Betriebliche Anwendungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Betriebliche Anwendungen"

Transkript

1 Betriebliche nwendungen SP R/3: Enterprise Resource Modelling (ERP-System) OLTP Data Warehouse Data Mining WN (Internet) LN Kapitel 17 1 Relationales DBMS als Backend-Server (Oracle, Informix, DB2, MS SQL-Server, dabas) 3 OLTP: Online Transaction Processing Dreistufige Client/Server-rchitektur (3 Tier, SP R/3) Beispiele Flugbuchungssystem Bestellungen in einem Handelsunternehmen Charakterisierung Hoher Parallelitätsgrad Viele (Tausende pro Sekunde) kurze Transaktionen Ts bearbeiten nur ein kleines Datenvolumen mission-critical für das Unternehmen Hohe Verfügbarkeit muss gewährleistet sein Normalisierte Relationen (möglichst wenig Update-Kosten) Nur wenige Indexe (wegen Fortschreibungskosten) sehr viele (Tausende) Clients langsame Netzverbindung (WN, Internet, Telefon, ) Sehr schnelles LN ein Datenbank- Server mehrere pplikations- Server zur Skalierung 2 4

2 Interne rchitektur von SP R/3 Sammlung und periodische uffrischung der Data Warehouse-Daten OLTP-Datenbanken und andere Datenquellen OLP-nfragen Decision Support Data Mining Data Warehouse Data Warehouse-nwendungen: OLP~Online nalytical Processing 5 Das Stern-Schema 7 Wie hat sich die uslastung der Transatlantikflüge über die letzten zwei Jahre entwickelt? oder Wie haben sich besondere offensive Marketingstrategien für bestimmte Produktlinien auf die Verkaufszahlen ausgewirkt? Wenige, aber dafür sehr komplexe nfragen! 6 8

3 Stern-Schema bei Data Warehouse- nwendungen Eine sehr große Faktentabelle lle Verkäufe der letzten drei Jahre lle Telefonate des letzten Jahres lle Flugreservierungen der letzten fünf Jahre normalisiert Mehrere Dimensionstabellen Zeit Filialen Kunden Produkt Oft nicht normalisiert 9 Stern-Schema Verkäufe VerkDatum Filiale Produkt nzahl Kunde Verkäufer 25-Jul-00 Passau Faktentabelle (SEHR groß) Filialen Kunden FilialenKennung Land Bezirk KundenNr Name wielt Passau D Bayern 4711 Kemper 43 Dimensionstabellen (relativ klein) Verkäufer VerkäuferNr Name Fachgebiet Manager wielt 825 Handyman Elektronik Das Stern-Schema: Handelsunternehmen Stern-Schema (cont d) Kunden Produkte Datum 25-Jul-00 Tag 25 Monat 7 Jahr 2000 Zeit Quartal 3 KW 30 Wochentag Dienstag Saison Hochsommer 18-Dec Dienstag Weihnachten Verkäufe Filialen Produkte ProduktNr Produkttyp Produktgruppe Produkthauptgruppe Hersteller Zeit 1347 Handy Mobiltelekom Telekom Siemens Verkäufer 10 12

4 Nicht-normalisierte Dimensionstabellen: effizientere nfrageauswertung Zeit Datum Tag Monat Jahr Quartal KW Wochentag Saison 25-Jul Dienstag Hochsommer 18-Dec Dienstag Weihnachten lgebra-usdruck (Produkte) (Filialen) Datum Monat Quartal Verkäufe ProduktNr Produkttyp Produkte Produktgruppe Produkthauptgruppe Hersteller 1347 Handy Mobiltelekom Telekom Siemens (Kunden) (Zeit) ProduktNr Produkttyp Produktgruppe Produkthauptgruppe nfragen im Sternschema select sum(v.nzahl), p.hersteller from Verkäufe v, Filialen f, Produkte p, Zeit z, Kunden k where z.saison = 'Weihnachten' and z.jahr = 2001 and k.wielt < 30 and p.produkttyp = 'Handy' and f.bezirk = 'Bayern' and v.verkdatum = z.datum and v.produkt = p.produktnr and v.filiale = f.filialenkennung and v.kunde = k.kundennr group by p.hersteller; Join-Prädikate Einschränkung der Dimensionen Roll-up/Drill-down-nfragen select Jahr, Hersteller, sum(nzahl) from Verkäufe v, Produkte p, Zeit z where v.produkt = p.produktnr and v.verkdatum = z.datum and p.produkttyp = 'Handy' group by p.hersteller, z.jahr; select Jahr, sum(nzahl) from Verkäufe v, Produkte p, Zeit z where v.produkt = p.produktnr and v.verkdatum = z.datum and p.produkttyp = 'Handy' group by z.jahr; Roll-up Drill-down 14 16

