Elemente der Analysis II

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Elemente der Analysis II"

Transkript

1 Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: wengenroth/ J. Wengenroth () 15. Mai / 35

2 3.1 Beispiel 3.1 Beispiel Sei p = [p 1,..., p n ] der Vektor der Preise von Gütern mit Nummern 1,..., n. Jedes x = [x 1,..., x n ] beschreibt einen Warenkorb mit x k Einheiten (Stück, Liter, Gewicht,...) des Gutes Nummer k. Dieser Warenkorb hat dann den Wert f (x) = p 1 x 1 + p 2 x p n x n = p, x. Wie schon in Satz 1.9 bemerkt, ist dann f (ax) = af (x) (der a-fache Warenkorb ist das a-fache wert) und f (x+y) = f (x)+f (y) (der Wert von zwei Körben ist die Summe der Werte). (Beachte, dass auch dieses Modell eine Vereinfachung ist. Tatsächlich würde man wohl Rabatte aushandeln, wenn man viel einkauft.) J. Wengenroth () 15. Mai / 35

3 3.2 Definition 3.2 Definition Eine Abbildung f : R n R m heißt linear, wenn für alle x, y R n und a R gelten: f (ax) = af (x) und f (x + y) = f (x) + f (y). J. Wengenroth () 15. Mai / 35

4 3.3 Satz 3.3 Satz (a) f : R n R m ist genau dann linear, wenn für alle x, y R n und a, b R gilt f (ax + by) = af (x) + bf (y). (b) Ist f : R n R m linear, ( so gilt ) für alle x1,..., x p R n und p p a 1,... a p R, dass f a j x j = a j f (x j ). j=1 j=1 (Linearkombinationen) (c) f = [f 1,..., f m ] : R n R m ist genau dann linear, wenn alle Komponentenfunktionen f k : R n R linear sind. (d) Summen, Vielfache, Zusammensetzungen und Kompositionen linearer Abbildungen sind linear (natürlich, falls sie definiert sind). J. Wengenroth () 15. Mai / 35

5 Beweis Beweis (a) = folgt aus f (ax + by) = f (ax) + f (by) = af (x) + bf (y). = folgt mit b = 0 bzw. a = b = 1. (b) folgt induktiv aus (a) (c) folgt aus der komponentenweisen Definition von Summen und Vielfachen von Vektoren. (d) Die Linearität von f + g, [f, g] und αf rechnet man direkt nach. Für f : R h R m und g : R m R p beide linear ist g(f (ax + by)) = g(af (x) + bf (y)) = ag(f (x)) + bg(f (y)). J. Wengenroth () 15. Mai / 35

6 3.4 Satz (Darstellungssatz) 3.4 Satz (Darstellungssatz) Jede lineare Abbildung f : R n R ist von der Form f (x) = p, x mit p = [f (e1),..., f (e n )] R n und den Einheitsvektoren e1,..., e n. Beweis: Wegen 1.6 (a) ist x = (b) (für a k = x k ) folgt also n k=1 x k e k für jedes x = [x 1,..., x n ]. Mit 3.3 n n f (x) = x k f (e k ) = x k p k = x, p = p, x. k=1 k=1 J. Wengenroth () 15. Mai / 35

7 3.4 Satz (Darstellungssatz) 3.4 Satz (Darstellungssatz) (a) Bemerkung: Eine lineare Abbildung R n R ist also durch die n Werte f (e1),..., f (e n ) der Standardbasis eindeutig bestimmt und damit sehr leicht auszurechnen. (Ist z1,..., z n irgendeine Basis des R n, so ist f auch durch f (z1),..., f (z n ) eindeutig bestimmt, aber nur dann leicht auszurechnen, wenn man die Koeffizienten in x = n k=1 a k z k effektiv bestimmen kann). (b) Anschaulich (n = 2) bedeutet 3.4, dass der Graph Γ f = {[x 1, x 2, f (x 1, x 2 )] : [x 1, x 2 ] R2} die Ebene in R3 ist die [1, 0, f (1, 0)], [0, 1, f (0, 1)] und den Ursprung [0, 0, 0] = [0, 0, f (0, 0)] enthält. (c) Interpretation von p k = f (e k ) : Dies ist der Faktor (Preis) mit dem die k-te Komponente x k von x = [x 1,..., x n ] zum Funktionswert f (x) beiträgt. J. Wengenroth () 15. Mai / 35

