Bewegungen im Zentralfeld

Größe: px
Ab Seite anzeigen:

Download "Bewegungen im Zentralfeld"

Transkript

1 Egänzungen zu Physik I Wi wollen jetzt einige allgemeine Eigenschaften de Bewegung eines Massenpunktes unte dem Einfluss eine Zentalkaft untesuchen, dh de Bewegung in einem Zentalfeld Danach soll de spezielle Fall de Planetenbewegung behandelt weden, de histoisch eines de Hauptpobleme de Mechanik und speziell de Himmelsmechanik wa Zentalbewegungen spielen jedoch in vielen Zweigen de Physik eine Rolle, so zb bei Steupozessen atomae ode subatomae Teilchen Reduktion des Zwei-Köpe- auf ein Ein-Köpe-Poblem Das Zentalkaftpoblem mit zwei Köpen ist eines de wichtigen Pobleme de Physik; es umfasst in de Himmelsmechanik das Poblem Ede - Sonne, in de Atomphysik das klassische Atommodell mit zwei endlichen Massen und in de Quantenmechanik Steupozesse atomae Teilchen ode Elementateilchen Es wid dabei angenommen, dass zwei Massenpunkte in gegenseitige Wechselwikung Zentalkäfte (zb Gavitations- ode Coulombkäfte) aufeinande ausüben, die nu von den Relativkoodinaten = ode auch von deen zeitlichen Ableitungen, abhängen Die kinetischen Enegien und die Bewegungsgleichungen de beiden Massen sind E kin = m und F = +f() = m, () E kin = m und F = f() = m () Die Kaft ist anziehend, wenn f() > 0 ist, und abstossend, wenn f() < 0 gilt Sie kann duch ein Potential, das nu von den Relativkoodinaten = abhängt, dagestellt weden: F = V, und mit V ( ) V ( ) ( ) V ( ) = = ( ) ( ), gilt fü F V ( ) = y m S m R x V ( ) V ( ) ( ) = ( ) und F V ( ) = : F = F ( actio=eactio ) V ( ) = ( ) F m m F Das System hat f = 6 Feiheitsgade, zb 3 Komponenten fü die Koodinate R = (m + m )/(m + m ) des Schwepunktes S und 3 Komponenten fü die Relativkoodinate = Die kinetische Enegie und die Käfte können nun statt mit den Koodinaten, auch nu mit den Relativ- und Schwepunktskoodinaten und R ausgedückt weden Wie sich de Skizze entnehmen lässt, ist m = R, (3) = R m + m + (4) m + m Und mit de Summe F + F = 0 = m + m folgt M R = p = 0, mit M = m + m gleich de Gesamtmasse und R= m + m gleich de Schwepunktskoodinate p M = 0 bedeutet nichts andees, als dass de Gesamtimpuls p = m + m konstant ist Multiplikation de Gleichungen () und () mit m bzw m sowie Subtaktion und Beücksichtigung des actio=eactio-pinzips egibt m m m ( ) = m F m F = (m + m ) F M m m = F m + m ( ) = (5) }{{ } = kugelsymmetisches Kaftfeld Zu Einneung: Dieses hie beispielshaft nachgewiesene Pinzip (3 Newtonsches Gesetz) gilt nicht nu fü Zental-, sonden ganz allgemein fü alle zwischen zwei Köpen wikenden Käfte (vgl Halliday, Kap 5-7)

2 Egänzungen zu Physik I Die obige Gleichung hat die Fom des Newtonschen Gesetzes ausgedückt in den Relativkoodinaten und de eduzieten Masse = m m m + m de beiden Köpe des Systems (6) Die Lösung de Gleichung (5) bescheibt also das System in den Relativkoodinaten Mit den Gleichungen (3) und (4) können sie in die uspünglichen Koodinaten tansfomiet weden Ist de Impuls des Schwepunktes zeitlich konstant und bewegt sich gleichfömig, kann e fü die weitee Behandlung weggelassen weden 3 und nu die von abhängigen Teme de Bewegungsgleichung müssen gelöst weden (Sepaation de Schwepunkts- und Relativkoodinaten) Natülich muss dabei die spezielle Fom von f() bekannt sein Mit de eduzieten Masse wid das Zweiköpepoblem auf ein einfachees Einköpepoblem zuückgefüht Mehköpepobleme mit meh als zwei Massen können nu noch iteativ näheungsweise mit zb S als Koodinatenuspung gelöst weden Konstanz des Dehimpulses Mit Gl (5) gilt d = F ( ) = f() Da die Zentalkaft F = f() in Richtung des Otsvektos weist ( F ), übt sie kein Dehmoment auf den Massenpunkt aus: τ = d Nach dem Dehimpulssatz folgt dann ohne äussee Käfte: = konst = F = 0 (7) Bei eine Zentalbewegung ist de Dehimpuls konstant ϕ d m p =konst Auch fü eine gleichfömige Bewegung mit F = 0 und τ = 0 gilt d Impuls und Dehimpuls sind ehalten = F = 0 = konst De Betag des Dehimpulses ist = = p = mv sin ϕ = d m v; e hängt von de Wahl des Bezugspunktes ab: liegt diese auf de Bahn, so ist d = 0 und damit = 0 ist also eine Konstante de Bewegung Da nach Gösse und Richtung konstant sein muss, egeben sich zwei Konsequenzen: (t + ) da d (t) Wegen = ( v) = d / kann sich nu in eine Ebene senkecht zu bewegen Da abe aumfest ist, hat folglich auch die Bewegungsebene (mit Feiheitsgaden) eine feste Oientieung im Raum Die von in de Zeit übestichene infinitesimal kleine Deiecksfläche ist da = da = d (da d die Fläche des von und d aufgespannten Paallelogamms dastellt) 3 Man wählt häufig als Anfangsbedingungen fü die Schwepunktskoodinate d R/ = 0 und R = 0, dh ein Inetialsystem, in dem de Schwepunkt uht

