Zusammenhänge zwischen metrischen Merkmalen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Zusammenhänge zwischen metrischen Merkmalen"

Transkript

1 Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl der fest angestellten Mitarbeiter y: Anzahl der freien Mitarbeiter Frage: Gibt es einen Zusammenhang zwischen diesen Merkmalen? Wie lässt sich dieser Zusammenhang beschreiben? Einfachste graphische Darstellung: Streudiagramm. Die Datenpaare entsprechen Punkten in der Ebene ( Punktwolke ) Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 205 / 241

2 Beispiel 1: Streudiagramm (mit SPSS) Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 206 / 241

3 Beispiel 2 Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 207 / 241

4 Beispiel 3 Punkte in Englisch und Mathematik Gruppe 1 Gruppe 2 Schüler Englisch Mathe Englisch Mathe Mittelwert Standardabweichung Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 208 / 241

5 Beispiel 3 (Streudiagramme) Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 209 / 241

6 Kovarianz Maß für den Zusammenhang der beiden Merkmale: Daten: (x i, y i ), i = 1,..., n Beachte: S XY = 1 n 1 n (x i x)(y i ȳ) i=1 Summand i positiv, falls x i und y i relativ zum Mittelwert das gleiche Vorzeichen haben. Für s xx ergibt sich die Varianz von X. Die Kovarianz hängt sowohl von der Streuung als auch von dem Zusammenhang der beiden Merkmale ab. Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 210 / 241

7 Bravais-Pearson-Korrelationskoeffizient Der Bravais-Pearson-Korrelationskoeffizient ergibt sich aus den Daten (x i, y i ), i = 1,..., n durch n i=1 r = (x i x)(y i ȳ) n i=1 (x i x) = S xy 2 n i=1 (y i ȳ) 2 ) S x S y Wertebereich: 1 r 1 r > 0 r < 0 r = 0 positive Korrelation, gleichsinniger linearer Zusammenhang, Tendenz: Werte (x i, y i ) um eine Gerade positiver Steigung liegend negative Korrelation, gleichsinniger linearer Zusammenhang, Tendenz: Werte (x i, y i ) um eine Gerade negativer Steigung liegend keine Korrelation, unkorreliert, kein linearer Zusammenhang Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 211 / 241

8 Punkte in Englisch und Mathematik Gruppe 1: Gruppe 2: r xy = S xy S x S y = = 0.65 r xy = S xy S x S y = = 0.56 Gruppe 1: positiver linearer Zusammenhang Gruppe 2: negativer linearer Zusammenhang Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 212 / 241

9 Eigenschaften des Korrelationskoeffizienten Maß für den linearen Zusammenhang Ändert sich nicht bei linearen Transformationen Symmetrisch (Korrelation zwischen x und y = Korrelation zwischen y und x) Positive Korrelation bedeutet: Je größer x, desto größer im Durchschnitt y Korrelation = +1 oder -1, falls die Punkte genau auf einer Geraden liegen Korrelation = 0 bedeutet keinen linearen Zusammenhang, aber nicht notwendig Unabhängigkeit Korrelation empfindlich gegenüber Ausreißern Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 213 / 241

10 Eigenschaften von r r misst Stärke des linearen Zusammenhangs. Punktkonfigurationen und Korrelationskoeffizienten (qualitativ) Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 214 / 241

11 Einige Beispiele von exakten und verrauschten Zusammenhängen Beispiel 1: Lineare (unverrauschte) Funktion, y = 0.8x + 2.0, 101 equidistante Stützstellen im Intervall [-1,1], r = Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 215 / 241

12 Einige Beispiele von exakten und verrauschten Zusammenhängen Beispiel 2: Lineare (unverrauschte) Funktion, y = 0.8x + 2.0, 101 equidistante Stützstellen im Intervall [-1,1], r = Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 216 / 241

13 Einige Beispiele von exakten und verrauschten Zusammenhängen Beispiel 3: Lineare (unverrauschte) Funktion, y = 0.001x + 2.0, 101 equidistante Stützstellen im Intervall [-1,1], r = Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 217 / 241