8 3.5 Beispiel 3.5 Beispiel Ein Unternehmen produziere aus 3 Rohstoffen zwei Produkte. Input: x 1 Menge der ersten, x 2 Menge des zweiten, x 3 Menge des dritten Rohstoffs. Output: f 1 (x 1, x 2, x 3 ) produzierte Menge des ersten Produkts bei Einsatz x 1, x 2, x 3. f 2 (x 1, x 2, x 3 ) produzierte Menge des zweiten Produkts bei Einsatz x 1, x 2, x 3. Modell: f = [f 1, f 2 ] : R3 R2. J. Wengenroth () 15. Mai / 35

9 3.6 Matrizen 3.6 Matrizen (a) Sei f : R n R m eine lineare Abbildung mit Komponentenfunktionen f 1,..., f m : R n R, das heißt f j (x) ist die j-te Komponente des Vektors f (x) R m. Die f k sind wieder linear (wegen Satz 3.3(c)) und deshalb gibt es nach Satz 3.4 für jedes j = 1, 2,..., m einen Vektor p j = [p j 1, pj 2,..., pj n] R n (nämlich p j k = f j(e k )), so dass f j (x) = p j 1 x 1 + p j 2 x p j nx n (b) Die lineare Abbildung f ist also durch die n m Zahlen p1 1,..., p1 n, p2 1,..., p2 n,..., p1 m,..., pm n eindeutig bestimmt und leicht auszurechnen. Es bietet sich an, diese Zahlen in eine Tabelle zu schreiben: p1 1 p p1 n p2 1 p p2 n P =. p1 m p2 m... pn m J. Wengenroth () 15. Mai / 35

10 3.6 Matrizen 3.6 Matrizen (b) Eine solche Tabelle heißt m n-matrix. Die Vektoren p j = [p j 1,..., pj n] R n heißen Zeilen von P und die p1 k Spaltenvektoren. heißen Spalten von P. p m k Eine m n-matrix hat also m Zeilen und n Spalten. Mit dem Symbol R m n bezeichnen wir die Menge aller m n-matrizen. (c) Alternative (übliche) Schreibweise: p j k = p j,k. Der erste/obere Index j ist die Zeilennummer und der zweite/untere Index k ist die Spaltennummer. Oft schreibt man P = [p j,k ] j {1,...,m} oder nur k {1,...n} P = [p jk ], falls die Dimensionen n und m klar sind. J. Wengenroth () 15. Mai / 35

11 3.6 Matrizen 3.6 Matrizen (d) Die Unterscheidung zwischen Zeilen und Spalten ist ab jetzt wesentlich, und wir fassen ab jetzt Vektoren immer als SPALTEN auf, das heißt R n = R n 1. (e) Zusammenfassung: Ist f : R n R m eine lineare Abbildung und zugehöriger Matrix P = [p jk ] (wobei p j,k die j-te Komponente von f (e k )), so gilt für x = x 1. x n R n f (x) = p 1,1 x 1 + p 1,2 x p 1,n x n. p m,1 x 1 + p m,2 x p m,n x n J. Wengenroth () 15. Mai / 35

12 3.6 Matrizen 3.6 Matrizen (f) Wir definieren deshalb für P R m n und x R n das Produkt p 1,1 x 1 + p 1,2 x p 1,n x n P x =. R m p m,1 x 1 + p m,2 x p m,n x n (g) Jede lineare Abbildung R n R m ist also von der Form x P x. J. Wengenroth () 15. Mai / 35

