Vorlesung 6: Alternativen zur Erwartungsnutzentheorie

Größe: px
Ab Seite anzeigen:

Download "Vorlesung 6: Alternativen zur Erwartungsnutzentheorie"

Transkript

1 Vorlesung 6: Alternativen zur Erwartungsnutzentheorie Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 1 / 21

2 1. Einleitung 1.1 Einordnung Als Reaktion auf die Probleme der Erwartungsnutzentheorie, die experimentelle und empirische Evidenz zu Entscheidungsverhalten unter Unsicherheit zu beschreiben, sind eine Vielzahl von alternativen Theorien entstanden. Wir beschränken uns hier auf einige Theorien (bzw. Bausteine von Theorien), die als die Modellierung von rationalen Präferenzrelationen über Lotterien aufgefasst werden können. Dies ignoriert verschiedene Formen von Darstellungs- und Prozedureffekten. Auf den psychologischen Hintergrund der verschiedenen Theorie gehen wir nur am Rande ein. Dies gilt insbesondere auch für die Frage der Festlegung des Referenzpunktes, den wir bei der Beschreibung von Lotterien als gegeben betrachten werden. Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 2 / 21

3 1. Einleitung 1.2 Vorgehensweise Separate Diskussion von zwei Ansätzen zur Bewertung von monetären Lotterien: 1 Erwartungsnutzen wird nicht in Bezug auf die wahren Wahrscheinlichkeiten, sondern in Bezug auf sogenannte Entscheidungsgewichte berechnet. 2 Modellierung einer Bernoulli-Nutzenfunktion, die nicht auf absoluten Vermögenniveaus, sondern über Gewinne und Verluste definiert ist. Beide Ansätze werden in (Varianten) der sogenannten Prospect-Theorie vereint. Elemente der Prospect-Theorie werden heutzutage in vielen ökonomischen Anwendungen verwendet. In ihrer ursprünglichen Fassung enthält die Prospect-Theorie viele weitere Elemente, die wir hier nicht diskutieren werden. Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 3 / 21

4 1. Einleitung 1.3 Die Erfinder der Prospect-Theorie Daniel Kahnemann (1934-), Wirtschaftsnobelpreis 2002 Amos Tversky ( ) Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 4 / 21

5 2.1 Modellrahmen und Zielsetzung Wir betrachten einfache monetäre Lotterien L = (x 1, p 1 ; ;x n, p n ), wobei x 1 < < x n unterstellt ist. Wird die Menge der Ergebnisse X = {x 1,,x n } als gegeben betrachtet, so vereinfachen wir die Notation, in dem die Lotterie als p = (p 1,, p n ) beschrieben wird. Rationale Präferenzrelation über Lotterien ist gegeben und kann durch Nutzenfunktion U dargestellt werden. Ziel ist es, die Grundstruktur der Erwartungsnutzenfunktion beizubehalten, sie aber zugleich so zu verallgemeinern, dass einige der empirischen Probleme der Erwartungsnutzentheorie vermieden werden. Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 5 / 21

6 2.1 Modellrahmen und Zielsetzung Die Grundstruktur der betrachteten Nutzenfunktionen ist U(L) = n ω i (p)u(x i ). i=1 ω i (p) heisst das Entscheidungsgewicht für das Ergebnis x i, das im Prinzip von dem gesamten Vektor der Wahrscheinlichkeiten p = (p 1,, p n ) abhängen kann. Die Funktion ω heisst die Wahrscheinlichlichkeits-Gewichtungsfunktion. Beachte: Die Entscheidungsgewichte nehmen die Rolle der Wahrscheinlichkeiten in der Erwartungsnutzendarstellung ein. Insbesondere ergibt sich die Erwartungsnutzentheorie aus dem Spezialfall ω i (p) = p i. Die Entscheidungsgewichte sind ebenso wie die Nutzengewichte u(x i ) Parameter der Präferenzrelation sie können sich also von Individuum zu Individuum unterscheiden. Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 6 / 21

7 2.2 Einfache Entscheidungsgewichte Der einfachste Ansatz zur Modellierung der Entscheidungsgewichte ist zu unterstellen, dass sie nur von der Wahrscheinlichkeit des betrachteten Ergebnisses abhängen: ω i (p) hängt nur von p i ab. Die Wahrscheinlichkeitsgewichtung unabhängig davon ist, welches Ergebnis betrachtet wird: ω i (p) = ω j (p) falls p i = p j. In diesem Fall können die Entscheidungsgewichte durch eine Funktion π : [0,1] R dargestellt werden, so dass ω i (p) = π(p i ) für alle p und i gilt. Man spricht in diesem Fall von einfachen Entscheidungsgewichten und nimmt an: π(0) = 0 und π(1) = 1. π ist streng steigend. Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 7 / 21

8 2.2 Einfache Entscheidungsgewichte Ausser im dem Fall, dass π linear ist was den Fall der Erwartungsnutzentheorie darstellt verlaufen die entsprechenden Indifferenzkurven im Machina-Dreieck nicht linear. Was bedeutet, dass für ein solches Individuum die Mischung von zwei indifferenten Lotterien nicht indifferent zu den Ausgangslotterien ist. Für geeignete Spezifikationen von π sind solche Präferenzrelationen mit den Beobachtungen zu dem Common Consequence- und dem Common Ratio-Effekt vereinbar, da sich die Indifferenzkurven im Machina-Dreieck auffächern. Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 8 / 21

9 2.2 Einfache Entscheidungsgewichte Abbildung: Ein Beispiel für eine Wahrscheinlichkeitsgewichtungsfunktion. Die Entscheidungsgewichte sind durch ω i (p) = π(p i ) = p γ i /(pγ i + (1 p i) γ ) 1/γ mit γ = 1/2 gegeben. Was motiviert einen solchen Verlauf der Gewichtungsfunktion? Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 9 / 21

