = y 1 + x 2 (a) Zeichnen Sie die Höhenlinien in ein Koordinatensystem. (b) Veranschaulichen

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Einführung: Wie wir gesehen haben, trägt der R 2, also die Menge aller Zahlenpaare, eine Körperstruktur mit der Multiplikation (a + bi(c + di ac bd + (ad + bci Man kann jedoch zeigen,

Mehr

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3 Kapitel 5 Untermannigfaltigkeiten 5.1 Glatte Flächen in R 3 Bisher haben wir unter einem glatten Weg im R n stets eine differenzierbare Abbildung γ:i R n, definiert auf einem Intervall I R, verstanden.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Extrema mit Nebenbedingungen

Extrema mit Nebenbedingungen Extrema mit Nebenbedingungen Gesucht ist das Extremum der Funktion f(x,y) = 5 x y unter der Nebenbedingung g(x,y) = x+y =. 5 y x In diesem einfachen Fall kann die Nebenbedingung nach einer Variablen aufgelöst

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

8 Lineare Abbildungen

8 Lineare Abbildungen 80 8 Lineare Abbildungen In diesem Kapitel untersuchen wir lineare Abbildungen von R n nach R m wie zum Beispiel Spiegelungen, Drehungen, Streckungen und Orthogonalprojektionen in R 2 und R 3 Man nennt

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

Z = 60! 29!31! 1,1 1017.

Z = 60! 29!31! 1,1 1017. Aufgabe : Eine Hochzeitsgesellschaft besteht aus 60 Personen. a Wieviele verschiedene Möglichkeiten für Sitzordnungen gibt es? b Nehmen Sie nun an, dass 9 Gäste aus dem Familien- und Freundeskreis der

Mehr

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab Wolfgang Kohn Riza Öztürk Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab 3., erweiterte und überarbeitete Auflage ^ Springer Gabler Inhaltsverzeichnis Teil

Mehr

Grundlagen der Mathematik II

Grundlagen der Mathematik II Wintersemester 204/205 - Aufgabenblatt I Abgabe: bis Donnerstag, den 6. November 204, 9:00 Uhr Aufgabe : Untersuchen Sie, für welche 2 C die folgende Matrix c diagonalisierbar ist, und bestimmen Sie für

Mehr

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter Vorwort Günter M. Gramlich Lineare Algebra Eine Einführung ISBN: 978-3-446-43035-8 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-43035-8 sowie im Buchhandel. Carl Hanser

Mehr

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik Lineare Algebra zusammengestellt von Sabine Giese, Josef Heringlehner, Birgit Mielke, Hans Mielke und Ralph-Hardo Schulz 98 Aufgaben,

Mehr

Mündliches Abitur in IViathematik

Mündliches Abitur in IViathematik Mündliches Abitur in IViathematik Zusatzprüfung: Kurzvortrag mit Prüfungsgespräcti Ziele: Nachweis von fachlichem Wissen und der Fähigkeit, dies angemessen darzustellen erbringen fachlich überfachlich

Mehr

Klausuraufgabensammlung Mathematik. Klausuraufgaben zur Mathematik 1-3 von Wolfgang Langguth

Klausuraufgabensammlung Mathematik. Klausuraufgaben zur Mathematik 1-3 von Wolfgang Langguth Fakultät für Ingenieurswissenschaften Bachelorstudiengang Biomedizinische Technik Prof. Dr. W. Langguth Klausuraufgabensammlung Mathematik Klausuraufgaben zur Mathematik - von Wolfgang Langguth Aufgabenstellungen

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Lösung der Prüfung Sommer 2009

Lösung der Prüfung Sommer 2009 Prof. D. Salamon Analysis I/II D-MATH, D-PHYS, D-CHAB ETH Zürich. Juni 9 Lösung der Prüfung Sommer 9. Berechnen Sie folgende Grenzwerte: (a) (b) Hinweis: Regel von de l Hospital. ( ( )) lim n n cos n lim

Mehr

Mathematik III für Ingenieure

Mathematik III für Ingenieure Mathematik III für Ingenieure im Bachelor-Studiengang Maschinenbau Vorlesung Wintersemester 21/211 B. Schuster aktualisert am 27. Januar 211 Inhalt I. Eigenwerte und Eigenvektoren 1 1. Komplexe Matrizen

Mehr

Lineare Ausgleichsprobleme. Lineare Ausgleichsprobleme. Normalgleichungen. Normalgleichungen

Lineare Ausgleichsprobleme. Lineare Ausgleichsprobleme. Normalgleichungen. Normalgleichungen Wir betrachten in diesem Abschnitt das lineare Ausgleichsproblem Ax b 2 = min! (1) Heinrich Voss voss@tu-harburgde Hamburg University of Technology Institute for Numerical Simulation mit gegebenem A R

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 73 Ergänzungen Prof Dr Erich Walter Farkas Mathematik I+II, 73 Ergänzungen 1 / 17 1 Reguläre Matrizen Prof Dr

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Studiengänge) Beispiele

Studiengänge) Beispiele Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. DETERMINANTEN Determinanten

Mehr

Lineare Algebra II 9. Übungsblatt

Lineare Algebra II 9. Übungsblatt Lineare Algebra II 9. Übungsblatt Fachbereich Mathematik SS Prof. Dr. Kollross 5./6. Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest: ohne Benutzung des Skripts und innerhalb von Minuten!)

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz Optimale Steuerung Kevin Sieg Fachbereich für Mathematik und Statistik Universität Konstanz 14. Juli 2010 1 / 29 Aufgabenstellung 1 Aufgabenstellung Aufgabenstellung 2 Die zusammengesetzte Trapezregel

Mehr

Weiterbildung für Ingenieure Numerische Methoden für Differentialgleichungen Prinzipien und Praxis Taubert, Heitmann Universität Hamburg WS03/04

Weiterbildung für Ingenieure Numerische Methoden für Differentialgleichungen Prinzipien und Praxis Taubert, Heitmann Universität Hamburg WS03/04 Weiterbildung für Ingenieure Numerische Methoden für Differentialgleichungen Prinzipien und Praxis Taubert, Heitmann Universität Hamburg WS03/04 Linearisierung 1 K. Taubert LINEARISIERUNG und das VERHALTEN

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

1.4 Gradient, Divergenz und Rotation

1.4 Gradient, Divergenz und Rotation .4 Gradient, Divergenz und Rotation 5.4 Gradient, Divergenz und Rotation Die Begriffe Gradient, Divergenz und Rotation erfordern die partiellen Ableitung aus Abschnitt.. sowie das Konzept des Differentialoperators.

Mehr

Gleichungen - Aufgabenstellung und Lösungsstrategien

Gleichungen - Aufgabenstellung und Lösungsstrategien Gleichungen - Aufgabenstellung und Lösungsstrategien Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 18. Juli 2006 1 Einleitung

Mehr