13 3.7 Beispiel 3.7 Beispiel In der Situation von Beispiel 3.5 sei konkret f 1 (x 1, x 2, x 3 ) = 2x 1 + 4x 2 + x 3 f 2 (x 1, x 2, x 3 ) = 6x 1 + x 2 + 2x 3 [ ] Dann hat man also P =. Das Unternehmen erhalte eine Anfrage, ob es y 1 Stück von Gut 1 und y 2 Stück von Gut 2 liefern könne. x 1 Die Geschäftsführung frag sich dann: Gibt es Input x = x 2, so dass x [ ] 3 y1 f (x) = y =, also y 2 (1) 2x 1 + 4x 2 + x 3 = y 1? (2) 6x 1 + x 2 + 2x 3 = y 2 J. Wengenroth () 15. Mai / 35

14 3.7 Beispiel 3.7 Beispiel Subtraktion des dreifachen der ersten Gleichung von der zweiten liefert, dass das Gleichungssystem äquivalent ist zu (1) 2x 1 + 4x 2 + x 3 = y 1 (3) 11x 2 x 3 = y 2 3y 1. Dieses neue System kann man nun explizit auflösen: Wähle irgendein x 3 R Definiere x 2 = 1 11 (y 2 3y 1 + x 3 ) x 1 = 1 2 (y 1 x 3 4x 3 ) Es gibt also sehr viele Lösungen, und man kann die Anfrage positiv beantworten (und sich dann überlegen, welches x 3 zu einer Lösung mit weiteren günstigen Eigenschaften führt). J. Wengenroth () 15. Mai / 35

15 3.7 Beispiel 3.7 Beispiel Bemerkungen: In realistischen Beispielen hat man viel mehr Variablen x 1,..., x n und viel mehr Gleichungen. Die Menge der Lösungen {x R n : f (x) = y} ist also eine Niveaumenge zu Niveau y. Weil man 3 Unbekannte und 2 Gleichungen hat, ist es nicht überraschend, dass es viele Lösungen gibt. [ ] x Vorsicht: Ist Q =, so hat 1 + 4x 2 + x 3 = x 1 + 8x 2 + 2x 3 = 1 keine Lösung. (Die zweite Zeile von Q ist ein Vielfaches der ersten Zeile). J. Wengenroth () 15. Mai / 35

16 3.8 Lineare Gleichungssysteme (LGS) 3.8 Lineare Gleichungssysteme (LGS) (a) Für eine m n-matrix P = [p j,k ] und y R m heißt die Gleichung P x = y ein LGS mit m Gleichungen und n Unbekannten oder LGS m n. Jedes x R n, das diese Gleichung erfüllt heißt eine Lösung des LGS. L(P, y) = {x R n : P x = y} heißt Lösungsmenge. (b) P x = y ist eine kurze und elegante Schreibweise für p 1,1 x 1 + p 1,2 x p 1,n x n = y 1.. p m,1 x 1 + p m,2 x p m,n x n = y m J. Wengenroth () 15. Mai / 35

17 3.8 Lineare Gleichungssysteme (LGS) 3.8 Lineare Gleichungssysteme (LGS) (c) LGS treten sehr oft mit riesigen Dimensionen n und m auf (Computertomographie: n m 106) (d) Hat P die Spalten p1,..., p n, so ist P x = x 1 p1 +..., +x n p n. Es gibt also genau dann eine Lösung von P x = y, wenn y eine Linearkombination der Spalten ist. (e) Für y = O R m gibt es immer mindestens eine Lösung, nämlich x = O R n. Oft gibt es aber auch x O mit P x = O. J. Wengenroth () 15. Mai / 35