10 2.2 Einfache Entscheidungsgewichte Abbildung: Einige Indifferenzkurven zu der Nutzenfunktion U(p) = n i=1 π(p i)x i im Machina-Dreieck für (x 1,x 2,x 3 ) = (0,3,5). Die Entscheidungsgewichte sind durch ω i (p) = π(p i ) = p γ i /(pγ i + (1 p i) γ ) 1/γ mit γ = 0.8 gegeben. Bessere Lotterien liegen links-oben. Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 10 / 21

11 2.2 Einfache Entscheidungsgewichte Problem: Ist die durch π gegebene Wahrscheinlichkeitsgewichtungsfunktion nicht-linear, so führen einfache Entscheidungsgewichte zur Verletzung der Monotonie. Beispiel: Angenommen, es gilt π(0.5) < 0.5. Ist die Bernoulli-Nutzenfunktion an der Stelle x 1 stetig, dann gilt u(x 1 ) > π(0.5)u(x 2 ) + π(0.5)u(x 3 ) für alle x 2 und x 3 nahe genug bei x 1. Dies heisst, dass das Individuum die degenerierte Lotterie L 1 = (x 1,1) der Lotterie L 2 = (x 2,1/2;x 3,1/2) vorzieht. Dieses gilt auch für den Fall x 3 > x 2 > x 1, in dem L 2 > 1 L 1 gilt. Schlussfolgerung: Einfache Entscheidungsgewichte sind nicht geeignet, um monotone Präferenzrelationen zu modellieren. Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 11 / 21

12 2.3 Rangabhängige Entscheidungsgewichte Das Monotonie-Problem bei einfachen Entscheidungsgewichten lässt sich vermeiden, wenn eine Wahrscheinlichkeitsgewichtungsfunktion nicht auf den Wahrscheinlichkeiten der einzelnen Ergebnisse, sondern auf kumulierten Wahrscheinlichkeiten so wie sie durch die Verteilungsfunktion beschrieben sind definiert wird. Definiere die Wahrscheinlichkeit, ein Ergebnis kleiner gleich x i in einer Lotterie zu erhalten als F i = F(x i ) = i p j j=1 und setze F 0 = 0. Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 12 / 21

13 2.3 Rangabhängige Entscheidungsgewichte Dann gilt p i = F i F i 1 für i = 1,,n, so dass eine Erwartungsnutzendarstellung wie folgt geschrieben werden kann: n [F i F i 1 ]u(x i ). i=1 Die Idee ist nun, diese Darstellung dadurch zu verallgemeinern, dass eine Gewichtung der kumulierten Wahrscheinlichkeiten F i vorgenommen wird. Betrachte dazu eine streng steigende Funktion φ : [0,1] R mit φ(0) = 0 und φ(1) = 1. Rangabhängige Entscheidungsgewichte werden nun durch ω i (p) = φ(f i ) φ(f i 1 ) definiert, so dass die Nutzenfunktion wie folgt gegeben ist: U(L) = n [φ(f i ) φ(f i 1 )]u(x i ). i=1 Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 13 / 21

14 2.3 Rangabhängige Entscheidungsgewichte Bemerke: Solche Entscheidungsgewichte heissen rangabhängig, da das Entscheidungsgewicht für einen gegebenen Geldbetrag nicht nur von der Wahrscheinlichkeit abhängt, den Geldbetrag zu erhalten, sondern auch davon, wie dieser Geldbetrag in der Rangordnung der Ergebnisse eingereiht ist. Gilt z.b. φ(0.5) < 0.5, so erhält in einer Lotterie (x 1,1/2;x 2,1/2) das Ergebnis x 2 das grössere Entscheidungsgewicht, da: ω 2 (1/2,1/2) = 1 φ(0.5) > 0.5 > φ(0.5) = ω 1 (p 1, p 2 ). Die Annahme, dass φ und u streng steigend sind, sichert die Monotonie einer durch U(L) = n [φ(f i ) φ(f i 1 )]u(x i ). i=1 dargestellten Präferenzrelation über Lotterien. Problem: Stetigkeit! Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 14 / 21

15 2.3 Rangabhängige Entscheidungsgewichte Tversky und Kahnemann 1 haben auf Grund psychologischer Erwägungen und experimenteller Evidenz die funktionale Form φ(f) = F γ (F γ + (1 F) γ mit 0 < γ 1 ) 1/γ zur Modellierung der rangabhängigen Entscheidungsgewichte vorgeschlagen. Der Fall γ = 1 liefert eine Erwartungsnutzendarstellung. Ansonsten verläuft diese Funktion umgekehrt S-förmig. Wobei γ > γ gelten muss, damit φ streng steigend verläuft. Versuche den Parameter γ zu schätzen, haben zu recht unterschiedlichen Ergebnissen geführt. 1 Advances in Prospect Theory: Cumulative Representation of Uncertainty, Journal of Risk and Uncertainty Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 15 / 21

16 2.3 Rangabhängige Entscheidungsgewichte Abbildung: Einige Beispiele für den Verlauf der Funktion φ(f) = F γ /(F γ + (1 F) γ ) 1/γ in Abhängigkeit von γ. Je kleiner γ, desto mehr entfernt sich die Funktion von der Winkelhalbierenden. Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 16 / 21

17 2.3 Rangabhängige Entscheidungsgewichte Abbildung: Einige Indifferenzkurven zu der Nutzenfunktion U(p) = n i=1 ω i(p)x i im Machina-Dreieck für (x 1,x 2,x 3 ) = (0,3,5). Die Entscheidungsgewichte sind durch ω i (p) = [φ(f i ) φ(f i 1 )] mit φ(f) = F γ /(F γ + (1 F) γ ) 1/γ und γ = 0.8 gegeben. Bessere Lotterien liegen links-oben. Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 17 / 21