5 Der cube-operator select p.hersteller, z.jahr, f.land, sum(v.nzahl) from Verkäufe v, Produkte p, Zeit z, Filialen f where v.produkt = p.produktnr and p.produkttyp = 'Handy' and v.verkdatum = z.datum and v.filiale = f.filialenkennung group by cube (z.jahr, p.hersteller, f.land); Würfeldarstellung Weiterführende Vorlesungen Das Fachgebiet Wissensverarbeitung bietet regelmäßig an: Vorlesungen Knowledge Discovery Internet-Suchmaschinen Künstliche Intelligenz (Master) Projekte und bschlussarbeiten rund um unser Datenbankbasiertes soziale Lesezeichensystem BibSonomy:

6 Vorlesung Knowledge Discovery Bsp.: Klassifikation/Entscheidungsbaum Vorlesung Internet-Suchmaschinen Bsp.: Ranking in Google Geschlecht gecrawlter Web-Graph Index m w erstellen wiealt geringes <=35 >35 hohes hohes Coupe utotyp (wielt>35) (Geschlecht =`m ) (utotyp=`coupé ) (= hoch ) Van geringes 21 PageRank berechnen PageRank 1. C 2. E 3. B F 6. G 7. D 23 Wie werden Entscheidungs-/ Klassifikationsbäume erstellt Trainingsmenge Große Zahl von Datensätzen, die in der Vergangenheit gesammelt wurden Sie dient als Grundlage für die Vorhersage von neu ankommenden Objekten Beispiel: neuer Versicherungskunde wird gemäß dem Verhalten seiner rtgenossen eingestuft Vorlesung Künstliche Intelligenz Wie können komplexere Informationen verwaltet werden? Rekursives Partitionieren Fange mit einem ttribut an und spalte die Tupelmenge Jede dieser Teilmengen wird rekursiv weiter partitioniert, bis nur noch gleichartige Objekte in der jeweiligen Partition sind 22 24

Datenbanksysteme 2009

Datenbanksysteme 2009 Datenbanksysteme 2009 Kapitel 17: Data Warehouse Oliver Vornberger Institut für Informatik Universität Osnabrück 1 OLTP versus OLAP OLTP (Online Transaction Processing) z.b. Flugreservierung, Handelsunternehmen

Mehr

Betriebliche Anwendungen

Betriebliche Anwendungen Betriebliche Anwendungen SAP R/3: Enterprise Resource Modelling (ERP-System) OLTP Data Warehouse Data Mining WAN (Internet) LAN Kapitel 7 Relationales DBMS als Backend-Server (Oracle, Informix, DB2, MS

Mehr

Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen

Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen (Folien von A. Kemper zum Buch 'Datenbanksysteme') Online Transaction Processing Betriebswirtschaftliche Standard- Software (SAP

Mehr

Kapitel 17: Date Warehouse

Kapitel 17: Date Warehouse Kapitel 17: Date Warehouse 1 OLTP versus OLAP OLTP (Online Transaction Processing) z.b. Flugreservierung, Handelsunternehmen kleine, kurze Transaktionen jeweils auf jüngstem Zustand OLAP (Online Analytical

Mehr

OLTP: Online Transaction Processing

OLTP: Online Transaction Processing Moderne Betriebliche Anwendungen von Datenbanksystemen Online Transaction Processing (bisheriger Fokus) Data Warehouse-Anwendungen Data Mining OLTP: Online Transaction Processing Beispiele Flugbuchungssystem

Mehr

Data Warehousing. Beispiel: : Amazon. Aufbau eines DWH OLAP <-> OLTP Datacube. FU-Berlin, DBS I 2006, Hinze / Scholz

Data Warehousing. Beispiel: : Amazon. Aufbau eines DWH OLAP <-> OLTP Datacube. FU-Berlin, DBS I 2006, Hinze / Scholz Data Warehousing Aufbau eines DWH OLAP OLTP Datacube Beispiel: : Amazon 2 1 Datenbank 3 Fragen des Marketingleiters Wie viele Bestellungen haben wir jeweils im Monat vor Weihnachten, aufgeschlüsselt

Mehr

Betriebliche Anwendungen

Betriebliche Anwendungen Betriebliche Anwendungen OLTP Data Warehouse Data Mining Kapitel 17 1 OLTP: Online Transaction Processing Beispiele Flugbuchungssystem Bestellungen in einem Handelsunternehmen Charakterisierung Hoher Parallelitätsgrad

Mehr

Data Warehouses und Data Mining

Data Warehouses und Data Mining Data Warehouses und Data Mining Online Transaction Processing Data Warehouse-Anwendungen Data Mining OLTP: Online Transaction Processing Beispiele: Flugbuchungssystem Bestellungen in einem Handelsunternehmen

Mehr

Betriebliche Anwendungen

Betriebliche Anwendungen Betriebliche Anwendungen OLTP Data Warehouse Data Mining OLTP: Online Transaction Processing Beispiele Flugbuchungssystem Bestellungen in einem Handelsunternehmen Charakterisierung Hoher Parallelitätsgrad

Mehr

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube Fragen des Marketingleiters Data Warehousing Wie viele Bestellungen haben wir jeweils im Monat vor Weihnachten, aufgeschlüsselt nach? Aufbau eines DWH OLAP OLTP Datacube Beispiel: : Amazon Technisch