18 3.9 Rekursive Algorithmen 3.9 Rekursive Algorithmen (a) Der Gaußsche Algorithmus (Eliminationsverfahren) ist eine einfache Methode, wie man das Problem Finde alle Lösungen des LGS m n P x = y auf ein kleineres LGS (m 1) (n 1) zurückführt. Das neue Problem wird mit der selben Methode auf ein noch kleineres LGS (m 2) (n 2) zurückgeführt, bis man schließlich entweder ein LGS 1,q oder ein LGS p,1 erhält (das man leicht lösen kann). So eine Methode nennt man rekursiven Algorithmus. (b) Türme von Hanoi Gegeben: Drei Stäbe, auf einem davon n Scheiben nach der (verschiedenen) Größe geordnet. Ziel: Stapel von einem Stab a auf anderen c bewegen. Erlaubte Züge: Oberste Scheibe eines Stabs auf einen anderen legen, so dass nie eine größere Scheibe über einer kleineren liegt. Algorithmus: Verschiebe (n 1) Scheiben von a (über c) nach b. Verschiebe oberste (einzige) Scheibe von a nach c. Verschiebe (n 1) Scheiben von b (über a) nach c. J. Wengenroth () 15. Mai / 35

19 3.10 Der Gauß-Algorithmus 3.10 Der Gauß-Algorithmus Gesucht sind alle Lösungen x R n das LGS m n P x = y für gegebene Matrix P R m n und y R m, also p 1,1 x 1 + p 1,2 x p 1,n x n = y 1.. p m,1 x 1 + p m,2 x p m,n x n = y m. Lösungsstrategie: Elimination der Unbekannten x n aus den ersten (m 1) Gleichungen durch Addition geeigneter Vielfacher der letzten Gleichung zu den übrigen. Das geht, falls der Koeffizient p m,n ungleich 0 ist. Sonst Vertausche die Reihenfolge der Gleichungen. J. Wengenroth () 15. Mai / 35

20 3.10 Der Gauß-Algorithmus 3.10 Der Gauß-Algorithmus I n Vertausche gegebenenfalls die Zeilen, so dass p m,n 0. (Falls nicht möglich, gehe zu V n ). II n Für j = 1,..., m 1 setze α j = p j,n p m,n und addiere das α j -fache der letzten Zeile zur j-ten Zeile. Dies liefert das LGS m n mit der selben Lösungsmenge p 1,1 x p 1,n 1 x n 1 = ỹ 1.. P x = ỹ p m 1,1 x p m 1,n 1 x n 1 = ỹ n 1 p m,1 x p m,n 1 x n 1 + p m,n x n = y n mit p j,k = p j,k + α j p m,k und ỹ j = y j + α j y m. III n Löse durch die Schritte I n 1 bis IV n 1 das kleinere LGS m 1,n 1. IV n Dann löst x = [x 1,..., x n ] das LGS P x = y x = [x 1,..., x n 1 ] löst P x = ỹ und x n = 1 p m,n (y n p m,1 x 1 p m,2 x 2... p m,n 1 x n 1 ) J. Wengenroth () 15. Mai / 35

21 3.10 Der Gauß-Algorithmus 3.10 Der Gauß-Algorithmus V n Falls p 1,n = p 2,n =... = p m,n = 0 ist Schritt I n nicht durchführbar. In diesem Fall gilt: x = [x 1,..., x n ] löst P x = y x = [x 1,..., x n 1 ] löst das LGS m,n 1 P x = y mit P = p 1,1... p 1,n 1. p m,1... p m,n 1 (und x n ist beliebig). J. Wengenroth () 15. Mai / 35

22 3.11 Bemerkung zum Gauß-Algorithmus 3.11 Bemerkung zum Gauß-Algorithmus (a) Die Schritte IV und V besagen, dass man für jede Lösung x des kleineren System eine (IV) beziehungsweise unendlich viele (V) Lösungen des Ausgangssystems erhält. (b) Es ist möglich, dass das kleinere System keine Lösung hat. Dann hat auch das Ausgangssystem keine Lösung, das System heißt dann inkonsistent. (c) Durch Umbenennen der Variablen x 1,..., x n und Vertauschen der Zeilen (Pivotieren) erhält man Varianten des Algorithmus. In der Literatur oft zuerst: x 1 aus Gleichungen 2 bis n eliminieren. (d) Lösen von LGS 1,n p 1 x p n x n = y ist einfach: Wähle k mit p k 0 und beliebige x l R für l k und löse nach x k auf. p 1 x 1 = y 1 (e) Lösen von LGS m,1. p n x n = y n und überprüfe die anderen. ist auch einfach: Löse eine Gleichung J. Wengenroth () 15. Mai / 35