18 3. Bewertung von Gewinnen und Verlusten 3.1 Modellrahmen und Zielsetzung Lotterien sind relativ zu einem Referenzpunkt definiert. Negative Ergebnisse stellen Verluste dar. Positive Ergebnisse stellen Gewinne dar. Unterstelle, dass die Präferenzrelation über Lotterien eine Erwartungsnutzendarstellung besitzt. Dies dient nur der Vereinfachung der Darstellung. Entsprechende Überlegungen lassen sich anstellen, wenn stattdessen Entscheidungsgewichte der soeben besprochenen Form berücksichtigt werden. Wobei es üblich ist, die Entscheidungsgewichte für Verluste und Gewinne separat zu definieren. Frage: Welche Annahmen an die Bernoulli-Nutzenfunktion u in der Erwartungsnutzendarstellung U(L) = n i=1 p iu(x i ) sind im Lichte der experimentellen Evidenz plausibel? Beachte: Die Bernoulli-Nutzenfunktion wird in diesem Kontext meist als Wertfunktion bezeichnet. Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 18 / 21

19 3. Bewertung von Gewinnen und Verlusten 3.2 Annahmen an die Wertfunktion Ohne Verlust der Allgemeinheit kann man u(0) = 0 setzen. u streng steigend: Sichert Monotonie. u (x) 0 für x > 0: Sichert Risikoaversion im Gewinnbereich. u (x) 0 für x < 0: Sichert Risikofreude im Verlustbereich. u( x) < u(x) für x > 0: Sichert Verlustaversion. Da für Lotterien der Form L = ( x,1/2;x,1/2) mit x > 0 dann gilt. U(L) = 0.5u( x) + 0.5u(x) = 0.5[u( x) + u(x)] < 0 = u(0) Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 19 / 21

20 3. Bewertung von Gewinnen und Verlusten 3.3 Beispiele für Wertfunktionen Eine einfache Klasse von Wertfunktionen ist durch zwei Parameter α und λ beschrieben: x α für x > 0 u(x) = 0 für x = 0, λ( x) α für x < 0 Frage: Welche Parameterrestriktionen sichern, dass die Annahmen erfüllt sind? Antwort: Notwendig und hinreichend sind die Annahmen 0 < α 1 und λ > 1. Beachte: Wertfunktionen dieser Art sind in x = 0 nicht differenzierbar. Dies hat eine ökonomische Interpretation: Differenzierbarkeit an der Stelle x = 0 würde lokale Risikoneutralität implizieren. Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 20 / 21

21 3. Bewertung von Gewinnen und Verlusten 3.3 Beispiele für Wertfunktionen Abbildung: Die rot dargestellte Funktion ist die Wertfunktion mit den Parametern α = 0.8 und λ = 2. Zum Vergleich ist die Wertfunktion u(x) = x pink eingezeichnet. Tversky und Kahnemann haben eine solche Wertfunktion mit α 0.88 und λ 2.25 als einfaches Modell vorgeschlagen. Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 21 / 21

Vorlesung 2: Erwartungsnutzen

Vorlesung 2: Erwartungsnutzen Vorlesung 2: Erwartungsnutzen Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 2 (FS 11) Erwartungsnutzen 1 / 28 1. Modellrahmen 1.1 Die Alternativen Wir betrachten

Mehr

Vorlesung 3: Risikoaversion

Vorlesung 3: Risikoaversion Vorlesung 3: Risikoaversion Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 3 (FS 11) Risikoaversion 1 / 21 1. Modellrahmen In diesem Kapitel betrachten wir nur monetäre

Mehr

Vorlesung 2: Risikopräferenzen im Zustandsraum

Vorlesung 2: Risikopräferenzen im Zustandsraum Vorlesung 2: Risikopräferenzen im Zustandsraum Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie VL 2, FS 12 Risikopräferenzen im Zustandsraum 1/29 2.1 Motivation

Mehr

Vorlesung 2: Präferenzen über Lotterien

Vorlesung 2: Präferenzen über Lotterien Vorlesung 2: Präferenzen über Lotterien Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 2, FS 13 Präferenzen über Lotterien 1/26 2.1 Modellrahmen Wir betrachten im

Mehr

Vorlesung 2: Präferenzen über Lotterien

Vorlesung 2: Präferenzen über Lotterien Vorlesung 2: Präferenzen über Lotterien Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 2, FS 12 Präferenzen über Lotterien 1/24 2.1 Modellrahmen Wir betrachten im

Mehr

Vorlesung 5: Probleme der Erwartungsnutzentheorie

Vorlesung 5: Probleme der Erwartungsnutzentheorie Vorlesung 5: Probleme der Erwartungsnutzentheorie Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 5 (FS 11) Probleme der Erwartungsnutzentheorie 1 / 24 1. Einleitung

Mehr

Vorlesung 1: Einleitung

Vorlesung 1: Einleitung Vorlesung 1: Einleitung Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 1, FS 12 Einleitung 1/17 1.1 Motivation In der Vorlesung Intermediate Microecoomics haben

Mehr

Vorlesung 4: Risikoallokation

Vorlesung 4: Risikoallokation Vorlesung 4: Risikoallokation Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie, FS 12 Risikoallokation 1/23 2 / 23 4.1 Einleitung Bisher haben wir uns ausschliesslich

Mehr

Wie rational sind wir eigentlich? Die Grenzen des Homo oeconomicus

Wie rational sind wir eigentlich? Die Grenzen des Homo oeconomicus Wie rational sind wir eigentlich? Die Grenzen des Homo oeconomicus Sofie Waltl I. Homo oeconomicus In der neoklassischen Sichtweise der Volkswirtschaft basieren viele Modelle auf der Annahme, dass Menschen

Mehr

Vorlesung 3: Versicherungsnachfrage

Vorlesung 3: Versicherungsnachfrage Vorlesung 3: Versicherungsnachfrage Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie, FS 12 Versicherungsnachfrage 1/20 2 / 20 3. 1 Das Versicherungsnachfrageproblem

Mehr

Psychologische Grundlagen der Ökonomie

Psychologische Grundlagen der Ökonomie Psychologische Grundlagen der Ökonomie Übung 1: Homo Oeconomicus Dipl.-Vw. Sarah Necker Ruprecht-Karls-Universität Heidelberg Fachbereich Finanzwissenschaft Psychologische Grundlagen der Ökonomie WS 2008/09

Mehr

Configural Weight Theorie

Configural Weight Theorie Seminar zu Economics, Psychology, and Decision Making Configural Weight Theorie Prof. Dr. Christian Kaernbach Prof. Dr. Ulrich Schmidt Sven Offick, Mathias Philipp 1/36 Gliederung 1 Einleitung 2 Historische

Mehr

Übung 2: Konsumententheorie

Übung 2: Konsumententheorie Übung 2: Konsumententheorie Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Intermediate Microeconomics HS 11 Übung 2 1 / 44 2 / 44 Präferenzen Aufgabe 1 Worum geht es? Annahmen

Mehr

5.2DasKriteriumdeserwartetenNutzens

5.2DasKriteriumdeserwartetenNutzens 5.2DasKriteriumdeserwartetenNutzens BisherhabenwirunsichereSituationen beschrieben, jedoch noch nicht gesagt, wie die HaltunggegenüberRisikodasVerhaltenbeeinflußt.DieswerdenwirindiesemAbschnitt untersuchen.

Mehr

2.4 Entscheidung bei Risiko

2.4 Entscheidung bei Risiko 2.4 Entscheidung bei Risiko Entscheidung bei Risiko nimmt an, dass für jeden Zustand S j seine Eintrittswahrscheinlichkeit P(S j ) bekannt ist Eintrittswahrscheinlichkeiten bestimmbar als statistische

Mehr

I. Grundlagen. I. Grundlagen 1. Entscheidungen unter Unsicherheit. 1. Entscheidungen unter Unsicherheit

I. Grundlagen. I. Grundlagen 1. Entscheidungen unter Unsicherheit. 1. Entscheidungen unter Unsicherheit . Entscheidungen unter Unsicherheit I. Grundlagen. Entscheidungen unter Unsicherheit Elemente des Entscheidungsproblems eines Wirtschaftssubekts: Der Entscheidungsträger kann zwischen verschiedenen Aktionen

Mehr

Prospect Theory. Agenda Inhalt 2. Entscheidungsnutzentheorie. 3. Prospect Theory 4. Quellen

Prospect Theory. Agenda Inhalt 2. Entscheidungsnutzentheorie. 3. Prospect Theory 4. Quellen Prospect Theory Inhaltsverzeichnis 2 Erwartungsnutzentheorie (1) (John von Neumann & Oskar Morgenstern - 1944) Dominantes Model in der Analyse von Entscheidungen unter Risiko Normatives Model Deskriptive

Mehr

2.3 Kriterien der Entscheidungsfindung: Präferenzen

2.3 Kriterien der Entscheidungsfindung: Präferenzen .3 Kriterien der Entscheidungsfindung: Präferenzen Der Einfachheit halber beschränken wir uns auf n = ( zwei Güter). Annahme: Konsumenten können für sich herausfinden, ob sie x = ( x, ) dem Güterbündel

Mehr

6. Adverse Selektion und Moralisches Risiko

6. Adverse Selektion und Moralisches Risiko 6. Adverse Selektion und Moralisches Risiko Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Adverse Selektion und Moralisches Risiko 1 / 11 1. Adverse

Mehr

Der Markterfolg strukturierter Anlageprodukte in Deutschland. Erklärungsansätze aus Sicht der Behavioral Finance

Der Markterfolg strukturierter Anlageprodukte in Deutschland. Erklärungsansätze aus Sicht der Behavioral Finance Wirtschaft David Nicolaus Der Markterfolg strukturierter Anlageprodukte in Deutschland. Erklärungsansätze aus Sicht der Behavioral Finance Diplomarbeit DER MARKTERFOLG STRUKTURIERTER ANLAGEPRODUKTE IN

Mehr

Versicherungsökonomie Lösungshinweise zu dem Aufgabenblatt zu Vorlesung 4

Versicherungsökonomie Lösungshinweise zu dem Aufgabenblatt zu Vorlesung 4 Georg Nöldeke Frühjahr 2012 Versicherungsökonomie Lösungshinweise zu dem Aufgabenblatt zu Vorlesung 4 1. Ist Individuum 1 risikoneutral, so ist u konstant. Insbesondere gilt also für beliebieg Allokationen

Mehr

Intermediate Microeconomics Lösungshinweise zu Aufgabenblatt 2

Intermediate Microeconomics Lösungshinweise zu Aufgabenblatt 2 Georg Nöldeke Herbstsemester 2011 Intermediate Microeconomics Lösungshinweise zu Aufgabenblatt 2 1. (a) Indifferenzkurven verlaufen streng fallend und streng konvex; Pfeile zeigen nach rechts-oben. Siehe

Mehr

Vergleich von Entscheidungsträgern bzgl. ihrer Risikoaversion:

Vergleich von Entscheidungsträgern bzgl. ihrer Risikoaversion: Ist das Arrow-Pratt-Maß der absoluten Risikoaversion bekannt, so lässt sich daraus die Nutzenfunktion bestimmen: Mithilfe der Substitution y := U (w) dy = U (w)dw gilt: und daher U (w) U (w) dw = A a (w)dw

Mehr

Zusammenfassung Abschnitt 1

Zusammenfassung Abschnitt 1 Zusammenfassung Abschnitt 1 Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Mikroökonomie (FS 09) Zusammenfassung 1 / 11 1.1 Modell des Konsumentenverhaltens Gegeben sind Güterpreise:

Mehr

Intermediate Microeconomics Lösungshinweise zu Aufgabenblatt 2

Intermediate Microeconomics Lösungshinweise zu Aufgabenblatt 2 Georg Nöldeke Herbstsemester 2010 Intermediate Microeconomics Lösungshinweise zu Aufgabenblatt 2 1. (a) Indifferenzkurven verlaufen streng fallend und streng konvex; Pfeile zeigen nach rechts-oben. Siehe

Mehr

Übung zur Vorlesung Multiagentensysteme

Übung zur Vorlesung Multiagentensysteme Ludwig-Maximilians-Universität München SS 2007 Institut für Informatik Aufgabenblatt 1 Dr. Brandt / Fischer & Harrenstein 23. April 2007 Übung zur Vorlesung Multiagentensysteme Tutorübung: 25. April 2007

Mehr

Nochmal: Indifferenzwahrscheinlichkeiten und Nutzenfunktion Reihung: Selbständigkeit Erfolg Geschäftsführer Vorstandsassistent Insolvenz

Nochmal: Indifferenzwahrscheinlichkeiten und Nutzenfunktion Reihung: Selbständigkeit Erfolg Geschäftsführer Vorstandsassistent Insolvenz Nochmal: Indifferenzwahrscheinlichkeiten und Nutzenfunktion Reihung: Selbständigkeit Erfolg Geschäftsführer Vorstandsassistent Insolvenz Ref.-L.1: Selbst. Erfolg Sicher (300000) π = 1 1-π = 0 Selbständigkeit

Mehr

ML a t he m at ik. Präferenzen. Klaus Schindler. e h r st a b 0 Universität des Saarlandes Fakultät 1

ML a t he m at ik. Präferenzen. Klaus Schindler. e h r st a b 0 Universität des Saarlandes Fakultät 1 Präferenzen Klaus Schindler ML a t he m at ik e h r st a b 0 Universität des Saarlandes Fakultät 1 http://www.mathe.wiwi.uni-sb.de Advanced Quantitative Methods for Economists WS 2014/2015 Ordnung Lexikographische

Mehr

4 ZU V5"4. Er wart ungsnut zenhyp ot hese. Dogmenhistorische Ausgangslage, analytische Voraussetzungen und moderne Entwicklungen

4 ZU V54. Er wart ungsnut zenhyp ot hese. Dogmenhistorische Ausgangslage, analytische Voraussetzungen und moderne Entwicklungen 4 ZU V5"4 Er wart ungsnut zenhyp ot hese Dogmenhistorische Ausgangslage, analytische Voraussetzungen und moderne Entwicklungen Vorwort 15 1.1 Zufall und die Erwartungsnutzentheorie 16 1.2 Inhalt und Fortgang

Mehr

Bachelorprüfung für Volkswirte

Bachelorprüfung für Volkswirte Bachelorprüfung für Volkswirte Mikroökonomie II Dr. Peter Schwardmann 12. Februar 2015 Bitte beantworten Sie die folgenden drei Aufgaben. Zur Bearbeitung der Klausur stehen Ihnen 90 Minuten zur Verfügung.

Mehr

Präferenzen und Nutzenfunktionen. 10.März 2017

Präferenzen und Nutzenfunktionen. 10.März 2017 Präferenzen und Nutzenfunktionen 10.März 2017 Präferenzen und Nutzenfunktionen Darstellung der Präferenzen mittels Nutzenfunktion (utility function) Eine Nutzenfunktion u(x) ordnet jedem Element x aus

Mehr

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen Übung zu Risiko Entscheidungstheoretische Grundlagen Stefan Neuß Sebastian Soika http://www.inriver.bwl.lmu.de Newsletter Auf der Homepage unter http://www.inriver.bwl.uni-muenchen.de/studium/sommer_203/bachelorveranstaltungen/risiko_und_versicherungen/index.html

Mehr

VWL 3: Mikroökonomie Lösungshinweise zu Aufgabenblatt 1

VWL 3: Mikroökonomie Lösungshinweise zu Aufgabenblatt 1 Georg Nöldeke Frühjahrssemester 2009 VWL 3: Mikroökonomie Lösungshinweise zu Aufgabenblatt Siehe Abbildung x 2 m p = 25 2 Budgetgerade: { xpx + px 2 2 = m} Budgetmenge: { xpx + px 2 2 m} 0 0 m p = 20 x

Mehr

Wichtige Informationen vorab

Wichtige Informationen vorab Wichtige Informationen vorab Wir haben eine Mailing Liste "Vorles- UebSS09Kapitalmarkt" eingerichtet. Über diese Mailingliste erhalten Sie in Zukunft die Vorlesungsunterlagen und die Übungsunterlagen.

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Stetige Verteilungen Definition: Sei

Mehr

Kapitel 5: Entscheidung unter Unsicherheit

Kapitel 5: Entscheidung unter Unsicherheit Kapitel 5: Entscheidung unter Unsicherheit Hauptidee: Die Konsequenzen einer Entscheidung sind oft unsicher. Wenn jeder möglichen Konsequenz eine Wahrscheinlichkeit zugeordnet wird, dann kann eine rationale

Mehr

ANALYSIS I FÜR TPH WS 2018/19 3. Übung Übersicht

ANALYSIS I FÜR TPH WS 2018/19 3. Übung Übersicht ANALYSIS I FÜR TPH WS 208/9 3. Übung Übersicht Aufgaben zu Kapitel 5 und 6 Aufgabe : Konvergenz von Reihen (i) Aufgabe 2: Konvergenz von Reihen (ii) Aufgabe 3: ( ) Konvergenz von Reihen (iii) Aufgabe 4:

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 }

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 } A Analsis, Woche Implizite Funktionen A Implizite Funktionen in D A3 Wenn man den Kreis mit Radius um, beschreiben möchte, dann ist { x, ; x + = } eine Möglichkeit Oft ist es bequemer, so eine Figur oder

Mehr

dafür muss man aber wissen, dass es ein Nash-GG gibt ... als wissenschaftliche Theorie unbefriedigend

dafür muss man aber wissen, dass es ein Nash-GG gibt ... als wissenschaftliche Theorie unbefriedigend 1 KAP 8. Existenz von Nash-Gleichgewichten Heute betrachten wir die Frage: Hat jedes Spiel ein Nash-Gleichgewicht? Warum ist diese Frage interessant? Häufig sind Spiele zu kompliziert, um N-GG explizit

Mehr

Rationale Wahl aus Sicht des Wählenden optimal Abbildung/Modellierung von Präferenzen durch paarweisen Vergleich Präferenzrelation: math.