3 Egänzungen zu Physik I Also folgt de Keplesche Flächensatz: L = d = da = konst Die po Zeiteinheit übestichene Fläche ist konstant (8) da da da3 Bei de Zentalbewegung liegt de Otsvekto des Massenpunktes in eine aumfesten Ebene und übesteicht in gleichen Zeiten gleiche Flächen da4 Bei de Heleitung des Flächensatzes ist allgemein eine Zentalkaft voausgesetzt woden und nicht speziell die Gavitationskaft, e gilt also fü alle Zentalkäfte Obwohl wi die Bahnkuve des Massenpunktes auf Gund de Bewegungsgleichung aus Gl (5) fü die Relativkoodinaten beechnen könnten, ist es leichte, das Poblem duch Kombination des Flächensatzes mit dem (fü Zentalkäfte gültigen) Enegieehaltungssatz zu lösen De Enegieehaltungssatz lautet wobei die potentielle Enegie V duch v + V = E = konst, V () = f() d gegeben ist, falls wi V ( ) = 0 wählen Da die Bahnkuve eben ist ( -Ehaltung), dücken wi die Geschwindigkeit v duch ebene Polakoodinaten aus: 4 y ϕ x Daaus folgt: d [ (d ) ( ) ] dϕ + + V = E ( ) = (E V ) dϕ Aus L = v = dϕ senkecht zu stehende Koponente v ϕ = dϕ dϕ =, (9) und somit von v genommen weden) egibt sich d = (E V ) (fü v muss nu die ( ) L (0) Dividieen wi die Gleichungen (9) und (0) um t zu eliminieen, so ehalten wi einen Zusammenhang zwischen und ϕ mit ( dϕ )( d ) = ( dϕ d )/( ) = dϕ d : dϕ d = (E V ) ( ) die Gleichung de Bahnkuve () Fü eine Beechnung von (ϕ) muss die Funktion V () bekannt sein, zb V () = Γ Mm 4 In den eckigen Klammen steht de Polakoodinaten-Ausduck fü v = v + v ϕ (hegeleitet in den Keisbewegungen auf S4) 3

4 Egänzungen zu Physik I 3 Planetenbewegungen Wi weden jetzt Gl () fü den Fall eine idealisieten Planetenbewegung lösen: M und m seien die Massen de Sonne und eines Planeten m Die Veteilung de Massen in beiden Köpen sei kugelsymmetisch 5 Die eduziete Masse 6 ist = mm m + M M Die Bewegung dieses einen speziellen Planeten soll nicht duch die Anwesenheit andee Planeten gestöt weden Mit dem Gavitationspotential V () = Γ mm fü die potentielle Enegie wid die Bahnkuven-Gl () zu: dϕ d = ) ( ) ( E + ΓmM Wi fühen / =: x als neue Vaiable ein, sodass d = dx/x gilt, und ehalten / L dϕ = / dx = E + ΓmM ( ) x L x ( ) dx L x ΓmM + E + ΓmM = / ( ) E + ΓmM (x/ ΓmM/) E +( ΓmM L ) + wenn wi nochmals eine neue Vaiable einfühen: u := dx ode dϕ = du u, () x ΓmM ( ) E + ΓmM Integation von Gl () liefet ϕ ϕ = accos(u), ode, wenn wi ϕ = 0 setzen, cos(ϕ ϕ ) = cos ϕ = u (3) Kehen wi in Gl (3) wiede zu uspünglichen Vaiablen zuück, dann ehält man = cos ϕ E + L = ΓmM + cos ϕ ( ΓmM ) + ΓmM Daaus kann die Bahnkuve des Planeten beechnet weden: + E L Γ m M Mit den Abküzungen p := L ΓmM, ε := + E L Γ m M ehalten wi = p + ε cos(ϕ) die Gleichung eines Kegelschnittes in Polakoodinaten 7 (4) 5 Abweichungen von eine exakten Kugelsymmetie zb von Sonne und Ede fühen zu, ϑ, ϕ abhängigen Koektuen (Quadupol-Teme) 6 In vielen Fällen ist m M und man kann fü die eduziete Masse m setzen Sind jedoch beide Massen gleich, wie in einigen Doppelstensystemen ode beim Positonium dem e e + -Atom, dann otieen beide Massen um ihen gemeinsamen Schwepunkt; es ist dann = m/ 7 auch Polagleichung genannt siehe Anhang am Ende fü eine zweite Möglichkeit, zu ih zu gelangen 4