23 3.12 Beispiel a 3.12 Beispiel x 1 + 0x 2 + 2x 3 = 1 2x 1 + x 2 + x 3 = 0 2x 1 + x x 3 = 2 I 3 Keine Vertauschung nötig. II 3 α 1 = 2 1/2 = 4, α 2 = 1 1/2 = 2. Das neue LGS ist } 7x 1 4x 2 = 9 Px = ỹ 2x 1 x 2 = 4 2x 1 + x 2 + 1/2x 3 = 2 III 3 Lösen des LGS 2 2 in II 3 : I 2 Wieder keine Vertauschung nötig. II 2 α 1 = 4 1 = 4. Das neue LGS ist ( 7 4( 2))x 1 = 9 4( 4) x 1 = 7 2x 1 x 2 = 4 III 2 Das LGS in II 2 hat Lösung x 1 = 7. IV 2 Das LGS in II 3 hat Lösung x 1 = 7, x 2 = 10. IV 3 Das LGS 3 3 P x = y hat Lösung x 1 = 7, x 2 = 10, x 3 = 4 J. Wengenroth () 15. Mai / 35

24 3.12 Beispiel 3.12 Beispiel (b) Gesucht sind alle Lösungen des LGS 3 3 x 1 + x 2 x 3 = 0 x 1 x 2 + 2x 3 = 3 3x 1 + x 2 = 1 I 3 p 3,1 = 0. Vertausche 1. und 3. Zeile. Neues LGS x 1 + x 2 = 1 x 1 x 2 + 2x 3 = 3 x 1 + x 2 x 3 = 0 II 3 α 1 = 0 1 = 0, α 2 = 2 1 = 2. Neues LGS 3 3 } 3x 1 + x 2 = 1 3x 1 + x 2 = 3 Px = ỹ x 1 + x 2 x 3 = 0 J. Wengenroth () 15. Mai / 35

25 3.12 Beispiel 3.12 Beispiel III 3 Löse LGS 2 2 in II 3. I 2 Keine Vertauschung nötig. II 2 α 1 = 1. Das neue LGS 2 2 ist 0 x 1 = 2 } P x = ỹ 3x 1 + x 2 = 3. III 2 Das LGS 1 1 in II 2 hat keine Lösung. IV 2 Das LGS 2 2 in II 3 hat keine Lösung. IV 3 Das LGS 3 3 P x = y in I 3 hat keine Lösung. J. Wengenroth () 15. Mai / 35

26 3.13 Simultanes Lösen von LGS 3.13 Simultanes Lösen von LGS Gegeben seien eine m n Matrix P und s Vektoren y1,..., y s R m. Gesucht sind Lösungen x1,..., x s R n von P x l = y l für alle l = 1,..., s. Eine Möglichkeit: s mal Gauß-Algorithmus durchführen. Bessere Variante: Die Matrix P im Schritt II hängt nicht von der rechten Seite ab, also sind alle kleineren Probleme wieder von der Form P x l = ỹ l. Nur IV hängt von y l ab. Schreibt man x1,..., x s als Spalten einer Matrix Q R n s (also q j,l = xj l) und y1,..., y1 als Spalten einer Matrix R Rm s (also r j,l = yj l ), so ist r j,l = yj l = [P x l ] j = p j,1 x1 l p j,nx n = p j,1 q 1,l p j,n q n,l J. Wengenroth () 15. Mai / 35