Rationale Wahl aus Sicht des Wählenden optimal Abbildung/Modellierung von Präferenzen durch paarweisen Vergleich Präferenzrelation: math. Whd. Präferenzen Rationale Wahl aus Sicht des Wählenden optimal Abbildung/Modellierung von Präferenzen durch paarweisen Vergleich Präferenzrelation: math. Gebilde zur Darstellung des paarweisen Vergleiches

Mehr

Entscheidungstheoretische Grundlagen

Entscheidungstheoretische Grundlagen Entscheidungstheoretische Grundlagen Yves Breitmoser, HU Berlin Entscheidung unter Risiko Ein Entscheider, seine Entscheidung betrifft nur ihn selbst, aber es gibt Risiko: Themen: Risikopräferenzen: Ein

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Tutorium Mathematik I M WM Lösungen

Tutorium Mathematik I M WM Lösungen Tutorium Mathematik I M WM Lösungen 3... Durch mehrmaliges Anwenden der Regel von de l Hospital ergibt sich: e e sin() e cos()e sin() sin() cos() e + sin()e sin() cos ()e sin() sin() e + cos()e sin() +

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Theorem 9 Sei G eine Verteilungsfunktion in IR. 1. Quantil-Transformation: Wenn U U(0, 1) (standard Gleichverteilung), dann gilt P(G (U) x) = G(x).

Theorem 9 Sei G eine Verteilungsfunktion in IR. 1. Quantil-Transformation: Wenn U U(0, 1) (standard Gleichverteilung), dann gilt P(G (U) x) = G(x). Theorem 9 Sei G eine Verteilungsfunktion in IR. 1. Quantil-Transformation: Wenn U U(0, 1) (standard Gleichverteilung), dann gilt P(G (U) x) = G(x). 2. Wahrscheinlichkeit-Transformation: Sei Y eine Zufallsvariable

Mehr

Kapitel II Funktionen reeller Variabler

Kapitel II Funktionen reeller Variabler Kapitel II Funktionen reeller Variabler D (Funktion) Es sei f XxY eine Abbildung Die Abbildung f heiß Funktion, falls sie eindeutig ist Man schreibt dann auch: f : X Y f ( x) = y, wobei y das (eindeutig

Mehr

Haushaltstheorie. Ökonomische Entscheidungen und Märkte IK. Alexander Ahammer. Institut für Volkswirtschaftslehre Johannes Kepler Universität Linz

Haushaltstheorie. Ökonomische Entscheidungen und Märkte IK. Alexander Ahammer. Institut für Volkswirtschaftslehre Johannes Kepler Universität Linz Haushaltstheorie Ökonomische Entscheidungen und Märkte IK Alexander Ahammer Institut für Volkswirtschaftslehre Johannes Kepler Universität Linz Letztes Update: 31. Oktober 2017, 13:15 Alexander Ahammer

Mehr

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von

Mehr

Kapitel 8. Erwarteter Nutzen. Intertemporaler Nutzen für Mehrperioden-Entscheidungen

Kapitel 8. Erwarteter Nutzen. Intertemporaler Nutzen für Mehrperioden-Entscheidungen Kapitel 8 Erwarteter Nutzen Josef Leydold c 2006 Mathematische Methoden VIII Erwarteter Nutzen / 27 Lernziele Nutzenfunktion zur Risikobewertung Erwarteter Nutzen Maße für Risikoaversion Indifferenzkurven

Mehr

Grundlagen der Versicherungs- und Sozialversicherungsökonomik. Risiko: objektive oder subjektive Wahrscheinlichkeiten

Grundlagen der Versicherungs- und Sozialversicherungsökonomik. Risiko: objektive oder subjektive Wahrscheinlichkeiten Grundlagen der Versicherungs- und Sozialversicherungsökonomik Entscheidungstheorie bei Sicherheit (z. B. trad. Mikroökonomik, lineare Programmierung etc. bei Risiko (Unsicherheit und Ungewissheit Risiko:

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Ludwig-Maximilians-Universität Institut für Statistik. Statistische Herausforderungen sozialwissenschaftlicher Studien:

Ludwig-Maximilians-Universität Institut für Statistik. Statistische Herausforderungen sozialwissenschaftlicher Studien: Ludwig-Maximilians-Universität Institut für Statistik Statistische Herausforderungen sozialwissenschaftlicher Studien: Framing Effekt (Vorbereitungsmaterial) Khac Phuoc Le Betreuer: Prof. Dr. Thomas Augustin

Mehr

Finite Elemente Methode für elliptische Differentialgleichungen

Finite Elemente Methode für elliptische Differentialgleichungen Finite Elemente Methode für elliptische Differentialgleichungen Michael Pokojovy 8. Oktober 2007 Das Ritzsche Verfahren Sei R n ein beschränktes offenes Gebiet mit abschnittsweise glattem Rand S. Betrachte

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen Übung zu Risiko Entscheidungstheoretische Grundlagen Christoph Lex Dominik Lohmaier http://www.inriver.bwl.lmu.de Newsletter Auf der Homepage unter http://www.inriver.bwl.uni-muenchen.de/studium/sommer_04/bachelorveranstaltungen/risiko_und_versicherungen/index.html