5 Egänzungen zu Physik I a P F e ' b F Gl (4) ist die Gleichung eines Kegelschnittes, wenn de eine Bennpunkt de Pol ist, von dem aus gemessen wid, und ϕ von dem Scheitel aus gemessen wid, de dem Pol am nächsten ist Die Abbildung links zeigt eine Ellipse Allgemein gibt es dei Aten von Kegelschnitten, die nach den Wete von ε, de sogenannten Exzentizität, unteschieden weden: Die Fälle E 0 entspechen de ungebundenen Bewegung: de Himmelsköpe kann das Sonnensystem velassen De Fall E < 0 entspicht de eigentlichen, gebundenen Planetenbewegung Den Wet de Gesamtenegie E findet man aus de diekt vo Gl (4) gegebenen Deklaation von ε ε = e/a E Keis 0 ( ΓmM ) Ellipse < < 0 Paabel = 0 Hypebel > > 0 Im Falle de gebundenen Planetenbewegung haben wi es also mit eine Ellipse zu tun 8 Die Gleichung eine Ellipse lautet + = konst = a (Vostellung: Befestige die Enden eine Schnu de Länge a an den Bennpunkten und fühe einen dain eingespannten Bleistift im Keis heum so zeichnet sich eine Ellipse) Laut Kosinussatz ist = + 4e + 4e cos(ϕ) (vgl Abb) Indem man eliminiet, egibt sich b /a = mit e = a b und somit ε = a + e/a cos ϕ b /a b /a = p nennt man den Paamete ode Scheitelkümmungsadius Wi haben somit aus dem Gavitationsgesetz hegeleitet: Das Keplesche Gesetz Die Planeten bewegen sich auf Ellipsen, in deen einem Bennpunkt die Sonne steht Das Keplesche Gesetz ist de schon mit Gl (8) fomuliete Flächensatz Das 3 Keplesche Gesetz besagt: Die Quadate de Umlaufszeiten de Planeten vehalten sich zueinande wie die Kuben de gossen Achsen ihe Bahnellipsen Zum Beweis fühen wi im Flächensatz die Umlaufszeit, so gilt πab T da = = und deshalb T = die Ellipsenfläche A = πab ein Ist T ( ) πab = 4π a wenn wi mit Hilfe de fü Gl (4) eingefühten Abküzung 9 fü p noch L al ΓmM = 4π ΓmM a3, b = p a eliminieen 8 Vgl auch die Atomphysik ( Coulombkaft): Hie bescheibt klassisch und quantenmechanisch E < 0 ein im Coulombfeld gebundenes Elekton und E > 0 ein am Atomken gesteutes feies Elekton 9 Es wa dies p = L ΓmM 5

6 Egänzungen zu Physik I Johannes Keple (57-630) leitete seine empiischen Gesetze aus den Daten von Tycho Bahe (546-60) ab, bevo das Newtonsche Gavitationsgesetz bekannt wa Diese Reihenfolge des Ekenntnisgewinns zunächst empiische Bescheibung gefolgt von eine Paametisieung de Daten, est späte dann eine Ekläung duch entspechende physikalische Gesetze titt in de Physik imme wiede auf Anhang: Bestimmung de Bewegungsgleichung duch Integation Dies ist eine etwas aufwändigee Methode als die oben gewählte; ihe Anfühung an diese Stelle dient bloss de Vollständigkeit: Man multipliziet hiebei m = p = Γ m m 3 mit L und beücksichtigt das deifache und mit Vektopodukt d p L = d ( p L) = Γ m m 3 ( ) = + d ( ) = egibt sich d ( p L) = Γm m d L }{{ = Γ m m } ( p) 3 [ ( p) p ] ( m ) m 3 = 3 [ ( )] fü das Deifachpodukt ( ) p L = Γm m + C C ist als Integationskonstante de sogenannte Lenzsche Vekto, de in de festen Bewegungsebene liegt Multipliziet man die Gleichung mit und setzt p := L /Γm m und ε := C/Γm m, ehält man: ( p L) = L ( p) = L L = L = Γm m = + C C cos(ϕ) = p + ε cos(ϕ), in Übeeinstimmung mit de Fokaldastellung de Kegelschnitte, Gl (4) 6

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B A WS SS 07 03/4 Inhalt de Volesung A. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kinematik: Quantitative Efassung Dynamik: Usachen de Bewegung Käfte Abeit + Leistung,

Mehr

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km 00 0 6. Gavitation Gavitationswechselwikung: eine de vie fundaentalen Käfte (die andeen sind elektoagnetische, schwache und stake Wechselwikung) Ein Köpe it asse i Abstand zu eine Köpe it asse übt auf

Mehr

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr

Kepler sche Bahnelemente

Kepler sche Bahnelemente Keple sche Bahnelemente Siegfied Eggl In de Dynamischen Astonomie ist es üblich, das Vehalten von gavitativ inteagieenden Köpen nicht im katesischen Koodinatensystem zu studieen, sonden die Entwicklung

Mehr

Von Kepler zu Hamilton und Newton

Von Kepler zu Hamilton und Newton Von Kele zu Hamilton und Newton Eine seh elegante Vaiante von 3 Kele egeben 1 Newton 1. Das este Kele sche Gesetz 2. Das zweite Kele sche Gesetz 3. Die Bahngeschwindigkeit v und de Hodogah 4. Die Beschleunigung

Mehr

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation Mechanik Gavitation 5. Gavitation 5.1. Dehipuls und Dehoent De Dehipuls titt bei Dehbewegungen an die Stelle des Ipulses. Wi betachten zunächst den Dehipuls eines Teilchens (späte weden wi den Dehipuls

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Inhalt de Volesung Epeimentalphysik I Teil 1: Mechanik 4. Gavitation 5. Enegie und Abeit 6. Bewegte Bezugsysteme 6.1 Inetialsysteme 6. Gleichfömig bewegte Systeme 6.3 Beschleunigte Bezugssysteme 6.4 Rotieende

Mehr

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik Semina Gewöhnliche Dieentialgleichungen Anwendungen in de Mechanik Geog Daniilidis 6.Juli 05 Inhaltsvezeichnis Einleitung Motivation:.Newtonsche Gesetz 3 Vowissen 4 Konsevativen Systeme 3 5 Zentale Kaftfelde

Mehr

Allgemeine Mechanik Musterlo sung 4.

Allgemeine Mechanik Musterlo sung 4. Allgemeine Mechanik Mustelo sung 4. U bung. HS 03 Pof. R. Renne Steuqueschnitt fu abstossende Zentalkaft Betachte die Steuung eines Teilchens de Enegie E > 0 in einem abstossenden Zentalkaftfeld C F x)

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Expeimentalphysik I (Kip WS 009) Inhalt de Volesung Expeimentalphysik I Teil : Mechanik. Physikalische Gößen und Einheiten. Kinematik von Massepunkten 3. Dynamik von Massepunkten 4. Gavitation 4. Keplesche

Mehr

Physik - Gravitation. 8.1 Weltbilder. Ptolemaios: Geozentrisches Weltbild (Modell mit Epizyklen) R. Girwidz 1. R. Girwidz 2

Physik - Gravitation. 8.1 Weltbilder. Ptolemaios: Geozentrisches Weltbild (Modell mit Epizyklen) R. Girwidz 1. R. Girwidz 2 Physik - avitation. iwidz 8. Weltbilde Ptolemaios: eozentisches Weltbild (odell mit pizyklen). iwidz 8. Weltbilde. iwidz 3 8. Weltbilde Histoisch: Die Bewegung de Planeten wa übe Jahhundete nicht zu ekläen

Mehr

Konservatives Kraftfeld. Nullpunkt frei wählbar (abh. von Masse m) E pot bezogen auf Probemasse (unabh. von Masse m)

Konservatives Kraftfeld. Nullpunkt frei wählbar (abh. von Masse m) E pot bezogen auf Probemasse (unabh. von Masse m) Zu inneung Stichwote aus de 5. Volesung: () Kaftfeld: Konsevatives Kaftfeld W d 0 Potentielle negie: Nullpunkt fei wählba (abh. von Masse m) d Potential: eldstäke: bezogen auf Pobemasse (unabh. von Masse

Mehr

Allgemeine Mechanik Musterlösung 3.

Allgemeine Mechanik Musterlösung 3. Allgemeine Mechanik Mustelösung 3. HS 014 Pof. Thomas Gehmann Übung 1. Umlaufbahnen fü Zweiköpepobleme Die Bewegungsgleichung von zwei Köpen in einem zentalwikenem Kaftfel, U() = α/, lautet wie folgt:

Mehr

5 Gravitationstheorie

5 Gravitationstheorie 5 Gavitationstheoie Ausgeabeitet von G. Knaup und H. Walitzki 5.1 Gavitationskaft - Gavitationsfeld Die Gundidee zu Gavitationstheoie stammt von Newton (1643-1727): Die Kaft, die einen Apfel fallen lässt,

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

Reziprokes Quadratgesetz und Stabilität von planetarischen Bahnen Einige analytische Ergebnisse

Reziprokes Quadratgesetz und Stabilität von planetarischen Bahnen Einige analytische Ergebnisse Rezipokes Quaatgesetz un Stabilität von planetaischen Bahnen Einige analytische Egebnisse ) Die Kepleschen-Gesetze sin Folgen e Tatsache, ass ie Gavitationskaft einem umgekehten Quaatgesetz folgt Wi ween

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

4.11 Wechselwirkungen und Kräfte

4.11 Wechselwirkungen und Kräfte 4.11 Wechselwikungen und Käfte Kaft Wechselwikung Reichweite (m) Relative Stäke Gavitationskaft zwischen Massen Gavitationsladung (Anziehend) 1-22 Schwache Kaft Wechselwikung beim β-zefall schwache Ladung

Mehr

Arbeit in Kraftfeldern

Arbeit in Kraftfeldern Abeit in Kaftfelden In einem Kaftfeld F ( ) ist F( )d die vom Feld bei Bewegung eines Köps entlang dem Weg geleistete Abeit. Achtung: Vozeichenwechsel bzgl. voheigen Beispielen Konsevative Kaftfelde Ein

Mehr

Physikalische Chemie I - Klassische Thermodynamik SoSe 2006 Prof. Dr. Norbert Hampp 1/7 3. Das reale Gas. Das reale Gas

Physikalische Chemie I - Klassische Thermodynamik SoSe 2006 Prof. Dr. Norbert Hampp 1/7 3. Das reale Gas. Das reale Gas Pof. D. Nobet Ham 1/7. Das eale Gas Das eale Gas Fü die Bescheibung des ealen Gases weden die Gasteilchen betachtet als - massebehaftet - kugelfömig mit Duchmesse d - Wechselwikungen auf Gund von Diol-Diol-Wechselwikungen

Mehr

Kardioiden INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand 11. Mai 2016

Kardioiden INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand 11. Mai 2016 Kadioiden Text N. 5 Stand. Mai 6 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 5 Kadioiden Vowot Die Kadioide ist aus meheen Günden beühmt. Da gibt es zuest die physikalische Escheinung de

Mehr

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1 Technische Univesität München Fakultät fü Physik Feienkus Theoetische Physik 1 (Mechanik) SS 018 Aufgabenblatt 1 Daniel Sick Maximilian Ries 1 Aufgabe 1: Diffeenzieen Sie die folgenden Funktionen und entwickeln

Mehr

Zur Erinnerung. = grade pot. 1 m F G = Stichworte aus der 5. Vorlesung: Konservatives Kraftfeld. Kraftfeld: Nullpunkt frei wählbar (abh.

Zur Erinnerung. = grade pot. 1 m F G = Stichworte aus der 5. Vorlesung: Konservatives Kraftfeld. Kraftfeld: Nullpunkt frei wählbar (abh. Zu inneung Stichwote aus de 5. Volesung: () Kaftfeld: Konsevatives Kaftfeld W d 0 Potentielle negie: Potential: eldstäke: Nullpunkt fei wählba (abh. von Masse m) bezogen auf Pobemasse (unabh. von Masse

Mehr

{ } v = v r. v dv = G M. a dr = v dv. 1 2 v2 = G M + C 1. = 1 2 v 02 g R. e r. F (r) = G m M r 2. a = dv dt. = dv dr dr. dr v G M.

{ } v = v r. v dv = G M. a dr = v dv. 1 2 v2 = G M + C 1. = 1 2 v 02 g R. e r. F (r) = G m M r 2. a = dv dt. = dv dr dr. dr v G M. Otsabhängige Käfte Bsp.: Rakete im Gavitationsfeld (g nicht const.) F () = G m M 2 Nu -Komp. a = dv dt e v = v = dv d d dt a d = v dv v dv = G M 1 2 v2 = G M C 1 = 1 2 v 0 (späte meh) (Abschuss vom Pol)

Mehr

Theorie klassischer Teilchen und Felder I

Theorie klassischer Teilchen und Felder I Mustelösungen Blatt 9.0.006 Theoetische Physik I: Theoie klassische Teilchen und Felde I Pof. D. G. Albe Dipl.-Phys. O. Ken Das Zwei-Köpe-Poblem. Zeigen Sie, dass fü die Potentialfunktion U x x gilt mit

Mehr

Theoretische Mechanik

Theoretische Mechanik Theoetische Mechanik Amand Faessle Institut fü Theoetische Physik Ebehad Kals-Univesität Tübingen Auf de Mogenstelle 4 7076 Tübingen Deutschland 3. Mäz 006 INHALT Newton sche Mechanik. Newton sche Gesetze............................................

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

[( r. = dv. Für D = 0 muss folglich die Klammer verschwinden. Die Differentialgleichung WS 2008/ PDDr.S.Mertens

[( r. = dv. Für D = 0 muss folglich die Klammer verschwinden. Die Differentialgleichung WS 2008/ PDDr.S.Mertens PDD.S.Metens Theoetische Physik I Mechanik J. Untehinninghofen, M. Hummel Blatt 7 WS 28/29 2.2.28. Runge-enz-Vekto.EinMassenpunktdeMassemmitdemDehimplus bezüglichdes (4Pkt. Kaftzentums bewege sich in einem

Mehr

2.2 Beschleunigte Bezugssysteme Gleichf. beschl. Translationsbew.

2.2 Beschleunigte Bezugssysteme Gleichf. beschl. Translationsbew. . Beschleunigte Bezugssysteme..1 Gleichf. beschl. Tanslationsbew. System S' gleichf. beschleunigt: V = a t (bei t=0 sei V = 0) s S s gleichfömige beschleunigte Tanslationsbewegung System S System S' x,

Mehr

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.)

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.) Otsabhängige Käfte Bsp.: akete i Gavitationsfeld (g nicht const.) F () Nu -Kop. G M 2 e (späte eh) a v dv a d v dv v dv d v dv 1 G M 2 v2 C 1 1 2 v (Abschuss vo Pol) d G M 2 C 1 d 2 G M dv d v 1 2 v 2

Mehr

EP-Vorlesung #5. 5. Vorlesung EP

EP-Vorlesung #5. 5. Vorlesung EP 5. Volesung EP EP-Volesung #5 I) Mechanik 1. Kinematik (Begiffe Raum, Zeit, Ot, Länge, Weltlinie, Geschwindigkeit,..) 2. Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft

Mehr

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt Vektoechnung Vektoen Vektoechnung 1 Otsvekto Feste Otsvektoen sind mit dem Anfangspunkt an den Koodinatenuspung gebunden und weisen im äumlichen, katesischen Koodinatensstem um Punkt P,, ( ) Das katesische

Mehr

Wir nehmen an, dass die Streuung elastisch ist; d.h., dass die Energie des Teilchens erhalten bleibt. Die Streuung ändert die Wellenfunktion bei r =

Wir nehmen an, dass die Streuung elastisch ist; d.h., dass die Energie des Teilchens erhalten bleibt. Die Streuung ändert die Wellenfunktion bei r = Volesung 9 Die elastische Steuung, optisches Theoem, Steumatix Steuexpeimente sind ein wichtiges Instument, das uns elaubt die Eigenschaften de Mateie bei kleinsten Skalen zu studieen. Ein typisches Setup

Mehr

Der Lagrange- Formalismus

Der Lagrange- Formalismus Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr

Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u r t R heisst Parameter

Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u r t R heisst Parameter 8 3. Dastellung de Geaden im Raum 3.1. Paametegleichung de Geaden Die naheliegende Vemutung, dass eine Geade des Raumes duch eine Gleichung de Fom ax + by + cz +d 0 beschieben weden kann ist falsch (siehe

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik

1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik 1. Übungsblatt zu Theoetischen Physik I im SS16: Mechanik & Spezielle elativitätstheoie Newtonsche Mechanik Aufgabe 1 Abhängigkeit physikalische Gesetze von de Zeitdefinition Eine wesentliche Gundlage

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Mehrkörperproblem & Gezeitenkräfte

Mehrkörperproblem & Gezeitenkräfte 508.55 Satellitengeodäsie Mehköpepoblem & Gezeitenkäfte Tosten Maye-Gü Tosten Maye-Gü Bewegungsgleichung Bewegungsgleichung (Keplepoblem): Diffeentialgleichung. Odnung ( t) ( t) GM ( t) Bestimmt bis auf

Mehr

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung Kapitel 13 Das Wassestoff-Atom 13.1 negiewete des Wassestoff-Atoms duch Kastenpotential-Näheung Das gobe Atommodell des im Potentialtopf eingespeten Atoms vemag in qualitative Weise das Aufteten von Linienspekten

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

EP WS 2009/10 Dünnweber/Faessler

EP WS 2009/10 Dünnweber/Faessler 6.Volesung 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Wiedeholung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

Lösung - Schnellübung 4

Lösung - Schnellübung 4 D-MAVT/D-MATL Analysis I HS 2016 D Andeas Steige Lösung - Schnellübung 1 Ein Keis vom Radius ollt im Innen eines Keises vom Radius R ab Die Kuve t, die dabei ein feste Punkt P auf dem Rand des kleinen

Mehr

Wasserstoff mit SO(4)-Symmetrie

Wasserstoff mit SO(4)-Symmetrie Wassestoff mit SO(4)-Symmetie von Eduad Belsch Univesität Hambug 0. Dezembe 0 Inhaltsvezeichnis Einleitung Runge-Lenz-Vekto. klassisch......................................... quantenmechanisch..................................

Mehr

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6 KIT WS / Theo A Aufgabe : Vetoen [3 + 3 = 6] Gegeben sind die Vetoen a = (, 7, und b = (,,. (a Bestimmen Sie einen Veto c de Länge c = in de a b Ebene mit c b. (b Bestimmen Sie den paametisieten Weg (ϕ

Mehr

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche:

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche: 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt 6.Volesung Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

Kapitel 3 Kräfte und Drehmomente

Kapitel 3 Kräfte und Drehmomente Kapitel 3 Käfte und Dehmomente Käfte Messung und physikalische Bedeutung eine Kaft : Messung von Masse m Messung von Beschleunigung a (Rückgiff auf Längen- und Zeitmessung) Aus de Messung von Masse und

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

[ M ] = 1 Nm Kraft und Drehmoment

[ M ] = 1 Nm Kraft und Drehmoment Stae Köpe - 4 HBB mü 4.2. Kaft und Dehmoment Käfte auf stae Köpe weden duch Kaftvektoen dagestellt. Wie in de Punktmechanik besitzen diese Kaftvektoen einen Betag und eine Richtung. Zusätzlich wid abe

Mehr

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 9 PHYS11 Gundkus I Physik, Witschaftsphysik, Physik Leham Othma Mati, othma.mati@uni-ulm.de 16. 1. 5 und 19. 1. 5 1 Aufgaben 1. De Raum soll duch ein katesisches Koodinatensystem beschieben

Mehr

Dr. Jan Friedrich Nr L 2

Dr. Jan Friedrich Nr L 2 Übungen zu Expeimentalphysik 4 - Lösungsvoschläge Pof. S. Paul Sommesemeste 5 D. Jan Fiedich N. 4 9.5.5 Email Jan.Fiedich@ph.tum.de Telefon 89/89-1586 Physik Depatment E18, Raum 3564 http://www.e18.physik.tu-muenchen.de/teaching/phys4/

Mehr

Vektoraddition. Vektoraddition. Vektoraddition. Kraftwirkung bei Drehungen. Vektorzerlegung. Vektorzerlegung. Vektorzerlegung.

Vektoraddition. Vektoraddition. Vektoraddition. Kraftwirkung bei Drehungen. Vektorzerlegung. Vektorzerlegung. Vektorzerlegung. Vektoaddition Vektozelegung Vektoaddition Vektozelegung N F Α Α F mg F s 25 26 Vektoaddition Vektozelegung Kaftwikung bei Dehungen Dehmoment Eine im Schwepunkt angeifende Kaft bewikt nu eine Beschleunigung

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

Wichtige Begriffe der Vorlesung:

Wichtige Begriffe der Vorlesung: Wichtige Begiffe de Volesung: Abeit, Enegie Stae Köpe: Dehmoment, Dehimpuls Impulsehaltung Enegieehaltung Dehimpulsehaltung Symmetien Mechanische Eigenschaften feste Köpe Enegiesatz de Mechanik Wenn nu

Mehr

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße 5. Volesung EP I) Mechanik 1. Kinematik.Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft (Gavitation) d) Fedekaft e) Reibungskaft f) Scheinkäfte 3. Abeit, Leistung,

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen Aufgabenblatt-Spialen Tangentenwinkel.doc 1 Aufgaben zu Bestimmung des Tangentenwinkels von Spialen Gegeben ist die Spiale mit de Gleichung = 0,5 φ, φ im Bogenmaß. (a) Geben Sie die Gleichung fü Winkel

Mehr

Kantonsschule Reussbühl Maturitätsprüfung 2000, Typus AB Be/Es/Ko Mathematik Lösungen Sw / x 1+

Kantonsschule Reussbühl Maturitätsprüfung 2000, Typus AB Be/Es/Ko Mathematik Lösungen Sw / x 1+ Kantonsschule Reussbühl Matuitätspüfung 000, Typus AB Be/Es/Ko Mathematik Lösungen Sw / 00 Lösung de Aufgabe a ( + a) + a a + a) f () ; f () a fü a - ( + ) b) f() ( ) ( + ) + + + Nullstellen f() 0 fü 0,

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (4)

Einführung in die Physik I. Dynamik des Massenpunkts (4) Einfühung in die Physik I Dynmik des Mssenpunkts (4) O. von de Lühe und U. Lndgf Gvittion Die Gvittionswechselwikung ist eine de fundmentlen Käfte in de Physik m 1 m Sie wikt zwischen zwei Mssen m 1 und

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen

MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsstömen Holge Hauptmann Euopa-Gymnasium, Wöth am Rhein holge.hauptmann@gmx.de Mechanik mit Impuls und Impulsstömen 1 Impuls als Gundgöße de Mechanik De Impuls

Mehr

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung) c) Stöße 4. Stae Köpe a) Dehmoment Vesuche: Hüpfende Stahlkugel Veküztes Pendel Impulsausbeitung in Kugelkette elastische

Mehr

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf!

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf! De typische ewachsene Mensch pobiet die Dinge nu -3 x aus und gibt dann entnevt ode fustiet auf! Haben Sie noch die Hatnäckigkeit eines Kleinkindes welches laufen lent? Wie viel Zeit haben Sie mit dem

Mehr

Regelungstechnik I (WS 17/18) Übung 1

Regelungstechnik I (WS 17/18) Übung 1 Regelungstechnik I (WS 17/18 Übung 1 Pof. D. Ing. habil. Thomas Meue, Lehstuhl fü Regelungstechnik Aufgabe 1 (Mathematische Modellieung eines elektisch aktuieten Seilzuges. Abbildung 1.1 zeigt den Ankekeis

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Positive und negative Ladung Das Coulombsche Gesetz F 1 4πε q q 1 Quantisieung und haltung de elektischen Ladung e 19 1, 6 1 C Das

Mehr

Das Kepler-Problem. Max Camenzind - Akademie HD - Mai 2016

Das Kepler-Problem. Max Camenzind - Akademie HD - Mai 2016 Das Keple-Poble Max Caenzind - Akadeie HD - Mai 06 Das Zweiköpe-Poble In de Physik bezeichnet an als Zweiköpe-Poble die Aufgabe, die Bewegung zweie Köpe, die ohne äußee Einflüsse nu iteinande wechselwiken,

Mehr

Abbildung 1 Geometrie eines Streuexperiments, elastische Streuung

Abbildung 1 Geometrie eines Streuexperiments, elastische Streuung Loenz-Mie-Steuung in Bonsche Näheung 1 Einleitung Licht wede an einem Medium mit dem Bechungsindex n gesteut De Bechungsindex sei eell, Absoption finde nicht statt Ist die Wechselwikung mit dem Medium

Mehr

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten:

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten: Technische Univesität elin Fakultät V Institut fü Mechanik Fachgebiet fü Kontinuumsmechanik und Mateialtheoie Seketaiat MS 2, Einsteinufe 5, 10587 elin 9. Übungsblatt-Lösungen Staköpekinematik I SS 2016

Mehr

Drehbewegung Der Drehimpuls Definition des Drehimpulses

Drehbewegung Der Drehimpuls Definition des Drehimpulses Kapitel 10 Dehbewegung 10.1 De Dehimpuls Bei de Behandlung de Bewegung eines Teilchens haben wi den Impuls eines Teilchens definiet (Siehe Kap..). Diese Gösse wa seh hilfeich, wegen de Ehaltung des Gesamtimpulses

Mehr

( ) X t. = dt 2 τ. berücksichtigen, wird im Johnson-Mehl-Avrami-Ansatz in (9.23) künstlich ein Faktor ( ) eingebracht. Abbildung 9.

( ) X t. = dt 2 τ. berücksichtigen, wird im Johnson-Mehl-Avrami-Ansatz in (9.23) künstlich ein Faktor ( ) eingebracht. Abbildung 9. 7.5. 9.4 Johnson-Mehl-Avami-Kinetik Fü einfache Übelegungen zum Ablauf von Reaktionen wid oft die sogenannte JMA-Kinetik vewendet (besondes in technisch oientieten Atikeln). Die gundsätzliche Vogehensweise

Mehr

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1 Mechanik. Dynamik: die Lehe von den Käften Physik fü Medizine 1 Usache von Bewegungen: Kaft Bislang haben wi uns auf die Bescheibung von Bewegungsvogängen beschänkt, ohne nach de Usache von Bewegung zu

Mehr

Kreisbewegungen (und gekrümmte Bewegungen allgemein)

Kreisbewegungen (und gekrümmte Bewegungen allgemein) Auf den folgenden Seiten soll anhand de Gleichung fü die Zentipetalbeschleunigung, a = v 2 / 1, dagelegt weden, dass es beim Ekläen physikalische Sachvehalte oftmals veschiedene Wege gibt, die jedoch fühe

Mehr

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften Expeimentiefeld 1 Statik und Dynamik 1. Einfühung Übelegungen im Beeich de Statik und Dynamik beuhen stets auf de physikalischen Göße Kaft F. Betachten wi Käfte und ihe Wikung auf einen ausgedehnten Köpe,

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

8. Bewegte Bezugssysteme

8. Bewegte Bezugssysteme 8. Bewegte Bezugssysteme 8.1. Vobemekungen Die gundlegenden Gesetze de Mechanik haben wi bishe ohne Bezug auf ein spezielles Bezugssystem definiet. Gundgesetze sollen ja auch unabhängig vom Bezugssystem

Mehr

Ferienkurs Experimentalphysik Übung 1-Musterlösung

Ferienkurs Experimentalphysik Übung 1-Musterlösung Feienkus Expeimentalphysik 1 2012 Übung 1-Mustelösung 1. Auto gegen Baum v 2 = v 2 0 + 2a(x x 0 ) = 2gh h = v2 2g = km (100 h )2 3.6 2 2 9.81 m s 2 39.3m 2. Spungschanze a) Die maximale Hohe nach Velassen

Mehr

Klausur 2 Kurs Ph11 Physik Lk

Klausur 2 Kurs Ph11 Physik Lk 26.11.2004 Klausu 2 Kus Ph11 Physik Lk Lösung 1 1 2 3 4 5 - + Eine echteckige Spule wid von Stom duchflossen. Sie hängt an einem Kaftmesse und befindet sich entwede außehalb ode teilweise innehalb eine

Mehr

Inhalt: Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, WS 2018/2019 1

Inhalt: Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, WS 2018/2019 1 Inhalt: 1.. 3. 4. 5. 6. Einleitung Keplesche Gesetze Das Gavitationsgesetz Täge Masse und schwee Masse Potentielle Enegie de Gavitation Beziehung zwischen de Enegie und de Bahnbewegung Physik, WS 018/019

Mehr

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung: f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt

Mehr

Neunte Vorlesung: Die Kruskal-Metrik

Neunte Vorlesung: Die Kruskal-Metrik Neunte Volesung: Die Kuskal-Metik 9.1 Poblemstellung 9. Eigenzeit fei fallende Teilchen 9.3 Metik von Lemaite 9.4 Eddington-Finkelstein-Metik 9.5 Kuskal-Metik 9.1 Poblemstellung De metische Tenso hängt

Mehr

Gravitation. Massen zeihen sich gegenseitig an. Aus astronomischen Beobachtungen der Planetenbewegungen kann das Gravitationsgesetz abgeleitet werden.

Gravitation. Massen zeihen sich gegenseitig an. Aus astronomischen Beobachtungen der Planetenbewegungen kann das Gravitationsgesetz abgeleitet werden. Gavitation Massen zeihen sich gegenseitig an. Aus astonomischen Beobachtungen de Planetenbewegungen kann das Gavitationsgesetz abgeleitet weden. Von 1573-1601 sammelte Tycho Bahe mit bloßem Auge (ohne

Mehr

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen.

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen. Im (x 1, y 1 ) System wikt auf Masse m die Zentipetalbeschleunigung, a Z = v2 e die zum Mittelpunkt de Keisbahn geichtet ist. Folie: Ableitung von a Z = v2 e Pfeil auf Keisscheibe, Stoboskop Die Keisbewegung

Mehr

Inhalt: 2. 3. 4. 5. 6. Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, WS 2015/2016

Inhalt: 2. 3. 4. 5. 6. Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, WS 2015/2016 Inhalt: 1.. 3. 4. 5. 6. Einleitung Keplesche Gesetze Das Gavitationsgesetz Täge Masse und schwee Masse Potentielle Enegie de Gavitation Beziehung zwischen de Enegie und de Bahnbewegung Pof. D.-Ing. Babaa

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt Gleichseitige Deiecke im Keis aus de Sicht eines Punktes Eckat Schmidt Zu einem Punkt und einem gleichseitigen Deieck in seinem Umkeis lassen sich zwei weitee Deiecke bilden: das Lotfußpunktdeieck und

Mehr

Extremwertaufgaben

Extremwertaufgaben 7.4.. Extemwetaufgaben Bei Extemwetaufgaben geht es daum, dass bei einem gestellten Sachvehalt (Textaufgabe) igendetwas zu maximieen bzw. zu minimieen ist. Dabei geht man nach einem festen, vogegebenen

Mehr

Seminarvortrag Teilchen- und Kerntheorie. Wechselwirkungen, Propagatoren und Feynman- Diagramme

Seminarvortrag Teilchen- und Kerntheorie. Wechselwirkungen, Propagatoren und Feynman- Diagramme Seminavotag Teilchen- und Kentheoie Wechselwikungen, Popagatoen und Feynman- Diagamme Bei Hen Pof. Münste und D. Heitge Stefanie Rau 1.Wechselwikungen In de Natu lassen sich Aten von Wechselwikungen finden.

Mehr

Lösung: 1. Für das Volumen gilt die Formel: V = r 2. π. h = 1000 [cm 3 ]. 2. Für die Oberfläche gilt die Formel: O = 2. r 2. π + 2. r. π. h.

Lösung: 1. Für das Volumen gilt die Formel: V = r 2. π. h = 1000 [cm 3 ]. 2. Für die Oberfläche gilt die Formel: O = 2. r 2. π + 2. r. π. h. Analysis Anwendungen Wi 1. Das Konsevendosen-Poblem Ein Konsevendosenhestelle will zylindische Dosen mit einem Inhalt von einem Lite, das sind 1000 cm 3, hestellen und dabei möglichst wenig Mateial vebauchen.

Mehr

2.3 Elektrisches Potential und Energie

2.3 Elektrisches Potential und Energie 2.3. ELEKTRISCHES POTENTIAL UND ENERGIE 17 2.3 Elektisches Potential un Enegie Aus e Mechanik wissen wi, ass ie Abeit Q, ie an einem Massepunkt veichtet wi, wenn iese um einen (kleinen) Vekto veschoben

Mehr

Vektoranalysis Teil 1

Vektoranalysis Teil 1 Skiptum zu Volesung Mathematik 2 fü Ingenieue Vektoanalysis Teil Pof. D.-Ing. Nobet Höptne (nach eine Volage von Pof. D.-Ing. Tosten Benkne) Fachhochschule Pfozheim FB2-Ingenieuwissenschaften, Elektotechnik/Infomationstechnik

Mehr

Ferienkurs Theoretische Mechanik 2009 Newtonsche Mechanik, Keplerproblem - Lösungen

Ferienkurs Theoretische Mechanik 2009 Newtonsche Mechanik, Keplerproblem - Lösungen Physi Depatment Technische Univesität München Matthias Eibl Blatt Feienus Theoetische Mechani 9 Newtonsche Mechani, Keplepoblem - en Aufgaben fü Montag Heleitungen zu Volesung Zeigen Sie die in de Volesung

Mehr