27 3.14 Matrix-Multiplikation 3.14 Matrix-Multiplikation (a) Für m, n, q N und Matrizen P R m n und Q n s definieren wir das Produkt R = P Q R m s durch [P Q] j,l = n p j,k q k,l = p j,1 q 1,l p j,n q n,l. k=1 (b) Das Element in der j-ten Zeile und l-ten Spalte von P Q ist also das Skalarprodukt der j-ten Zeile von P und der l-ten Spalte von Q. Außerdem ist die l-te Spalte von P Q gleich dem Produkt von P mit der l-ten Spalte von Q. (c) Die j-te Zeile von P Q ist gleich dem Produkt der j-ten Zeile p j R 1 n von P mit Q R n m. J. Wengenroth () 15. Mai / 35

28 3.14 Matrix-Multiplikation 3.14 Matrix-Multiplikation (d) Seien f : R n R m linear, also f (x) = P x, wobei P R m n die Spalten f (e1),..., f (e n ) hat, sowie g : R q R n linear, also g(y) = Q y, wobei Q R n q die Spalten g(e1),..., g(e q ) hat. Dann ist f g : R q R m linear und (f g)(e l ) = f (g(e l )) = P g(e l ) = P l-te Spalte von Q. Also: f g(y) = (P Q) y. J. Wengenroth () 15. Mai / 35

29 3.15 Satz 3.15 Satz (a) A R m n, B R n q, C R q r = (A B) C = A (B C) Assoziativität (b) A R m n, B, C R n q = A (B + C) = A B + A C Distributivität (wobei die Summe von Matrizen gleicher Dimension komponentenweise erklärt ist). J. Wengenroth () 15. Mai / 35

30 3.16 Beispiel 3.16 Beispiel (a) Für A R m n und B R n q mit q m ist kein Produkt B mit A definiert! (b) Selbst wenn [ A B ] und B A [ definiert ] sind, ist sehr oft A B B A Etwa A =, B = : [ ] [ ] A B = aber B A = J. Wengenroth () 15. Mai / 35

31 3.17 Inverse Matrizen 3.17 Inverse Matrizen (a) Für n N heißt E n =. 1. Rn n die n n-dimensionale Einheitsmatrix (nur auf der Diagonalen Einsen sonst Nullen). Für A R m n gilt dann A E n = A und E m A = A. (b) Eine quadratische Matrix A R n n heißt invertierbar, wenn es B R n n gibt mit A B = E n. (c) Satz: A B = E n = B A = E n. J. Wengenroth () 15. Mai / 35

32 3.17 Inverse Matrizen 3.17 Inverse Matrizen (d) Folgerung: A B = E n und A C = E n = B = C. Beweis: (1) A (B C) = A B A C = E n E n = 0 (2) B C = E n (B C) = (B A) (B C) = B (A (B C)) = B 0 = 0. (3) B = C. (e) Ist also A R n n invertierbar, so gibt es genau eine Matrix B R n n mit B A = E n. Diese Matrix heißt Inverse von A, und wir schreiben dann [ B = A 1 ]. [ ] (f) A = ist invertierbar mit A = /3 [ ] 1 2 (g) M = ist nicht invertierbar. 4 8 [ ] 2 x = = M x = 0. Wäre M invertierbar, folgte 1 x = M 1 M x = 0, was nicht der Fall ist. J. Wengenroth () 15. Mai / 35

33 3.18 Satz 3.18 Satz Sei A R n n eine quadratische Matrix. (a) Ist A invertierbar, so besitzt das LGS n n A x = y für jedes y R n genau eine Lösung, nämlich x = A 1 y. (b) Sind alle n LGS n n A x = e k (k-ter Einheitsvektor) lösbar mit Lösung x k R n, so ist A invertierbar und x1,... x n sind die Spalten von A 1. J. Wengenroth () 15. Mai / 35