Mehr

3. Selbstbehalt und Selbstbeteiligung

3. Selbstbehalt und Selbstbeteiligung 3. Selbstbehalt und Selbstbeteiligung Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Selbstbehalt und Selbstbeteiligung 1 / 16 1. Modellrahmen 1.1

Mehr

1. Einleitung: Markt und Preis

1. Einleitung: Markt und Preis 1. Einleitung: Markt und Preis Georg Nöldeke WWZ, Universität Basel Mikroökonomie (FS 10) Einleitung 1 / 31 1. Einleitung 1.1. Was ist Mikroökonomie? Ziel der Mikroökonomie ist es, menschliches Verhalten

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen Kapitel 5 Univariate Zufallsvariablen Im ersten Teil dieses Skriptes haben wir uns mit Daten beschäftigt und gezeigt, wie man die Verteilung eines Merkmals beschreiben kann. Ist man nur an der Population

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

2.Wichtige Begriffe für Entscheidungen bei Unsicherheit

2.Wichtige Begriffe für Entscheidungen bei Unsicherheit .Wichtige Begriffe für Entscheidungen bei Unsicherheit. Grundlagen Bisher: Rationales Individuum trifft Entscheidungen für Konsumpläne bei Sicherheit. Jetzt: Rationales Individuum trifft Entscheidungen

Mehr

Bearbeiten Sie vier der fünf Aufgaben A1-A5 und zwei der drei Aufgaben B1-B3!

Bearbeiten Sie vier der fünf Aufgaben A1-A5 und zwei der drei Aufgaben B1-B3! Master-Prüfung Kapitalmarkttheorie 2 Schwerpunktmodul Finanzmärkte 6 Kreditpunkte Bearbeitungsdauer: 90 Minuten WS 2017/18 05.03.2018 Prof. Dr. Lutz Arnold Bitte gut leserlich ausfüllen: Name: Vorname:

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Grundlagen. Entscheidung unter Risiko. Entscheidungstheoretische Grundlagen. Risiko oder Unsicherheit? Risiko: Fairer Würfel W, Entscheidung zwischen

Grundlagen. Entscheidung unter Risiko. Entscheidungstheoretische Grundlagen. Risiko oder Unsicherheit? Risiko: Fairer Würfel W, Entscheidung zwischen Entscheidung unter Risiko Entscheidungstheoretische Grundlagen Ein Entscheider, seine Entscheidung betrifft nur ihn selbst, aber es gibt Risiko: Risikopräferenzen: Ein Eckpfeiler des Verhaltens (neben

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Wirtschaftsmathematik für die Betriebswirtschaftslehre (B.Sc.) Adam Georg Balogh Sommersemester 2017 Dr. rer. nat. habil. Adam Georg Balogh E-mail: adam-georg.balogh@h-da.de 1 Ökonomische Funktionen In

Mehr

Randwertprobleme. Kapitel 7. Randwertprobleme für lineare Differentialgleichungen 2. Ordnung

Randwertprobleme. Kapitel 7. Randwertprobleme für lineare Differentialgleichungen 2. Ordnung Kapitel 7 Randwertprobleme Anwendungsbeispiel: Temperaturverteilung in einem dünnen Stab mit isolierter Oberfläche. u(x) : Temperatur im Stab an der Stelle x, x ; L. Im Gleichgewichtszustand genügt u der

Mehr

Beschränktheit, Monotonie & Symmetrie

Beschränktheit, Monotonie & Symmetrie Beschränktheit, Monotonie & Symmetrie ein Referat Dies ist eine Beilage zum Gruppen-SOL - Projekt Potenz- & Exponentialfunktionen Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch November 2015 Inhaltsverzeichnis

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89 9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89 Beweis. Der Beweis erfolgt durch vollständige Induktion. Angenommen wir hätten den Satz für k 1 gezeigt. Dann ist wegen auch Damit ist f(g(y), y) = 0 0 = D y

Mehr

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion.

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion. Übungen zu Grundlagen der Mathematik Lösungen Blatt 1 SS 14 Prof. Dr. W. Decker Dr. M. Pleger Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion f : U R, (x, y) x y x + y, im Punkt (1, 1) bis einschließlich.

Mehr

Vorlesung Entscheidungstheorie

Vorlesung Entscheidungstheorie Vorlesung Entscheidungstheorie Teil 1: Entscheidungen unter Sicherheit Prof. Dr. Daniela Lorenz Sommersemester 2018 1 Überblick 1. Organisatorisches 2. Entscheidungen unter Sicherheit a) Wiederholung:

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

3.2 Implizite Funktionen

3.2 Implizite Funktionen 3.2 Implizite Funktionen Funktionen können explizit als y = f(x 1, x 2,..., x n ) oder implizit als F(x 1, x 2,..., x n ;y) = 0 gegeben sein. Offensichtlich kann man die explizite Form immer in die implizite

Mehr

Teil I: Konsumententheorie

Teil I: Konsumententheorie Teil I: Konsumententheorie 1 Kapitel 1: Präferenzen Hauptidee: Eine Konsumentscheidung kann als Wahl zwischen Güterbündeln modelliert werden, gemäß der Präferenzen des Konsumenten. Die Konzepte Indifferenzkurve,

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 10. Vorlesung - 2018 Grundbegriffe der Statistik statistische Einheiten = Objekte an denen interessierende Größen erfaßt werden z.b. Bevölkerung einer Stadt; Schüler einer bestimmten Schule; Patienten

Mehr

Mikroökonomik. Unsicherheit. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Unsicherheit 1 / 46

Mikroökonomik. Unsicherheit. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Unsicherheit 1 / 46 Mikroökonomik Unsicherheit Harald Wiese Universität Leipzig Harald Wiese (Universität Leipzig) Unsicherheit 1 / 46 Gliederung Einführung Haushaltstheorie Das Budget Präferenzen, Indi erenzkurven und Nutzenfunktionen

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS 7/8 W. Stannat, A. Gündel-vom ofe..8 Februar Klausur Analysis II für Ingenieurwissenschaften Lösungsskizze Analysis II für Ingenieurwissenschaften

Mehr

Übungsaufgaben zu Kapitel 1 bis 4 (Studiengang Produktionstechnik)

Übungsaufgaben zu Kapitel 1 bis 4 (Studiengang Produktionstechnik) Hochschule für Technik und Wirtschaft Dresden Wintersemester 8/9 Fakultät Informatik/Mathematik Prof. Dr. B. Jung Übungsaufgaben zu Kapitel bis 4 (Studiengang Produktionstechnik) Aufgabe : Vereinfachen

Mehr

Einführung in die Informatik mit Java

Einführung in die Informatik mit Java Vorlesung vom 08.01.2008 Übersicht 1 Polygonzüge und Anfangswertprobleme 2 Das Diffusionsmodell nach Bass 3 Erweiterung des Modells 4 Ein Parameteranpassungsproblem Polygonzüge und Anfangswertprobleme

Mehr

Zufallsvariable, Verteilung, Verteilungsfunktion

Zufallsvariable, Verteilung, Verteilungsfunktion Kapitel 5 Zufallsvariable, Verteilung, Verteilungsfunktion 5.1 Zufallsvariable Sei (Ω, A, P ) ein beliebiger Wahrscheinlichkeitsraum. Häufig interessiert nicht ω selbst, sondern eine Kennzahl X(ω), d.h.

Mehr

Übung 3: Unternehmenstheorie

Übung 3: Unternehmenstheorie Übung 3: Unternehmenstheorie Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Intermediate Microeconomics HS 11 Unternehmenstheorie 1 / 42 Produktion Zur Erinnerung: Grenzprodukt

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

Kapitel 5: Entscheidung unter Unsicherheit

Kapitel 5: Entscheidung unter Unsicherheit Kapitel 5: Entscheidung unter Unsicherheit Hauptidee: Die Konsequenzen einer Entscheidung sind oft unsicher. Wenn jeder möglichen Konsequenz eine Wahrscheinlichkeit zugeordnet wird, dann kann eine rationale

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

Risikomessung mit dem Conditional Value-at-Risk

Risikomessung mit dem Conditional Value-at-Risk Jendrik Hanisch Risikomessung mit dem Conditional Value-at-Risk Implikationen für das Entscheidungsverhalten. Bibliothek j k Mit einem Geleitwort von \* \, -^ Prof. Dr. Wolfgang Kürsten A; Verlag Dr. Kovac

Mehr

Aufgabe 1 (Exponentielles Wachstum, wird teilweise auch in Vorlesung besprochen, Teile a) bis c) sind exakt die Aufgaben von Blatt 2, Aufgabe 3))

Aufgabe 1 (Exponentielles Wachstum, wird teilweise auch in Vorlesung besprochen, Teile a) bis c) sind exakt die Aufgaben von Blatt 2, Aufgabe 3)) Formalisierungspropädeutikum Übungsblatt 3 Prof. Dr. Th. Augustin, Dr. R. Poellinger, C. Jansen, J. Plaß, G. Schollmeyer WiSe 2015/16 Aufgabe 1 (Exponentielles Wachstum, wird teilweise auch in Vorlesung

Mehr

Kapitel 3: Präferenzen. moodle.tu-dortmund.de. Wirtschaftstheorie I: Mikroökonomie SoSe 2017, Lars Metzger 1 / 29

Kapitel 3: Präferenzen. moodle.tu-dortmund.de. Wirtschaftstheorie I: Mikroökonomie SoSe 2017, Lars Metzger 1 / 29 Wirtschaftstheorie I: Mikroökonomie SoSe 2017, Lars Metzger 1 / 29 Kapitel 3: Präferenzen moodle.tu-dortmund.de Wirtschaftstheorie I: Mikroökonomie SoSe 2017, Lars Metzger 2 / 29 Präferenzordnung Die Konsumentscheidung

Mehr

Analysis 3, Woche 11. Mannigfaltigkeiten II Immersionen

Analysis 3, Woche 11. Mannigfaltigkeiten II Immersionen Analysis 3, Woche Mannigfaltigkeiten II. Immersionen Definition. Sei m n N und X R m offen. Eine Abbildung f C X; R n heißt Immersion, wenn für jedes x X die Matrix fx injektiv ist. Bemerkung.. Man hat

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 15. Jänner 2017 Evelina Erlacher Inhaltsverzeichnis 1 Mengen 2 2 Wahrscheinlichkeiten 3 3 Zufallsvariablen 5 3.1 Diskrete Zufallsvariablen............................

Mehr

Exemplar für Prüfer/innen

Exemplar für Prüfer/innen Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Juni 2015 Mathematik Kompensationsprüfung 14 Angabe für Prüfer/innen Hinweise zur

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 12. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 12. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, WS 017/18 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 1. Übung

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 18 8. Januar 2010 Kapitel 5. Funktionen mehrerer Veränderlicher, Stetigkeit und partielle Ableitungen 5.2. Partielle Ableitungen von Funktionen

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

3 Haushaltsoptimum, individuelle Nachfragefunktion, indirekte Nutzenfunktion und kompensierte Nachfragefunktion

3 Haushaltsoptimum, individuelle Nachfragefunktion, indirekte Nutzenfunktion und kompensierte Nachfragefunktion Seite 3 Haushaltsotimum, individuelle Nachfragefunktion, indirekte Nutzenfunktion und komensierte Nachfragefunktion Grundannahme der Haushaltstheorie: HH kauft ein solches Güterbündel a) sich leisten kann

Mehr