Mehr

Moderne Betriebliche Anwendungen von Datenbanksystemen

Moderne Betriebliche Anwendungen von Datenbanksystemen Moderne Betriebliche Anwendungen von Datenbanksystemen Online Transaction Processing Betriebswirtschaftliche Standard- Software (SAP R/3) Data Warehouse-Anwendungen Data Mining OLTP: Online Transaction

Mehr

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 17 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining opera- tionale DB opera- tionale DB opera- tionale DB Data Warehouse

Mehr

5 Data Warehouses und Data Mining

5 Data Warehouses und Data Mining 5 Data Warehouses und Data Mining Mittels OLAP Techniken können große Datenmengen unterschiedlich stark verdichtet und gezielt aufbereitet werden. Mittels Data Mining können große Datenmengen nach bisher

Mehr

Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken

Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken 31. V. 2016 Outline 1 Organisatorisches 2 SQL 3 OLTP, OLAP, SAP, and Data Warehouse OLTP and OLAP SAP 4 Objekt-relationale Datenbanken Beispiel

Mehr

Data Warehouse. Kapitel 16. Abbildung 16.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 16. Abbildung 16.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 16 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining operationale DB operationale DB operationale DB Data Warehouse operationale

Mehr

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 17 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining opera- tionale DB opera- tionale DB opera- tionale DB Data Warehouse

Mehr

Operative vs. Informationelle Systeme. Informationelle Systeme. Informationelle Systeme. Moderne Betriebliche Anwendungen von Datenbanksystemen

Operative vs. Informationelle Systeme. Informationelle Systeme. Informationelle Systeme. Moderne Betriebliche Anwendungen von Datenbanksystemen Moderne Betriebliche Anwendungen von Datenbanksystemen Online Transaction Processing Betriebswirtschaftliche Standard- Software (SAP R/) Data Warehouse-Anwendungen Data Mining Operative vs. Informationelle

Mehr

8.1 Überblick. 8 Data Warehousing. klassischen Datenbankanwendungen werden Datenbanken im wesentlichen zur Abwicklung des (

8.1 Überblick. 8 Data Warehousing. klassischen Datenbankanwendungen werden Datenbanken im wesentlichen zur Abwicklung des ( c M. Scholl, 2005/06 Informationssysteme: 8. Data Warehousing 8-1 8 Data Warehousing 8.1 Überblick In klassischen Datenbankanwendungen werden Datenbanken im wesentlichen zur Abwicklung des ( operativen

Mehr

Anfragen an multidimensionale Daten

Anfragen an multidimensionale Daten Anfragen an multidimensionale Daten Alexander Heidrich - BID8 09.06.2005 Hintergrundbild: http://www.csc.calpoly.edu/~zwood/teaching/csc471/finalproj02/afternoon/mfouquet/cube.jpg Inhaltsübersicht Motivation

Mehr

Datenbanksysteme 2 Frühjahr-/Sommersemester 2014 28. Mai 2014

Datenbanksysteme 2 Frühjahr-/Sommersemester 2014 28. Mai 2014 Lehrstuhl für Praktische Informatik III Prof. Dr. Guido Moerkotte Email: moer@db.informatik.uni-mannheim.de Marius Eich Email: marius.eich@uni-mannheim.de Datenbanksysteme 2 8. Übungsblatt Frühjahr-/Sommersemester

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Objektorientierte Datenbanken

Objektorientierte Datenbanken OODB 11 Slide 1 Objektorientierte Datenbanken Vorlesung 11 vom 01.07.2004 Dr. Sebastian Iwanowski FH Wedel OODB 11 Slide 2 Inhalt heute: Datenbanken in betriebswirtschaftlichen Anwendungen OTLP (SAP) Data

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Datenbanken Grundlagen und Design

Datenbanken Grundlagen und Design Frank Geisler Datenbanken Grundlagen und Design 3., aktualisierte und erweiterte Auflage mitp Vorwort 15 Teil I Grundlagen 19 i Einführung in das Thema Datenbanken 21 i.i Warum ist Datenbankdesign wichtig?

Mehr

Data Warehousing Kapitel 3: Mehrdimensionale Datenmodellierung

Data Warehousing Kapitel 3: Mehrdimensionale Datenmodellierung Data Warehousing Kapitel 3: Mehrdimensionale Datenmodellierung und Operationen Michael Hartung Sommersemester 2011 Universität Leipzig Institut für Informatik y y y http://dbs.uni-leipzig.de SS11, Prof.

Mehr

Data Warehousing. Weitere Buzzwörter: OLAP, Decision Support, Data Mining

Data Warehousing. Weitere Buzzwörter: OLAP, Decision Support, Data Mining Data Warehousing Weitere Buzzwörter: OLAP, Decision Support, Data Mining Wichtige Hinweise Zu diesem Thema gibt es eine Spezialvorlesung im Sommersemester Hier nur grober Überblick über Idee und einige

Mehr

SQL - Datenbankdesign - Aufbau

SQL - Datenbankdesign - Aufbau SQL - Datenbankdesign - Aufbau Kompakt-Intensiv-Training Unsere fünftägige ANSI SQL Schulung vermittelt Ihnen alle nötigen Kenntnisse zur Erstellung von Datenauswertungen und Programmierung wiederkehrender

Mehr

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische

Mehr

Kapitel 7 Grundlagen von Data

Kapitel 7 Grundlagen von Data LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Skript zur Vorlesung: Datenbanksysteme II Sommersemester 2014 Kapitel 7 Grundlagen von Data Warehouses Vorlesung: PD

Mehr

Vorlesung Wissensentdeckung in Datenbanken

Vorlesung Wissensentdeckung in Datenbanken Vorlesung Wissensentdeckung in Datenbanken Data Cube Katharina Morik, Uwe Ligges Informatik LS 8 22.04.2010 1 von 26 Gliederung 1 Einführung 2 Aggregation in SQL, GROUP BY 3 Probleme mit GROUP BY 4 Der

Mehr

Data Cubes PG Wissensmangement Seminarphase

Data Cubes PG Wissensmangement Seminarphase PG 402 - Wissensmangement Seminarphase 23.10.2001-25.10.2001 Hanna Köpcke Lehrstuhl für Künstliche Intelligenz Universität Dortmund Übersicht 1. Einführung 2. Aggregation in SQL, GROUP BY 3. Probleme mit

Mehr

Unterstützung der Unternehmenssteuerung durch Data Warehouses mit ganzheitlicher Sicht auf Daten aus operativen Systemen

Unterstützung der Unternehmenssteuerung durch Data Warehouses mit ganzheitlicher Sicht auf Daten aus operativen Systemen Rückblick Unterstützung der Unternehmenssteuerung durch Data arehouses mit ganzheitlicher Sicht auf Daten aus operativen Systemen Online Transaction Processing (OLTP) und Online Analytical Processing unterscheiden

Mehr

Datenbank Grundlagen. Performanceuntersuchungen

Datenbank Grundlagen. Performanceuntersuchungen Vorlesung Datenbanken, Entwurfsarbeit 1 Fachbereich Automatisierung und Informatik Wernigerode Datenbank Grundlagen Performanceuntersuchungen Entwicklung einer Datenbank zur Verwaltung eines Bestellwesens

Mehr

Kap. 6 Data Warehouse

Kap. 6 Data Warehouse 1 Kap. 6 Data Warehouse 6.1 Was ist ein Data Warehouse, Motivation? 6.2 Data Cube und Cube-Operationen 6.3 Workshop: MS SQL Server, Cube Operationen 6.4 Physischer Entwurf, Implementierung von Cubes 6.5

Mehr

Datenbanken. Datenbanken. Grundlagen und Design. Grundlagen und Design. Frank. Geisler. 4. Auflage

Datenbanken. Datenbanken. Grundlagen und Design. Grundlagen und Design. Frank. Geisler. 4. Auflage Datenbanksysteme, Datenbankanwendungen und Middleware Das relationale Datenbankmodell ER-Datenbankmodellierung und Normalisierung SQL-Grundlagen Projektablauf bei der Erstellung einer Datenbank Transaktionen

Mehr

Vertrautmachen mit Daten

Vertrautmachen mit Daten Kapitel III Vertrautmachen mit Daten 2004 AIFB / FZI 1 III Vertrautmachen mit Daten (see also Data Preparation ) 2004 AIFB / FZI 2 III Vertrautmachen mit Daten III.1 OLAP III.1.1 Einführung in OLAP Wie

Mehr

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator Agenda Was ist Business Intelligence? Was ist OLAP? Unterschied zwischen OLAP und OLTP? Bestandteile

Mehr

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 MIS Glossar by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 Aggregat Data Cube Data Marts Data Mining Data Warehouse (DWH) Daten Decision Support Systeme (DSS)

Mehr

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing Seminar in der Seminarreihe Business Intelligence 1 OLAP und Datawarehousing OLAP & Warehousing Die wichtigsten Produkte Die Gliederung Produkt Bewertung & Vergleiche Die Marktentwicklung Der aktuelle

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

Frühjahrsemester 2011. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil

Frühjahrsemester 2011. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil Frühjahrsemester Data Warehousing Kapitel 5: Data Warehousing H. Schuldt Wiederholung aus Kapitel 5. Einführung Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale Liestal Anfragen: Welches

Mehr

10. Vorlesung: Datenorganisation SS 2007

10. Vorlesung: Datenorganisation SS 2007 10. Vorlesung: Datenorganisation SS 2007 8 Parallele Transaktionen 9 9.1 Drei-Ebenen Ebenen-Architektur 9.2 Verteilte Datenbanken 9.3 Client-Server Server-Datenbanken 9.4 Föderierte Datenbanken 9.5 Das

Mehr

Datenbanken - Grundlagen und Design

Datenbanken - Grundlagen und Design mitp Professional Datenbanken - Grundlagen und Design von Frank Geisler überarbeitet Datenbanken - Grundlagen und Design Geisler schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG mitp/bhv

Mehr

Kapitel 6 Einführung in Data Warehouses

Kapitel 6 Einführung in Data Warehouses Kapitel 6 Einführung in Data Warehouses Skript zur Vorlesung: Datenbanksysteme II Sommersemester 2008, LMU München 2008 Dr. Peer Kröger Dieses Skript basiert zu einem Teil auf dem Skript zur Vorlesung

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P Index- und Zugriffsstrukturen für Data Warehousing Holger Brämer, 05IND-P Index- und Zugriffstrukturen für Data Warehousing Materialisierte Sichten Bitmap-Indexe Verbundindexe Materialisierte Sichten gehören

Mehr

XML-Archivierung betriebswirtschaftlicher Datenbank-Objekte*

XML-Archivierung betriebswirtschaftlicher Datenbank-Objekte* XML-Archivierung betriebswirtschaftlicher Datenbank-Objekte* Bernhard Zeller Axel Herbst Alfons Kemper 9400 Passau @db.fmi.uni-passau.de SAP AG 6990 Walldorf axel.herbst@sap.com * Diese Arbeit

Mehr

Neue Features Oracle Database 12.2 Wann denn endlich?

Neue Features Oracle Database 12.2 Wann denn endlich? Neue Features Oracle Database 12.2 Wann denn endlich? DOAG 2017 Datenbank Dierk Lenz Erfolgreich seit 1996 am Markt Firmensitz: Burscheid (bei Leverkusen) Beratung, Schulung und Betrieb/Fernwartung rund

Mehr

Integration Services Übersicht

Integration Services Übersicht Integration Services Übersicht Integration Services Übersicht Integration Services stellt umfangreiche integrierte Tasks, Container, Transformationen und Datenadapter für die En t- wicklung von Geschäftsanwendungen

Mehr

Frühjahrsemester 2010. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil

Frühjahrsemester 2010. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil Frühjahrsemester Data Warehousing Kapitel 5: Data Warehousing H. Schuldt Wiederholung aus Kapitel 5. Einführung Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale Liestal Anfragen: Welches

Mehr

3.17 Zugriffskontrolle

3.17 Zugriffskontrolle 3. Der SQL-Standard 3.17. Zugriffskontrolle Seite 1 3.17 Zugriffskontrolle Datenbanken enthalten häufig vertrauliche Informationen, die nicht jedem Anwender zur Verfügung stehen dürfen. Außerdem wird man

Mehr

Datenbanken zur Entscheidungsunterstützung - Data Warehousing. Prof. Dr. T. Kudraß 1

Datenbanken zur Entscheidungsunterstützung - Data Warehousing. Prof. Dr. T. Kudraß 1 Datenbanken zur Entscheidungsunterstützung - Data Warehousing Prof. Dr. T. Kudraß 1 Einführung Zunehmender Bedarf nach Analyse aktueller und historischer Daten Identifizierung interessanter Patterns Entscheidungsfindung

Mehr

Data Mining Standards am Beispiel von PMML. Data Mining Standards am Beispiel von PMML

Data Mining Standards am Beispiel von PMML. Data Mining Standards am Beispiel von PMML Data Mining Standards am Beispiel von PMML Allgemeine Definitionen im Data Mining Data Mining (DM) Ein Prozess, um interessante neue Muster, Korrelationen und Trends in großen Datenbeständen zu entdecken,

Mehr

Oracle 10g Einführung

Oracle 10g Einführung Kurs Oracle 10g Einführung Teil 5 Einführung Timo Meyer Administration von Oracle-Datenbanken Timo Meyer Sommersemester 2006 Seite 1 von 16 Seite 1 von 16 Agenda 1 Tabellen und Views erstellen 2 Indizes

Mehr

Einführung in Datenbanksysteme. Donald Kossmann Institut für Informationssysteme ETH Zürich

Einführung in Datenbanksysteme. Donald Kossmann Institut für Informationssysteme ETH Zürich Einführung in Datenbanksysteme Donald Kossmann Institut für Informationssysteme ETH Zürich kossmann@inf.ethz.ch www.dbis.ethz.ch Vorlesungen Termine Mittwoch: 10 Uhr bis 12 Uhr Übungen (Start am 2. April)

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann Blatt Nr. 10 Übung zur Vorlesung Einsatz und Realisierung von Datenbanksystemen im SoSe15 Moritz Kaufmann (moritz.kaufmann@tum.de)

Mehr

Übung zur Einführung in die Wirtschaftsinformatik Cognos Powerplay als Beispiel für ein DSS

Übung zur Einführung in die Wirtschaftsinformatik Cognos Powerplay als Beispiel für ein DSS Übung zur Einführung in die Wirtschaftsinformatik 2006-05 - 10 Cognos Powerplay als Beispiel für ein DSS 1 Entscheidungsunterstützungssysteme (EUS) Decision Support Systems (DSS) EUS sollen das gemeinsame

Mehr

Vorwort zur 5. Auflage... 15 Über den Autor... 16

Vorwort zur 5. Auflage... 15 Über den Autor... 16 Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung

Mehr

MCSA: SQL 2016 Database Development

MCSA: SQL 2016 Database Development MCSA: SQL 2016 Database Development Querying Data with Transact-SQL & Developing SQL Databases Seminarziel In diesem 6-tägigen Kurs werden die Teilnehmer von Grund auf in die Entwicklung

Mehr

Pivotieren. Themenblock: Anfragen auf dem Cube. Roll-up und Drill-down. Slicing und Dicing. Praktikum: Data Warehousing und Data Mining. Produkt.

Pivotieren. Themenblock: Anfragen auf dem Cube. Roll-up und Drill-down. Slicing und Dicing. Praktikum: Data Warehousing und Data Mining. Produkt. Zeit Pivotieren Themenblock: Anfragen auf dem Cube Praktikum: Data Warehousing und Data Mining Zeit Zeit 2 Roll-up und Drill-down Slicing und Dicing Drill-down Januar 2 3 33 1. Quartal 11 36 107 Februar

Mehr

Inhaltsverzeichnis. Lothar Piepmeyer. Grundkurs Datenbanksysteme. Von den Konzepten bis zur Anwendungsentwicklung ISBN:

Inhaltsverzeichnis. Lothar Piepmeyer. Grundkurs Datenbanksysteme. Von den Konzepten bis zur Anwendungsentwicklung ISBN: Lothar Piepmeyer Grundkurs Datenbanksysteme Von den Konzepten bis zur Anwendungsentwicklung ISBN: 978-3-446-42354-1 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42354-1

Mehr

Das Multidimensionale Datenmodell

Das Multidimensionale Datenmodell Das Multidimensionale Datenmodell Konzeptuelle Modellierung Umsetzung des Modells Beispiel ER-Modell 2 / 36 Probleme ER-Modellierung Keine Unterscheidung Klassifikation, Attribute, Kenngrößen Dimension

Mehr

Haben Sie die Zeit im Griff? Designtipps zur Zeitdimension

Haben Sie die Zeit im Griff? Designtipps zur Zeitdimension Haben Sie die Zeit im Griff? Designtipps zur Zeitdimension Dani Schnider Principal Consultant 22. November 2012 Abfragen im Data Warehouse haben fast immer einen Zeitbezug. Ob es dabei um die Mitarbeiterauslastung

Mehr

LindenSoft - Die Datenbankexperten

LindenSoft - Die Datenbankexperten Internetpräsenz Online-Film-Verleih Server beim Internetprovider Hauptfiliale Köln LindenSoft - Die Datenbankexperten Wir entwickeln Datenbanken für jedes Unternehmen Brand-Bam HG93 - Witschaftsinformatik

Mehr

Data Warehousing Grundbegriffe und Problemstellung

Data Warehousing Grundbegriffe und Problemstellung Data Warehousing Grundbegriffe und Problemstellung Dr. Andrea Kennel, Trivadis AG, Glattbrugg, Schweiz Andrea.Kennel@trivadis.com Schlüsselworte Data Warehouse, Cube, Data Mart, Bitmap Index, Star Queries,

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Datenbanken & Informationssysteme (WS 2015/2016)

Datenbanken & Informationssysteme (WS 2015/2016) Datenbanken & Informationssysteme (WS 2015/2016) Klaus Berberich (klaus.berberich@htwsaar.de) Wolfgang Braun (wolfgang.braun@htwsaar.de) 0. Organisatorisches Dozenten Klaus Berberich (klaus.berberich@htwsaar.de)

Mehr

8. Datenbank-Benchmarks Benchmark-Anforderungen TPC-Benchmarks OLTP-Benchmarks

8. Datenbank-Benchmarks Benchmark-Anforderungen TPC-Benchmarks OLTP-Benchmarks 8. Datenbank-Benchmarks Benchmark-Anforderungen TPC-Benchmarks OLTP-Benchmarks TPC-C TPC-E Decision Support Benchmark: TPC-H WS10/11, Prof. Dr. E. Rahm 8-1 Anforderungen an geeignete Benchmarks* Domain-spezifische

Mehr

Data Warehousing. und Operationen. Dr. Andreas Thor Wintersemester 2009/10. Universität Leipzig Institut für Informatik.

Data Warehousing. und Operationen. Dr. Andreas Thor Wintersemester 2009/10. Universität Leipzig Institut für Informatik. Data Warehousing Kapitel 3: Mehrdimensionale Datenmodellierung und Operationen Dr. Andreas Thor Wintersemester 2009/10 Universität Leipzig Institut für Informatik http://dbs.uni-leipzig.de WS09/10, Prof.

Mehr

7. XML-Datenbanksysteme und SQL/XML

7. XML-Datenbanksysteme und SQL/XML 7. XML-Datenbanksysteme und SQL/XML Native XML-DBS vs. XML-Erweiterungen von ORDBS Speicherung von XML-Dokumenten Speicherung von XML-Dokumenten als Ganzes Generische Dekomposition von XML-Dokumenten Schemabasierte

Mehr

Datenbanken (WS 2015/2016)

Datenbanken (WS 2015/2016) Datenbanken (WS 2015/2016) Klaus Berberich (klaus.berberich@htwsaar.de) Wolfgang Braun (wolfgang.braun@htwsaar.de) 0. Organisatorisches Dozenten Klaus Berberich (klaus.berberich@htwsaar.de) Sprechstunde

Mehr

Prüfungsberatungs-Stunde Datenbanksysteme 1 (Dbs1)

Prüfungsberatungs-Stunde Datenbanksysteme 1 (Dbs1) Prüfungsberatungs-Stunde Datenbanksysteme 1 (Dbs1) Herbstsemester 2013/14 Prof. S. Keller Informatik HSR Januar 2014, HS13/14 Dbs1 - Prüfungsvorbereitung 1 Dbs1 Ziele Grundlagenwissen in folgenden Gebieten

Mehr

OLAP und der MS SQL Server

OLAP und der MS SQL Server OLAP und der MS SQL Server OLAP und der MS SQL Server OLAP-Systeme werden wie umfangreiche Berichtssysteme heute nicht mehr von Grund auf neu entwickelt. Stattdessen konzentriert man sich auf die individuellen

Mehr

Whitepaper. Produkt: combit Relationship Manager. Einbindung externer FiBu-/Warenwirtschaftsdaten. combit GmbH Untere Laube 30 78462 Konstanz

Whitepaper. Produkt: combit Relationship Manager. Einbindung externer FiBu-/Warenwirtschaftsdaten. combit GmbH Untere Laube 30 78462 Konstanz combit GmbH Untere Laube 30 78462 Konstanz Whitepaper Produkt: combit Relationship Manager Einbindung externer FiBu-/Warenwirtschaftsdaten Einbindung externer FiBu-/Warenwirtschaftsdaten - 2 - Inhalt Ausgangssituation

Mehr

Datenbankbasierte Lösungen

Datenbankbasierte Lösungen Technologische Beiträge für verteilte GIS - Anforderungen an verteilte GIS und Lösungsansätze Datenbankbasierte Lösungen Johannes Kebeck Senior Systemberater ORACLE Deutschland GmbH Agenda TOP Thema 1

Mehr

Hetero-Homogene Data Warehouses

Hetero-Homogene Data Warehouses Hetero-Homogene Data Warehouses TDWI München 2011 Christoph Schütz http://hh-dw.dke.uni-linz.ac.at/ Institut für Wirtschaftsinformatik Data & Knowledge Engineering Juni 2011 1 Data-Warehouse-Modellierung

Mehr

1. Data Warehouses - Einführung

1. Data Warehouses - Einführung 1. Data Warehouses - Einführung Definitionen und Merkmale Grobdefinition Einsatzbeispiele DW-Merknmale nah Imnon OLTP vs. OLAP Grobarchitektur Virtuelle vs. phsische Datenintegration Mehrdimensionale Datensicht

Mehr

PHP- Umgang mit Datenbanken (1)

PHP- Umgang mit Datenbanken (1) PHP- Umgang mit Datenbanken (1) Weitere Funktionen zum Umgang mit Datenbanken (Erzeugen, Löschen) und Tabellen (Erzeugen, Löschen) Zum Beispiel für das Erzeugen einer neuen Datenbank $dbname= blumendb

Mehr

Präsentation der Bachelorarbeit

Präsentation der Bachelorarbeit Präsentation der Bachelorarbeit Einrichtung einer BI-Referenzumgebung mit Oracle 11gR1 Jörg Bellan Hochschule Ulm Fakultät Informatik Institut für Betriebliche Informationssysteme 15. Oktober 2009 Agenda

Mehr

TOAD und Performance Tuning

TOAD und Performance Tuning TOAD und Performance Tuning DOAG Regionaltreffen München / Südbayern Johannes Ahrends Herrmann & Lenz Services GmbH Agenda TOAD als Unterstützung für den DBA Performance Tuning mit TOAD Fragen & Antworten

Mehr

1. Einführung. Datenbanken Grundlagen

1. Einführung. Datenbanken Grundlagen 1. Einführung Datenbanken Grundlagen Wo finden wir Datenbanken? Was sind Datenbanken/ Datenbankensysteme(DBS)? A collection of related data items mit folgenden Eigenschaften: Eine Datebank repräsentiert

Mehr

Oracle In-Memory & Data Warehouse: Die perfekte Kombination?

Oracle In-Memory & Data Warehouse: Die perfekte Kombination? Oracle In-Memory & Data Warehouse: Die perfekte Kombination? Dani Schnider Trivadis AG Zürich/Glattbrugg, Schweiz Einleitung Als Larry Ellison in einer Keynote im Juni 2014 die Oracle In-Memory Option

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining 2 Cognos Report Net (CRN) Ermöglicht Erstellen von Ad-hoc-Anfragen (Query Studio) Berichten (Report Studio) Backend Data Cube Relationale Daten Übung: Cognos Report Net

Mehr

1Ralph Schock RM NEO REPORTING

1Ralph Schock RM NEO REPORTING 1Ralph Schock RM NEO REPORTING Bereit für den Erfolg Business Intelligence Lösungen Bessere Entscheidungen Wir wollen alle Mitarbeiter in die Lage versetzen, bessere Entscheidungen schneller zu treffen

Mehr

Erste Schritte, um selber ConfigMgr Reports zu erstellen

Erste Schritte, um selber ConfigMgr Reports zu erstellen Thomas Kurth CONSULTANT/ MCSE Netree AG thomas.kurth@netree.ch netecm.ch/blog @ ThomasKurth_CH Erste Schritte, um selber ConfigMgr Reports zu erstellen Configuration Manager Ziel Jeder soll nach dieser

Mehr

Übung 7 DBMS-FUNKTIONALITÄTEN UND DATENIMPORT

Übung 7 DBMS-FUNKTIONALITÄTEN UND DATENIMPORT Übung 7 DBMS-FUNKTIONALITÄTEN UND DATENIMPORT 1 Metadaten a) Wozu werden Metadaten im Umfeld von DBMS benötigt? b) Nennen Sie mindestens zwei weitere Anwendungsfelder, in denen Metadaten zum Einsatz kommen.

Mehr

Haben Sie die Zeit im Griff? Designtipps zur Zeitdimension

Haben Sie die Zeit im Griff? Designtipps zur Zeitdimension Haben Sie die Zeit im Griff? Designtipps zur Zeitdimension Dani Schnider Trivadis AG Zürich/Glattbrugg, Schweiz Schlüsselworte: Data Warehouse, Data Mart, Star Schema, Dimensionale Modellierung, Zeitdimension

Mehr

Datenbanksysteme 2015

Datenbanksysteme 2015 Datenbanksysteme 2015 Kapitel 09: Datenbankapplikationen Oliver Vornberger Institut für Informatik Universität Osnabrück Datenbankapplikationen ODBC MS Visio MS Access Embedded SQL JDBC Application SQLJ

Mehr

Einsatz und Realisierung von Datenbanken. Prof. Alfons Kemper Lehrstuhl für Informatik III: Datenbanksysteme

Einsatz und Realisierung von Datenbanken. Prof. Alfons Kemper Lehrstuhl für Informatik III: Datenbanksysteme Einsatz und Realisierung von Datenbanken Prof. Alfons Kemper Lehrstuhl für Informatik III: Datenbanksysteme kemper@in.tum.de Primärliteratur: Datenbanksysteme: Eine Einführung Alfons Kemper und Andre

Mehr

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung

Mehr

IT-basierte Kennzahlenanalyse im Versicherungswesen

IT-basierte Kennzahlenanalyse im Versicherungswesen Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen Kennzahlenreporting mit Hilfe des SAP Business Information Warehouse Diplomica Verlag Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen:

Mehr

Materialisierte Sichten in Oracle

Materialisierte Sichten in Oracle Materialisierte Sichten in Oracle Seminar Intelligente Datenbanken Prof. Dr. Rainer Manthey Kai-Lin Pang 07. Juni 2005 Seminar Intelligente Datenbanken Materialisierte Sichten in Oracle 1 Überblick Motivation

Mehr

SODA. Die Datenbank als Document Store. Rainer Willems. Master Principal Sales Consultant Oracle Deutschland B.V. & Co. KG

SODA. Die Datenbank als Document Store. Rainer Willems. Master Principal Sales Consultant Oracle Deutschland B.V. & Co. KG SODA Die Datenbank als Document Store Rainer Willems Master Principal Sales Consultant Oracle Deutschland B.V. & Co. KG vs No Anforderungskonflikte Agile Entwicklung Häufige Schema-Änderungen Relationales

Mehr

Aufgabe 1 Indexstrukturen

Aufgabe 1 Indexstrukturen 8. Übung zur Vorlesung Datenbanken im Sommersemester 2006 mit Musterlösungen Prof. Dr. Gerd Stumme, Dr. Andreas Hotho, Dipl.-Inform. Christoph Schmitz 25. Juni 2006 Aufgabe 1 Indexstrukturen Zeichnen Sie

Mehr

Access 2000 und MS SQL Server im Teamwork

Access 2000 und MS SQL Server im Teamwork Access 2000 und MS SQL Server im Teamwork Bearbeitet von Irene Bauder, Jürgen Bär 1. Auflage 2000. Buch. 518 S. Hardcover ISBN 978 3 446 21473 6 Format (B x L): 17,5 x 24,5 cm Gewicht: 1112 g Zu Leseprobe

Mehr

Einsatz und Realisierung von Datenbanken. Prof. Alfons Kemper Lehrstuhl für Informatik III: Datenbanksysteme

Einsatz und Realisierung von Datenbanken. Prof. Alfons Kemper Lehrstuhl für Informatik III: Datenbanksysteme Einsatz und Realisierung von Datenbanken Prof. Alfons Kemper Lehrstuhl für Informatik III: Datenbanksysteme kemper@in.tum.de Primärliteratur: Datenbanksysteme: Eine Einführung Alfons Kemper und Andre

Mehr

Neues aus der nicht-, semi- und relationalen Welt

Neues aus der nicht-, semi- und relationalen Welt Neues aus der nicht-, semi- und relationalen Welt Information Management Thomas Klughardt Senior System Consultant Das Big Data Problem Was bedeutet Big Data? Performancekritisch Echtzeit Cold Storage

Mehr