34 3.18 Satz 3.18 Satz Beweis. (a) x = A 1 y ist eine Lösung, weil A (A 1 y) = (A A 1 ) y = E n y = y. Ist z R n irgendeine Lösung, so folgt aus Satz 3.17 (c) z = A 1 A z = A 1 y. (b) Nach Definition der Matrixmultiplikation sind A x k = e k die Spalten von A [x1,..., x n ]. Andererseits hat E n gerade die Spalten e1,..., e n. J. Wengenroth () 15. Mai / 35

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden: Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Artur Trzewik sw562@uni-essen.de v1., 26.3.1998 korrigiert 16. Februar 2 Zusammenfassung Warnung: für die Richtigkeit der Definitionnen

Mehr

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte. Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren

Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren oder: Wie rechnet eigentlich der TI 84, wenn lineare Gleichungssysteme gelöst werden? Hier wird an einem Beispiel das Gaußsche Verfahren zum

Mehr

7 Lineare Gleichungssysteme

7 Lineare Gleichungssysteme 118 7 Lineare Gleichungssysteme Lineare Gleichungssysteme treten in vielen mathematischen, aber auch naturwissenschaftlichen Problemen auf; zum Beispiel beim Lösen von Differentialgleichungen, bei Optimierungsaufgaben,

Mehr

6. Übungsblatt zur Mathematik I für Maschinenbau

6. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 6. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 2/ 25..-.2. Aufgabe G (Lineare Gleichungssysteme)

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

3.4 Der Gaußsche Algorithmus

3.4 Der Gaußsche Algorithmus 94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1

Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Kapitel 3 Lineare Gleichungssysteme 3.1. Einleitung Beispiel 1 3 Kinder haben eingekauft. Franz hat 4 Lakritzen, 2 Schokoriegel und 5 Kaugummis

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Es wurde in der Vorlesung gezeigt, daß man die Matrixgleichung Ax=b auch in der Form

Es wurde in der Vorlesung gezeigt, daß man die Matrixgleichung Ax=b auch in der Form Gaußscher Algorithmus zur Lösung linearer Gleichungssysteme Wir gehen aus vom Gleichungssystem A=b. Dabei ist A M m n K, b K m. Gesucht werden ein oder alle Elemente K n, so daß obige Gleichung erfüllt

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

Kapitel 17. Determinanten

Kapitel 17. Determinanten Kapitel 17. Determinanten Vorschau: Determinanten Es gibt drei Problemfelder, für die Determinanten von großem Nutzen sind: die formelmäßige Überprüfung der linearen Unabhängigkeit eines Systems von n

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Das komplette Material finden Sie hier: School-Scout.de Thema: Lineare Algebra:

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme 52 II Lineare Gleichungssysteme II Lineare Gleichungssysteme 10 Matrizen und Vektoren 52 11 Der Gaußsche Algorithmus 58 12 Basen, Dimension und Rang 62 13 Reguläre Matrizen 66 14 Determinanten 69 15 Skalarprodukte

Mehr

Quadratische Matrizen

Quadratische Matrizen Quadratische Matrizen (n n)-matrizen heißen quadratische Die entsprechenden linearen Abbildungen sind laut Definition Endomorphismen des R n (weil f A : R n R n ) Das Produkt von (n n)- Matrizen ist auch

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

Mathematik 1, Teil B. Inhalt:

Mathematik 1, Teil B. Inhalt: FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

x LINEARE GLEICHUNGSSYSTEME In diesem Paragraph beginnen wir mit einer elementaren Behandlung linearer Gleichungssysteme Bevor wir versuchen eine allg

x LINEARE GLEICHUNGSSYSTEME In diesem Paragraph beginnen wir mit einer elementaren Behandlung linearer Gleichungssysteme Bevor wir versuchen eine allg SKRIPTUM { LINEARE ALGEBRA I JB COOPER Inhaltsverzeichnis: x Lineare Gleichungssysteme x Geometrie der Ebene und des Raumes x Vektorraume x Lineare Abbildungen Typeset by AMS-T E X x LINEARE GLEICHUNGSSYSTEME