14 Einige Beispiele von exakten und verrauschten Zusammenhängen Beispiel 4: Periodische (unverrauschte) Funktion, y = sin(x), 101 equidistante Stützstellen im Intervall [ π, π], r = Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 218 / 241

15 Einige Beispiele von exakten und verrauschten Zusammenhängen Beispiel 5: Periodische (unverrauschte) Funktion, y = cos(x), 101 equidistante Stützstellen im Intervall [ π, π], r = Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 219 / 241

16 Einige Beispiele von exakten und verrauschten Zusammenhängen Beispiel 6: Quadratische (unverrauschte) Funktion, y = x , 101 equidistante Stützstellen im Intervall [ 1, 1], r = Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 220 / 241

17 Einige Beispiele von exakten und verrauschten Zusammenhängen Beispiel 7: Kubische (unverrauschte) Funktion, y = x , 101 equidistante Stützstellen im Intervall [ 1, 1], r = Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 221 / 241

18 Einige Beispiele von exakten und verrauschten Zusammenhängen Beispiel 8: Abschnittweise definierte (unverrauschte) Funktion y = sin(x), 50 und 51 equidistante Stützstellen in den Intervallen [ π, π 2 ] und [ π 2, π], r = Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 222 / 241

19 Einige Beispiele von exakten und verrauschten Zusammenhängen Beispiel 9: Lineare, schwach verrauschte Funktion, y = 0.8x N(0, 0.1), 101 equidistante Stützstellen im Intervall [-1,1], r = Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 223 / 241

20 Einige Beispiele von exakten und verrauschten Zusammenhängen Beispiel 10: Lineare, stärker verrauschte Funktion, y = 0.8x N(0, 0.5), 101 equidistante Stützstellen im Intervall [-1,1], r = Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 224 / 241

21 Einige Beispiele von exakten und verrauschten Zusammenhängen Beispiel 11: Lineare, stark verrauschte Funktion, y = 0.8x N(0, 5), 101 equidistante Stützstellen im Intervall [-1,1], r = Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 225 / 241

22 Einige Beispiele von exakten und verrauschten Zusammenhängen Beispiel 12: Lineare, stärker verrauschte Funktion, y = 0.1x N(0, 0.5), 101 equidistante Stützstellen im Intervall [-1,1], r = Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 226 / 241

23 Bei exakten lineare Zusammenhängen gilt: r = +1 bzw. 1 Y = ax + b mit b > 0 bzw. b < 0 Lineare Transformationen X = a X X + b X, Ỹ = a Y Y + b Y, a X, a Y 0 r Korrelationskoeffizient zwischen X und Y r Korrelationskoeffizient zwischen X und Ỹ r = r a X, a Y > 0 oder a X, a Y < 0 r = r a X > 0, a Y < 0 oder a X < 0, a Y > 0. Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 227 / 241

24 r in Vektor-Schreibweise: Definiere die zentrierten Datenvektoren r = x Z = (x 1 x,..., x i x,..., x n x) y Z = (y 1 ȳ,..., y i ȳ,..., y n ȳ) x Z y Z x Z ȳ Z, mit. euklidische Norm. Aus der Schwarz-Cauchy-Ungleichung folgt d.h. 1 r +1. x Z y Z x Z y Z, Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 228 / 241

25 Spearmans Korrelationskoeffizient = Rang-Korrelationskoeffizient X, Y (mindestens) ordinal Idee: Gehe von Werten x i, i = 1,..., n und y i, i = 1,..., n über zu ihren Rängen (in der geordneten Urliste). analog für y (1),..., y (n). x (1)... x (i)... x (n) rg(x (i) ) = i, Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 229 / 241

26 Beispiel: bei Bindungen (ties): x i rg(x i ) x i Durchschnittsrang = 3.5 vergeben. Also: Urliste der Größe nach durchsortieren Ranglisten rg(x i ), rg(y i ), i = 1,..., n vergeben (bei ties: Durchschnittsränge) Idee: Berechne den Korrelationskoeffizienten nach Bravais-Pearson für die Ränge statt für die Urliste. Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 230 / 241

27 Definition: Spearmans Korrelationskoeffizient Der Korrelationskoeffizient nach Spearman ist definiert durch r SP = (rg(xi ) rg X )(rg(y i ) rg Y ) (rg(xi ) rg X ) 2 (rg(y i ) rg Y ). 2 Wertebereich: 1 r SP 1 Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 231 / 241

28 r SP > 0 gleichsinniger monotoner Zusammenhang, Tendenz: x groß y groß, x klein y klein r SP < 0 gegensinniger monotoner Zusammenhang, Tendenz: x groß y klein, x klein y groß r SP 0 kein monotoner Zusammenhang Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 232 / 241

29 Extremfälle für Spearmans Korrelationskoeffizienten, r SP = 1 (oben) und r SP = 1 (unten) Spearmans Korrelationskoeffizient misst monotone (auch nichtlineare) Zusammenhänge! Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 233 / 241

30 Bemerkungen: Rechentechnische Vereinfachungen: rg X = 1 n n i=1 rg(x i) = 1 n n i=1 i = (n + 1)/2, rg Y = 1 n n i=1 rg(y i) = 1 n n i=1 i = (n + 1)/2. Rechentechnisch günstige Version von r SP : Daten: (x i, y i ), i = 1,..., n, x i x j, y i y j für alle i, j Rangdifferenzen: d i = rg(x i ) rg(y i ) r SP = 1 6 di 2 (n 2 1)n Voraussetzung: keine Bindungen Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 234 / 241

31 Monotone Transformationen X = g(x ) Ỹ = h(y ) g streng monoton, h streng monoton r SP ( X, Ỹ ) = r SP (X, Y ), wenn g und h monoton wachsend bzw. g und h monoton fallend sind, r SP ( X, Ỹ ) = r SP (X, Y ), wenn g monoton wachsend und h monoton fallend bzw. g monoton fallend und h monoton wachsend sind. Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 235 / 241

32 Kendall s Tau Betrachte Paare von Beobachtungen (x i, y i ) und (x j, y j ) Ein Paar heißt: konkordant, diskordant, falls x i < x j und y i < y j oder x i > x j und y i > y j falls x i < x j und y i > y j oder x i > x j und y i < y j N C : Anzahl der konkordanten Paare N D : Anzahl der diskordanten Paare τ a = N C N D n(n 1)/2 Kendall s Tau Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 236 / 241

33 Andere Varianten Goodman & Kruskal γ-koeffizient γ = N C N D N C + N D Somers D T y : Anzahl der Paare mit gleichem y ( Ties = Bindungen) D y x := N C N D N C + N D + T y Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 237 / 241

34 Korrelationsmatrix Bei mehr als zwei Merkmalen werden die Korrelationen häufig in Form einer Matrix dargestellt. Auf der Hauptdiagonalen stehen 1er. Die Matrix ist symmetrisch. 1 r xy r xz r xy 1 r yz r xz r yz 1 Deskriptive Statistik WiSe 2009/2010 Helmut Küchenhoff (Institut für Statistik, LMU) 238 / 241

35

Herzlich Willkommen zur Vorlesung Statistik

Herzlich Willkommen zur Vorlesung Statistik Herzlich Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Kovarianz und Korrelation Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

6. Auswertung mehrdimensionaler Daten

6. Auswertung mehrdimensionaler Daten 6. Auswertung mehrdimensionaler Daten Bisher: Auswertungsmethoden für Daten eines einzelnen Merkmals, z.b. Diskrete Klassierung Grafische Darstellungen (Verteilungsfunktion) Lagemaße Streungsmaße Schiefemaße

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 27. f X Y (a i b j ) = f i j = f ij f j

Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 27. f X Y (a i b j ) = f i j = f ij f j 1 Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS 2011 Lösung Aufgabe 27 (a) Notation: X: Rauchen, Y : chronische Bronchitis S X {ja, nein} {a 1, a 2 }, S Y {ja, nein} {b

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelationsanalysen Kovariation und Kovarianz Korrelation: - Interpretation

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 6 Gerhard Tutz, Jan Ulbricht WS 05/06.

Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 6 Gerhard Tutz, Jan Ulbricht WS 05/06. Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt Gerhard Tutz, Jan Ulbricht WS 05/0 Lösung Aufgabe 4 Notation: X: Rauchen, Y : chronische Bronchitis S X {ja, nein} {a 1, a },

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion Empirische Verteilungsfunktion H(x) := Anzahl der Werte x ist. Deskriptive

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Einführung in statistische Analysen

Einführung in statistische Analysen Einführung in statistische Analysen Andreas Thams Econ Boot Camp 2008 Wozu braucht man Statistik? Statistik begegnet uns jeden Tag... Weihnachten macht Deutschen Einkaufslaune. Im Advent überkommt die

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF. DR. ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 04.06.2013 Zweidimensionale Datensätze 1. Kontingenztabelle

Mehr

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall )

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall ) Zusammenhänge von Variablen Regressionsanalysen linearer Zusammenhang ( Idealfall ) kein Zusammenhang nichtlinearer monotoner Zusammenhang (i.d.regel berechenbar über Variablentransformationen mittels

Mehr

Beeinflusst das Geschlecht das Erwerbseinkommen?

Beeinflusst das Geschlecht das Erwerbseinkommen? 74 Kapitel 5 Analyse von Zusammenhängen 5.1 Multivariate Merkmale Gerade in der Soziologie ist die Analyse eindimensionaler Merkmale nur der allererste Schritt. Letztendlich kommt es auf die Analyse von

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

6Korrelationsanalyse:Zusammenhangsanalysestetiger Merkmale

6Korrelationsanalyse:Zusammenhangsanalysestetiger Merkmale 6Korrelationsanalyse:Zusammenhangsanalysestetiger Merkmale 6.1 Korrelationsanalyse 6.1 Korrelationsanalyse Jetzt betrachten wir bivariate Merkmale (X, Y ), wobei sowohl X als auch Y stetig bzw. quasi-stetig

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008 Aufgabe 1 I) Einige Mitarbeiter

Mehr

Datenanalyse mit Excel. Wintersemester 2013/14

Datenanalyse mit Excel. Wintersemester 2013/14 Datenanalyse mit Excel 1 KORRELATIONRECHNUNG 2 Korrelationsrechnung Ziel der Korrelationsrechnung besteht im bivariaten Fall darin, die Stärke des Zusammenhangs zwischen zwei interessierenden statistischen

Mehr

Abhängigkeit zweier Merkmale

Abhängigkeit zweier Merkmale Abhängigkeit zweier Merkmale Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/33 Allgemeine Situation Neben der Untersuchung auf Unterschiede zwischen zwei oder mehreren Untersuchungsgruppen hinsichtlich

Mehr

Musterlösung zur Aufgabensammlung Statistik I Teil 3

Musterlösung zur Aufgabensammlung Statistik I Teil 3 Musterlösung zur Aufgabensammlung Statistik I Teil 3 2008, Malte Wissmann 1 Zusammenhang zwischen zwei Merkmalen Nominale, Ordinale Merkmale und Mischungen Aufgabe 12 a) x\ y 1.Klasse 2.Klasse 3.Klasse

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von 2 Merkmalen für jeden Merkmalsträger stellt sich die Frage, ob es systematische Zusammenhänge

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

Charakterisierung der Daten: Sind es genug? Sind alle notwendig? Was ist naturgegeben, was von Menschen beeinflusst (beeinflussbar)?

Charakterisierung der Daten: Sind es genug? Sind alle notwendig? Was ist naturgegeben, was von Menschen beeinflusst (beeinflussbar)? 3 Beschreibende Statistik 3.1. Daten, Datentypen, Skalen Daten Datum, Daten (data) das Gegebene Fragen über Daten Datenerhebung: Was wurde gemessen, erfragt? Warum? Wie wurden die Daten erhalten? Versuchsplanung:

Mehr

Die Korrelation von Merkmalen

Die Korrelation von Merkmalen Die Korrelation von Merkmalen In der Analse von Datenmaterial ist eines der Hauptziele der Statistik eine Abhängigkeit bzw. einen Zusammenhang zwischen Merkmalen zu erkennen. Die Korrelation ermittelt

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Kernel, Perceptron, Regression. Erich Schubert, Arthur Zimek. 2014-07-20 KDD Übung

Kernel, Perceptron, Regression. Erich Schubert, Arthur Zimek. 2014-07-20 KDD Übung Kernel, Perceptron, Regression Erich Schubert, Arthur Zimek Ludwig-Maximilians-Universität München 2014-07-20 KDD Übung Kernel-Fukctionen Kernel kann mehrdeutig sein! Unterscheidet zwischen: Kernel function

Mehr

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Statistische Verfahren für das Data Mining in einem Industrieprojekt

Statistische Verfahren für das Data Mining in einem Industrieprojekt Statistische Verfahren für das Data Mining in einem Industrieprojekt Thorsten Dickhaus Forschungszentrum Jülich GmbH Zentralinstitut für Angewandte Mathematik Telefon: 02461/61-4193 E-Mail: th.dickhaus@fz-juelich.de

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

5.4.2 Kovarianz und Korrelation

5.4.2 Kovarianz und Korrelation 102 5.4. Zusammenhangsanalyse bivariater quasi-stetiger Merkmale 5.4.2 Kovarianz und Korrelation Wie misst man den Zusammenhang zwischen metrischen Merkmalen? Betrachte den Mittelpunkt der Daten ( x, ȳ)

Mehr

Teil II: Einführung in die Statistik

Teil II: Einführung in die Statistik Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

Skalenniveaus =,!=, >, <, +, -

Skalenniveaus =,!=, >, <, +, - ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

Glossar Statistik 2. Bivariate Verfahren: zwei nummerische Merkmale

Glossar Statistik 2. Bivariate Verfahren: zwei nummerische Merkmale Glossar Statistik 2 Bivariate Verfahren: zwei nummerische Merkmale Streudiagramm - Datenpaare (X, Y) als Punkte auf einem zweidimensionale Diagramm (Ordinate: Y, Abszisse: X) Lineare Regression - Optimierungsproblem

Mehr

12. Bivariate Datenanalyse. In den Kapiteln 4-11 wurden univariate Daten betrachtet:

12. Bivariate Datenanalyse. In den Kapiteln 4-11 wurden univariate Daten betrachtet: 12. Bivariate Datenanalyse Während einer nur Zahlen im Kopf hat, kann er nicht auf den Kausalzusammenhang kommen Anonymus In den Kapiteln 4-11 wurden univariate Daten betrachtet: Von univariaten Daten

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Linearer Zusammenhang von Datenreihen

Linearer Zusammenhang von Datenreihen Linearer Zusammenhang von Datenreihen Vielen Problemen liegen (möglicherweise) lineare Zusammenhänge zugrunde: Mein Internetanbieter verlangt eine Grundgebühr und rechnet minutenweise ab Ich bestelle ein

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand

Mehr

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25 Inhaltsverzeichnis Einleitung 19 Zu diesem Buch 19 Konventionen in diesem Buch 20 Was Sie nicht lesen müssen 21 Falsche Voraussetzungen 21 Wie dieses Buch aufgebaut ist 21 Teil I: Datenanalyse und Grundlagen

Mehr

Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen. Standardisierung von Daten

Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen. Standardisierung von Daten DAS THEMA: TABELLEN UND ABBILDUNGEN Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen Standardisierung von Daten z-standardisierung Standardnormalverteilung 1 DIE Z-STANDARDISIERUNG

Mehr

Korrelation Regression. Wenn Daten nicht ohne einander können Korrelation

Korrelation Regression. Wenn Daten nicht ohne einander können Korrelation DAS THEMA: KORRELATION UND REGRESSION Korrelation Regression Wenn Daten nicht ohne einander können Korrelation Korrelation Kovarianz Pearson-Korrelation Voraussetzungen für die Berechnung die Höhe der

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

1. Lineare Regression (Ausgleichsgerade)

1. Lineare Regression (Ausgleichsgerade) Carl-Engler-Schule Karlsruhe Lineare Regression 1 (6) 1. Lineare Regression (Ausgleichsgerade) 1.1 Was ist eine Ausgleichsgerade? Die Ausgleichsgerade ist ein Ausgleichs-Verfahren zur Kurvenanpassung (Approximation).

Mehr

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen - nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige

Mehr

Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06

Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06 Klausur Statistik I Dr. Andreas Voß Wintersemester 2005/06 Hiermit versichere ich, dass ich an der Universität Freiburg mit dem Hauptfach Psychologie eingeschrieben bin. Name: Mat.Nr.: Unterschrift: Bearbeitungshinweise:

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Markt+Technik Vorwort Schreiben Sie uns! 13 15 Statistische Untersuchungen 17 Wozu Statistik? 18 Wirtschaftliche

Mehr

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13 Inhaltsverzeichnis Vorwort 1 Kapitel 1 Einführung 3 1.1 Ziele... 4 1.2 Messtheorie und deskriptive Statistik... 8 1.3 Grundlagen der Wahrscheinlichkeitsrechnung... 9 1.4 Inferenzstatistik... 9 1.5 Parametrische

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE INHALTS- VERZEICHNIS Vorwort 13 Schreiben Sie uns! 15 1 Statistische Untersuchungen 17 Wozu Statistik? 18

Mehr

Modul G.1 WS 07/08: Statistik

Modul G.1 WS 07/08: Statistik Modul G.1 WS 07/08: Statistik 10.01.2008 1 2 Test Anwendungen Der 2 Test ist eine Klasse von Verfahren für Nominaldaten, wobei die Verteilung der beobachteten Häufigkeiten auf zwei mehrfach gestufte Variablen

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-06 Dr. Malte Persike persike@uni-mainz.de

Mehr

1 Darstellen von Daten

1 Darstellen von Daten 1 Darstellen von Daten BesucherInnenzahlen der Bühnen Graz in der Spielzeit 2010/11 1 Opernhaus 156283 Hauptbühne 65055 Probebühne 7063 Ebene 3 2422 Next Liberty 26800 Säulen- bzw. Balkendiagramm erstellen

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Vorlesung: Statistik für Kommunikationswissenschaftler

Vorlesung: Statistik für Kommunikationswissenschaftler Vorlesung: Statistik für Kommunikationswissenschaftler Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München WiSe 2009/2010 Übungen zur Veranstaltung Mittwoch: 14.15-15.45 HG DZ007 Cornelia Oberhauser

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

Univariates Datenmaterial

Univariates Datenmaterial Univariates Datenmaterial 1.6.1 Deskriptive Statistik Zufallstichprobe: Umfang n, d.h. Stichprobe von n Zufallsvariablen o Merkmal/Zufallsvariablen: Y = {Y 1, Y 2,..., Y n } o Realisationen/Daten: x =

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 008 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe 1: ( VP) x Gegeben ist die Funktion f mit f(x). x Bilden Sie die Ableitung von f und fassen Sie diese so weit wie

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

3 Lage- und Streuungsmaße

3 Lage- und Streuungsmaße 3 Lage- und Streuungsmaße Grafische Darstellungen geben einen allgemeinen Eindruck der Verteilung eines Merkmals, u.a. von Lage und Zentrum der Daten, Streuung der Daten um dieses Zentrum, Schiefe / Symmetrie

Mehr

1.5 Berechnung von Rangzahlen

1.5 Berechnung von Rangzahlen 1.5 Berechnung von Rangzahlen Bei vielen nichtparametrischen Verfahren spielen die so genannten Rangzahlen eine wesentliche Rolle, denn über diese werden hier die Prüfgrößen berechnet. Dies steht im Gegensatz

Mehr

Teil I Beschreibende Statistik 29

Teil I Beschreibende Statistik 29 Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................

Mehr

I. Zahlen, Rechenregeln & Kombinatorik

I. Zahlen, Rechenregeln & Kombinatorik XIV. Wiederholung Seite 1 I. Zahlen, Rechenregeln & Kombinatorik 1 Zahlentypen 2 Rechenregeln Brüche, Wurzeln & Potenzen, Logarithmen 3 Prozentrechnung 4 Kombinatorik Möglichkeiten, k Elemente anzuordnen

Mehr

Portfoliotheorie. Von Sebastian Harder

Portfoliotheorie. Von Sebastian Harder Portfoliotheorie Von Sebastian Harder Inhalt - Begriffserläuterung - Allgemeines zur Portfoliotheorie - Volatilität - Diversifikation - Kovarianz - Betafaktor - Korrelationskoeffizient - Betafaktor und

Mehr

Achim Bühl, Peter Zöfel. SPSS Version 10. Einführung in die moderne Datenanalyse unter Windows. 7., überarbeitete und erweiterte Auflage

Achim Bühl, Peter Zöfel. SPSS Version 10. Einführung in die moderne Datenanalyse unter Windows. 7., überarbeitete und erweiterte Auflage Achim Bühl, Peter Zöfel SPSS Version 10 Einführung in die moderne Datenanalyse unter Windows 7., überarbeitete und erweiterte Auflage ADDISON-WESLEY An imprint of Pearson Education München Bosten San Francisco

Mehr

Der Internetdienst für Ihre Online-Umfragen. Leitfaden statistische Auswertung

Der Internetdienst für Ihre Online-Umfragen. Leitfaden statistische Auswertung Der Internetdienst für Ihre Online-Umfragen Leitfaden statistische Auswertung Weitere in dieser Reihe bei 2ask erschienene Leitfäden Allgemeiner Leitfaden zur Fragebogenerstellung Sie möchten einen Fragebogen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 05. Dezember 2012 1 Datenpaare Korrelation 2 Lineare Regression Problemstellung Beispiel Bleibelastung 3 Regression

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Lineare vs. nichtlineare Zusammenhänge

Lineare vs. nichtlineare Zusammenhänge Nicht lineare Zusammenhänge Lowess und Potenzleiter Partialkorrelation Thomas Schäfer SS 29 1 Lineare vs. nichtlineare Zusammenhänge Was Sie schon wissen: Zusammenhänge sind die Grundlage der Methodenlehre

Mehr

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Wiederholung Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell

Mehr

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion.

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion. Tutorium Mathe 1 MT I Funktionen: Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren Man nennt die Untersuchung von Funktionen auch Kurvendiskussion 1 Definitionsbereich/Wertebereich

Mehr

ZIV-Schulung. Statistik mit Excel 2010

ZIV-Schulung. Statistik mit Excel 2010 ZIV-Schulung Statistik mit Excel 2010 Statistische Möglichkeiten mit Excel 2010 2 Zur Unterstützung quantitativer Datenanalysen dienen in Excel 2010 vor allem: > die Basisfunktionen für Berechnungen in

Mehr

Statistik eindimensionaler Größen

Statistik eindimensionaler Größen Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,

Mehr

Einführung in die Korrelationsrechnung

Einführung in die Korrelationsrechnung Einführung in die Korrelationsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Korrelationsrechnung

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst Springer-Lehrbuch Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Franz Kronthaler Hochschule für Technik und Wirtschaft HTW Chur, Schweiz ISSN 0937-7433 ISBN 978-3-642-53739-4 DOI

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Tabellarische und graphie Darstellung von univariaten Daten

Tabellarische und graphie Darstellung von univariaten Daten Part I Wrums 1 Motivation und Einleitung Motivation Satz von Bayes Übersetzten mit Paralleltext Merkmale und Datentypen Skalentypen Norminal Ordinal Intervall Verältnis Merkmalstyp Diskret Stetig Tabellarische

Mehr

Kapitel 7: Zweidimensionale Häufigkeitsverteilungen

Kapitel 7: Zweidimensionale Häufigkeitsverteilungen Kapitel 7: Zweidimensionale Häufigkeitsverteilungen 1. Regression und Korrelation... 192 2. Darstellung mehrdimensionaler Datensätze... 193 a) Verbundene Beobachtungen, gemeinsame Verteilung... 193 b)

Mehr

Quantitative Methoden der Bildungsforschung

Quantitative Methoden der Bildungsforschung Glieung Wieholung Korrelationen Grundlagen lineare Regression Lineare Regression in SPSS Übung Wieholung Korrelationen Standardisiertes Zusammenhangsmaß (unstandardisiert: Kovarianz) linearer Zusammenhang

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 16. April 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 2 1 ii) empirische

Mehr

Statistik Einführung // Lineare Regression 9 p.2/72

Statistik Einführung // Lineare Regression 9 p.2/72 Statistik Einführung Lineare Regression Kapitel 9 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Ledold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Lineare Regression

Mehr