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Lineare Gleichungssysteme und Determinanten. Lineare Gleichungssysteme.2 Determinanten 3 iii 2 LINEARE GLEIHUNGSSYSTEME UND DETERMINANTEN KAPITEL

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 28. November 2011 Definition Beispiel: Wassermengen und Konzentrationen in einem Fluss Beispiel Zeilenstufenform Beispiel (Fortsetzung) Anhang

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Lineare Gleichungssysteme und Gauß'scher Algorithmus

Lineare Gleichungssysteme und Gauß'scher Algorithmus Zurück Letzter Update 7... Lineare Gleichungssysteme und Gauß'scher Algorithmus In der Mathematik bezeichnet man mit Matrix ein rechteckiges Schema, in dem Zahlen oder Funktionen angeordnet werden. Hier

Mehr

LINEARE GLEICHUNGSSYSTEME. Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie. x + y + z = 1

LINEARE GLEICHUNGSSYSTEME. Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie. x + y + z = 1 LINEARE GLEICHUNGSSYSTEME 1. Ein kurzes Vorwort Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie 2 x 1 + 2 x 2 = 3 6 a + 4 b = 3 (a) (b) 4 x 1 + 3 x 2 = 8 3 a + 2

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015 Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten

Mehr

GLEICHUNGEN MIT PARAMETERN

GLEICHUNGEN MIT PARAMETERN Mathematik-Olympiaden in Rheinland-Pfalz GLEICHUNGEN MIT PARAMETERN Fortgeschrittene Die Aufgaben auf diesem Arbeitsblatt haben alle eine elegante Lösungsidee. Bei vielen Gleichungen ist nach Anwenden

Mehr

6. Rechnen mit Matrizen.

6. Rechnen mit Matrizen. 6. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt und dem

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Matrizen und Determinanten 1 Matrizen und Determinanten 1 Einführung in den Matrizenbegriff Zur Beschreibung und Lösung vieler physikalischer Probleme ist die Vektorrechnung vonnöten Durch Verwendung von

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Poelchau-Oberschule Berlin A. Mentzendorff September 2007 Lineare Gleichungssysteme Inhaltsverzeichnis 1 Grundlagen 2 2 Das Lösungsverfahren von Gauß 4 3 Kurzschreibweise und Zeilensummenkontrolle 6 4

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Brückenkurs Elementarmathematik

Brückenkurs Elementarmathematik Brückenkurs Elementarmathematik IV. Ungleichungen November 13, 2013 Inhalt 1 Ungleichungen 2 Umformungen von Ungleichungen 2.1 Äquivalenzumformungen 2.2 Addition und Multiplikation von Ungleichungen 3

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

3. LINEARE GLEICHUNGSSYSTEME

3. LINEARE GLEICHUNGSSYSTEME 176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben / Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG ¾ REITSUNTERLGEN ZUR VORLESUNG UND ÜUNG N DER UNIVERSITÄT DES SRLNDES LINERE OPTIMIERUNG IM SS Lineare Optimierung (SS ). ufgabe (Graphische Lineare Optimierung) Nach einem anstrengenden Semester steht

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

8 Lineare Abbildungen

8 Lineare Abbildungen 80 8 Lineare Abbildungen In diesem Kapitel untersuchen wir lineare Abbildungen von R n nach R m wie zum Beispiel Spiegelungen, Drehungen, Streckungen und Orthogonalprojektionen in R 2 und R 3 Man nennt

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

3 Matrizen und Determinanten

3 Matrizen und Determinanten 31 Matrizen 311 Matrizen und Gleichungssysteme Grundlegende Begriffe der linearen Algebra und linearen Optimierung sind die Begriffe Matrix, Vektor, Determinante und lineares Gleichungssystem Beispiel

Mehr

6 Lösungsverfahren für lineare Gleichungssysteme

6 Lösungsverfahren für lineare Gleichungssysteme 6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html

Mehr

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen) Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f (v) = u} (Andere Bezeichnung: f (V) wird in Analysis-Vorlesung

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr