Taylorreihen. Kapitel 9. Lernziele. Taylorreihe. (x x 0 ) + f (x 0 ) 2! (x x 0 ) f (n) (x 0 ) (x x 0 ) n. Taylorreihe und MacLaurinreihe

Größe: px
Ab Seite anzeigen:

Download "Taylorreihen. Kapitel 9. Lernziele. Taylorreihe. (x x 0 ) + f (x 0 ) 2! (x x 0 ) f (n) (x 0 ) (x x 0 ) n. Taylorreihe und MacLaurinreihe"

Transkript

1 Kapitel 9 Taylorreihen Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 1 / 25 Lernziele Taylorreihe und MacLaurinreihe Beispiele Alternative Schreibweisen Approimation der Veränderung einer Funktion Delta-Methode: Approimation von E[f (X)] Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 2 / 25 Taylorreihe Wenn eine Funktion f () genügend oft differenzierbar ist, kann sie durch ein Polynom n-ter Ordnung approimiert werden. f () f ( 0 ) + f ( 0 ) + f (n) ( 0 ) ( 0 ) + f ( 0 ) ( 0 ) n ( 0 ) 2 + Man sagt, die Funktion f () wird an der Stelle 0 in eine Taylorreihe bis zur Ordnung n entwickelt. durch ein Polynom n-ter Ordnung approimiert (Taylorpolynom). Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 3 / 25

2 Taylorreihe / (2) Bezeichnung: f (k) () bezeichnet die k-te Ableitung von f nach. f (k) ( 0 ) ist der Wert der k-ten Ableitung von f an der Stelle 0. k! heißt k-faktorielle: k! = k. 0! = 1, = 1, = 2, 3! = = 6 Die Approimation ist umso besser (der Fehler ist umso kleiner) je näher an der Entwicklungstelle 0 ist; je größer die Ordnung n ist. Die Koeffizienten des Polynoms sind so gewählt, dass die ersten n Ableitungen mit jener von f übereinstimmen. Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 4 / 25 MacLaurinreihe Der Spezialfall mit Entwicklungspunkt 0 = 0 wird auch als MacLaurin-Polynom bezeichnet. f () f (0) + f (0) + f (0) f (n) (0) n Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 5 / 25 Taylorreihe: n = 1 Für n = 1 ergibt sich ein Polynom erster Ordnung (lineare Funktion). f () f ( 0 ) + f ( 0 ) ( 0 ) Man schreibt auch f (). = f ( 0 ) + f ( 0 ) ( 0 ). = bedeutet in erster Näherung. Wenn wir die Näherung verwenden, rechnen wir mit der Tangente der Funktion an der Stelle 0 anstatt mit f. Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 6 / 25

3 Beispiel: ep() Taylorentwicklung erster Ordnung von f () = ep() an der Entwicklungsstelle 0 = 0. f () f (0) + f (0) ep() = 1 + f () = ep() f (0) = ep(0) = 1 f () = ep() f (0) = ep(0) = 1 Das Taylorpolynom erster Ordnung von ep() in 0 = 0 ist t() = 1 + Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 7 / 25 Beispiel: log(1 + ) Taylorentwicklung erster Ordnung von f () = log(1 + ) an der Entwicklungsstelle 0 = 0. f () f (0) + f (0) log(1 + ) = f () = log(1 + ) f (0) = log(1) = 0 f () = 1/(1 + ) f (0) = 1/(1 + 0) = 1 Das Taylorpolynom erster Ordnung von log(1 + ) in 0 = 0 ist t() = Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 8 / 25 Graph: ep() und log(1 + ) f () ep() f () log(1 + ) Wir approimieren ep() an der Stelle 0 durch eine Gerade: ep(). = 1 + Wir approimieren log(1 + ) an der Stelle 0 durch eine Gerade. log(1 + ). = Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 9 / 25

4 Anwendung Für alle R gilt: ( lim 1 + n = e n n) = ep() Eine Motivation für diese Beziehung erhalten wir über ( 1 + ) n = e n log(1+/n). = e n (/n) = e n Die Näherung log(1 + ). = ist gut, wenn betragsmäßig klein ist. Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 10 / 25 Taylorreihe: n = 2 Für n = 2 ergibt sich ein Polynom zweiter Ordnung (quadratische Funktion). f () f ( 0 ) + f ( 0 ) ( 0 ) + f ( 0 ) ( 0 ) 2 Die Approimation zweiter Ordnung ist in der Regel eine bessere lokale Approimation als die Erste. Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 11 / 25 Beispiel: ep() (n = 2) Taylorentwicklung zweiter Ordnung von f () = ep() an der Entwicklungsstelle 0 = 0. f () f (0) + f (0) + f ( 0 ) 2 ep() = f () = ep() f (0) = ep(0) = 1 f () = ep() f (0) = ep(0) = 1 f () = ep() f (0) = ep(0) = 1 Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 12 / 25

5 Beispiel: log(1 + ) (n = 2) Taylorentwicklung zweiter Ordnung von f () = log(1 + ) an der Entwicklungsstelle 0 = 0. f () f (0) + f (0) + f ( 0 ) 2 log(1 + ) = f () = log(1 + ) f (0) = log(1) = 0 f () = 1/(1 + ) = (1 + ) 1 f (0) = 1/(1 + 0) = 1 f () = (1 + ) 2 f (0) = (1 + 0) 2 = 1 Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 13 / 25 Graph: ep() und log(1 + ) f () ep() f () log(1 + ) ep() log(1 + ) 2 2 Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 14 / 25 Wichtige Taylorreihen ( 0 = 0) Eponentialfunktion ep() = ! +... Logarithmus log(1 + ) = Sinus sin() = 3 3! + 5 5! 7 7! + Kehrwert 1 1 = Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 15 / 25

6 Alternative Schreibweise: h = ( 0 ) Wir heben die Veränderung ( 0 ) hervor, indem wir sie mit h (= ( 0 )) bezeichnen. Die Entwicklungsstelle bezeichnen wir als. f ( + h) f () + f () h + f () h f (n) () h n 0 wird durch ersetzt, ( 0 ) durch h, und durch ( + h). Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 16 / 25 Alternative Schreibweise: = ( 0 ) Schreiben Taylorreihe mit anstatt h. f ( + ) f () + f () + f () ( ) f (n) () ( ) n bezeichnet die Änderung von. Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 17 / 25 Approimation für f = f ( + ) f () Wir f () auf die linke Seite. Erhalten damit eine Entwicklung für die Veränderung der Funktion. f () = f ( + ) f () bezeichnet die Änderung von f () (wenn sich um ändert) Wir vergleichen den Funktionswert an der Stelle mit dem bei ( + ). f () f () + f () ( ) f (n) () ( ) n Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 18 / 25

7 Approimation für f in 1. Näherung In erster Näherung gibt sich mit f () = f ( + ) f () f (). = f () Die Veränderung des Funktionswertes wird gut durch die Ableitung an der Stelle mal der Schrittweite,, beschrieben. (Steigung der Tangente mal Schrittweite) Diese diskrete Approimation einer stetigen Funktion werden wir im Folgenden etensiv verwenden. Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 19 / 25 Beispiel: log(1 + ) In erster Näherung gibt sich für f () f (). = Änderung von f () = log(1 + ) an der Stelle = 2: f (2) = f (2 + ) f (2). = = 1 3 Wenn wir von 2 nach 2.5 gehen erhalten wir = 1/2 und f (2) = [f ( ) f (2)]. = = 1 6 Die Änderung der Funktion beträgt zwischen 2 und 2.5 ungefähr 1/6. Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 20 / 25 Delta-Methode: Approimation von E[f (X)] Sei X eine ZV mit E(X) = µ und V(X) = σ 2. f (X) sei eine (nicht-lineare) Funktion in X. Die Delta-Methode approimiert den Erwartungswert der nicht-linearen Funktion, E[f (X)], in dem die Funktion in eine Taylorreihe bis zu einer (niedrigen) Potenz entwickelt und anschließend von dieser der Erwartungswert berechnet wird. Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 21 / 25

8 Approimation 1. Ordnung Wir entwickeln f an der Stelle µ. Also 0 = µ: f (X). = f (µ) + f (µ) (X µ) E[f (X)] f (µ) und V[f (X)] f (µ) 2 σ 2 Aus den Rechenregeln für Linearkombinationen von Zufallsvariablen erhalten wir: E[f (X)]. = E[f (µ) + f (µ) (X µ)] = E[f (µ)] + f (µ) E[(X µ)] = f (µ) V[f (X)]. = V[f (µ) + f (µ) (X µ)] = f (µ) 2 σ 2 Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 22 / 25 Approimation 2. Ordnung Wir entwickeln f an der Stelle µ. Also 0 = µ: f (X) =. f (µ) + f (µ) (X µ) + f (µ) (X µ) 2 Dann erhalten wir für den Erwartungswert E[f (X)] f (µ) f (µ) σ 2 und für die Varianz unter der Annahme, dass X normal verteilt ist, X N(µ, σ 2 ), V[f (X)] f (µ) 2 σ f (µ) 2 σ 4 Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 23 / 25 Approimation 2. Ordnung / Herleitung Erwartungswert: E[f (X)] E[f (µ) + f (µ) (X µ) + f (µ) (X µ) 2 ] = E[f (µ)] + f (µ) E[(X µ)] f (µ) E[(X µ) 2 ] = f (µ) + f (µ) (E[X] µ) f (µ) V[X] 2 = f (µ) f (µ) σ 2 Für die Varianz benötigen wir das 3. und 4. Moment der Normalverteilung, E[(X µ) 3 ] und E[(X µ) 4 ]. Diese sind E[(X µ) 3 ] = 0 und E[(X µ) 4 ] = 3 σ 4 Das 3. Moment ( Schiefe ) ist Null, da die Normalverteilung symmetrisch ist. (Wir leiten aber die Beziehung für die Varianz nicht her.) Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 24 / 25

9 Beispiel: ep(x) Sei f (X) = ep(x) und X N(µ, σ 2 ): Approimation 1. Ordnung: E[f (X)] ep(µ) und V[f (X)] ep(µ) 2 σ 2 Approimation 2. Ordnung: E[f (X)] ep(µ) ep(µ) σ2 = ep(µ) (1 + σ 2 /2) V[f (X)] ep(µ) 2 σ ep(µ)2 σ 4 = ep(2 µ) σ 2 (1 + σ 2 /2) Bemerkung: Die ZV Y = ep X ist lognormal verteilt. Josef Leydold c 2006 Mathematische Methoden IX Taylorreihen 25 / 25

Weitere Anwendungen der Differentialrechnung

Weitere Anwendungen der Differentialrechnung Weitere Anwendungen der Differentialrechnung Informationsblatt Aus der großen Zahl von Anwendungsmöglichkeiten der Differentialrechnung werden das Newton sche Näherungsverfahren und die Taylor-Reihen vorgestellt.

Mehr

Fehlerabschätzung für Taylorpolynome der e-funktion

Fehlerabschätzung für Taylorpolynome der e-funktion Fehlerabschätzung für Talorpolnome der e-funktion f() = e R () = e g() = ++ - -. Wir approimieren die Funktion f() = e durch g() = +! +! und schätzen den Fehler R() auf dem Intervall [,] ab. Sei also e

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Auffrischungskurs Mathematik WS 2017/18 7 Differentialrechnung 1 / 75 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrechnung f = f 0 + f 0 = f 0 0 heißt Differenzenquotient an der Stelle 0., Sekante 0, f 0 f 0 Josef Leydold Auffrischungskurs

Mehr

Approximation durch Polynome

Approximation durch Polynome durch n Anwendungen: zur Vereinfachung einer gegebenen Funktion durch einen Polynomausdruck. Dann sind übliche Rechenoperation +,,, / möglich. zur Interpolation von Daten einer Tabelle n Beispiel Trotz

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

dx nf(x 0). dx f(n 1) (x 0 ) = dn

dx nf(x 0). dx f(n 1) (x 0 ) = dn 4.3. Höhere Ableitungen, Konveität, Newtonverfahren 65 4.3 Höhere Ableitungen, Konveität, Newtonverfahren Ist f:i R differenzierbar auf einem Intervall I, so erhalten wir eine neue Funktion auf I, nämlich

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2013/14 Oft können wir bestimmte mathematische Funktionen nicht genau

Mehr

Animation: Approximation von sin(x) durch Polynome 1-25.Grades

Animation: Approximation von sin(x) durch Polynome 1-25.Grades of 1 19/03/14 09:00 Taylorpolynome zurück Approximation durch Polynome höheren Grades Erklärung Bis jetzt haben wir Funktionen nur durch Polynome 1. und 2.Grades approximiert, nämlich durch die Tangentengerade

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

Polynomiale Approximation. und. Taylor-Reihen

Polynomiale Approximation. und. Taylor-Reihen Polynomiale Approximation und Taylor-Reihen Heute gehts um die Approximation von glatten (d.h. beliebig oft differenzierbaren) Funktionen f nicht nur durch Gerade (sprich Polynome vom Grade 1) und Polynome

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Differentialrechnung algebraisch betrachtet

Differentialrechnung algebraisch betrachtet Differentialrechnung algebraisch betrachtet Franz Pauer Florian Stampfer Institut für Mathematik Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung

Mehr

2.6 Lokale Extrema und Mittelwertsatz

2.6 Lokale Extrema und Mittelwertsatz 2.6. Lokale Etrema und Mittelwertsatz 49 2.6 Lokale Etrema und Mittelwertsatz In diesem Kapitel bezeichne f stets eine reellwertige Funktion, definiert auf einem abgeschlossenen Intervall [a, b]. Unter

Mehr

Freie Universität Berlin Wintersemester 11/12 Fachbereich Mathematik und Informatik Institut für Mathematik Dr. A. Linke

Freie Universität Berlin Wintersemester 11/12 Fachbereich Mathematik und Informatik Institut für Mathematik Dr. A. Linke Freie Universität Berlin Wintersemester / Fachbereich Mathematik und Informatik Institut für Mathematik Dr. A. Linke Musterlösung zum. Übungsblatt zur Vorlesung Mathematik für Physiker I Differenzierbarkeit,

Mehr

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29 Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die

Mehr

4.4 Taylorentwicklung

4.4 Taylorentwicklung 4.4. TAYLORENTWICKLUNG 83 4.4 Taylorentwicklung. Definitionen f sei eine reellwertige m + -mal stetig differenzierbare Funktion der n Variablen x bis x n auf einem Gebiet M R n. Die Verbindungsgerade der

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

10 Ableitungen höherer Ordnung

10 Ableitungen höherer Ordnung Mathematik für Ingenieure II, SS 9 Freitag 47 $Id: ntaylortex,v 3 9/7/4 8:6:56 hk Exp $ Ableitungen höherer Ordnung Partielle Ableitungen beliebiger Ordnung Nachdem wir das letzte Mal einige Beispiele

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

P n (1) P j (1) + ε 2, j=0. P(1) P j (1) + ε 2 < ε. log(1+x) =

P n (1) P j (1) + ε 2, j=0. P(1) P j (1) + ε 2 < ε. log(1+x) = Zu ε > 0 gibt es ein N N mit P n (1) P j (1) < ε/2 für j,n > N, also gilt Es folgt (1 x) n 1 j=n+1 und schließlich mit n x j P n (1) P j (1) (1 x) ε 2 P n (1) P n (x) (1 x) P(1) P(x) (1 x) für x hinreichend

Mehr

Lösen von Differentialgleichungen durch Reihenentwicklung

Lösen von Differentialgleichungen durch Reihenentwicklung Lösen von Differentialgleichungen durch Reihenentwicklung Thomas Wassong FB17 Mathematik Universität Kassel 30. April 2008 Einführung Reihen in der Mathematik Reihen zum Lösen von Differentialgleichungen

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

ANALYSIS 2 VERSION 26. Juni 2018

ANALYSIS 2 VERSION 26. Juni 2018 ANALYSIS VERSION 6 Juni 018 LISIBACH ANDRÉ 6 Potenzreihenentwicklung 61 Einleitung Die Linearisierung einer Funktion f(x an der Stelle x ist die Funktion L(x f( + df dx ((x Die Linearisierung ist ein Polynom

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7 Universität Basel 4 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Kurvendiskussionen Inhaltsverzeichnis 1 Höhere Ableitungen 2 2 Mittelwertsatz und

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Übersicht. 1. Motivation. 2. Grundlagen

Übersicht. 1. Motivation. 2. Grundlagen Übersicht 1. Motivation 2. Grundlagen 3. Analysis 3.1 Folgen, Reihen, Zinsen 3.2 Funktionen 3.3 Differentialrechnung 3.4 Extremwertbestimmung 3.5 Nichtlineare Gleichungen 3.6 Funktionen mehrerer Variabler

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die

Mehr

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7 Universität Basel 4 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Kurvendiskussionen Inhaltsverzeichnis 1 Höhere Ableitungen 2 2 Mittelwertsatz und

Mehr

Vorlesung: Analysis I für Ingenieure

Vorlesung: Analysis I für Ingenieure Vorlesung: Analysis I für Ingenieure Michael Karow Thema: Satz von Taylor Die Taylor-Entwicklung I Satz von Taylor. Sei f : R D R an der Stelle x n-mal differenzierbar. Dann gilt für x D, n f (k) (x )

Mehr

Der Taylorsche Satz Herleitung und Anwendungen

Der Taylorsche Satz Herleitung und Anwendungen Der Taylorsche Satz Herleitung und Anwendungen Joachim Schneider Juni 2004 Zusammenfassung Es wird ein enfacher Beweis des Taylorsche Satz über die lokale Approximierbarkeit hinreichend glatter Funktionen

Mehr

(b) Bestimmen Sie mit Hilfe des Newton-Verfahrens eine Nullstelle von f auf 6 Nachkommastellen

(b) Bestimmen Sie mit Hilfe des Newton-Verfahrens eine Nullstelle von f auf 6 Nachkommastellen Mathematik I für Naturwissenschaften Dr. Christine Zehrt 5.10.18 Übung 6 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 9. Oktober 018 in den Übungsstunden Aufgabe 1 GebenSieohneTaschenrechnereineNäherungvon

Mehr

Tangente als Näherung

Tangente als Näherung Mathematik I für Informatiker Satz von Taylor Taylorreihen p. 1 Tangente als Näherung Weil sich anschaulich die Tangente anschmiegt, ist die Tangentenfunktion p 1 (x) eine Näherung für f(x): f(x) p 1 (x)

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

Charakteristische Funktionen

Charakteristische Funktionen Kapitel 9 Charakteristische Funktionen Jeder Wahrscheinlichkeitsverteilung auf (, B 1 ) (allgemeiner: (R n, B n )) ist eine komplexwertige Funktion, ihre charakteristische Funktion, zugeordnet, durch die

Mehr

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?

Mehr

1. Wahrscheinlichkeitsverteilungen und Versicherungsanwendungen 1.1 Wichtige diskrete Verteilungen a. Poisson-Verteilung.

1. Wahrscheinlichkeitsverteilungen und Versicherungsanwendungen 1.1 Wichtige diskrete Verteilungen a. Poisson-Verteilung. 1. Wahrscheinlichkeitsverteilungen und Versicherungsanwendungen 1.1 Wichtige diskrete Verteilungen a. Poisson-Verteilung. Sei N eine zufällige Variable, ist ein Poisson-Verteilung mit Parameter λ definiert

Mehr

Musterlösungen zu Blatt 15, Analysis I

Musterlösungen zu Blatt 15, Analysis I Musterlösungen zu Blatt 5, Analysis I WS 3/4 Inhaltsverzeichnis Aufgabe 85: Konvergenzradien Aufgabe 86: Approimation von ep() durch Polynome Aufgabe 87: Taylorreihen von cos 3 und sin Aufgabe 88: Differenzenquotienten

Mehr

Vorbereitung zur Klausur Mathematik 2 MT HTW des Saarlandes

Vorbereitung zur Klausur Mathematik 2 MT HTW des Saarlandes Vorbereitung zur Klausur Mathematik MT HTW des Saarlandes Dimitri Ovrutskiy 9. Juli 008 1 1 Komplee Zahlen Sei j = 1 die komplee Einheit. Die Zahl wird oft auch als i bezeichnet. 1.1 Rechnen in C Aufgabe

Mehr

Diskrete Zufallsvariablen (Forts.) I

Diskrete Zufallsvariablen (Forts.) I 9 Eindimensionale Zufallsvariablen Diskrete Zufallsvariablen 9.4 Diskrete Zufallsvariablen (Forts.) I T (X ) ist endlich oder abzählbar unendlich, die Elemente von T (X ) werden daher im Folgenden häufig

Mehr

Diskrete Zufallsvariablen (Forts.) I

Diskrete Zufallsvariablen (Forts.) I 9 Eindimensionale Zufallsvariablen Diskrete Zufallsvariablen 9.4 Diskrete Zufallsvariablen (Forts.) I T (X ) ist endlich oder abzählbar unendlich, die Elemente von T (X ) werden daher im Folgenden häufig

Mehr

Probeklausur zu Mathematik 3 für Informatik

Probeklausur zu Mathematik 3 für Informatik Gunter Ochs Juli 0 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immel ohne Galantie auf Fehreleiheit Sei f ln a Berechnen Sie die und die Ableitung f und f Mit der Produktregel erhält

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Satz von Taylor Taylorreihen

Satz von Taylor Taylorreihen Satz von Taylor Taylorreihen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Tangente als Näherung Weil sich anschaulich die Tangente anschmiegt, ist die Tangentenfunktion

Mehr

Differenzierbarkeit im R n. Analysis III October 30, / 94

Differenzierbarkeit im R n. Analysis III October 30, / 94 Differenzierbarkeit im R n Analysis III October 30, 2018 36 / 94 Partielle Ableitungen Buch Kap. 5.5 Definition 5.23: (partielle Differenzierbarkeit) Sei die Funktion f : D R, D R n, wobei D eine offene

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. Dezember 2011)

Mehr

Beweise zum Ableiten weiterer Funktionen

Beweise zum Ableiten weiterer Funktionen Arbeitsblatt A: Eponentialfunktionen Satz (Ableitung von Eponentialfunktionen) Für alle gilt: () f () = e f ' () = e () f () = a f ' () = a ln (a) mit a + f() = e grafisches Differenzieren: Ergänze die

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt

Mehr

10 Differentialrechnung für Funktionen in mehreren Variablen

10 Differentialrechnung für Funktionen in mehreren Variablen 6 Differentialrechnung für Funktionen in mehreren Variablen Die meisten Funktionen in den Naturwissenschaften hängen von mehreren Variablen ab. In diesem Kapitel behandeln wir deshalb Methoden zur Untersuchung

Mehr

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel;

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; Kapitel Der Satz von Taylor. Taylor-Formel und Taylor-Reihe (Taylor-Polynom; Restglied; Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; die Klasse C ; reell analytische Funktionen) In

Mehr

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}.

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}. Binomialverteilung Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder nicht. X = Häufigkeit, mit

Mehr

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0 Taylor-Reihen Einführung Mathematik GLF / 6 Christian Neukirchen Oft können wir bestimmte mathematische Funktionen nicht genau ausrechnen, besonders die trigonometrischen Funktionen wie, cos x, oder die

Mehr

Taylorentwicklung von Funktionen einer Veränderlichen

Taylorentwicklung von Funktionen einer Veränderlichen Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der

Mehr

Analysis I Lösung von Serie 9

Analysis I Lösung von Serie 9 FS 07 9.. MC Fragen: Ableitungen (a) Die Figur zeigt den Graphen einer zweimal differenzierbaren Funktion f. Was lässt sich über f, f und f sagen? Nichts Die Funktion f ist positiv. Die Funktion f ist

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Differentiation und Taylorentwicklung. Thomas Fehm

Differentiation und Taylorentwicklung. Thomas Fehm Differentiation und Taylorentwicklung Thomas Fehm 4. März 2009 1 Differentiation in R 1.1 Grundlagen Definition 1 (Ableitung einer Funktion) Es sei f eine Funktion die auf dem Intervall I R definiert ist.

Mehr

Differentialrechnung

Differentialrechnung Katharina Brazda 5. März 007 Inhaltsverzeichnis Motivation. Das Tangentenproblem................................... Das Problem der Momentangeschwindigkeit.......................3 Differenzenquotient und

Mehr

Kapitel 8. Erwarteter Nutzen. Intertemporaler Nutzen für Mehrperioden-Entscheidungen

Kapitel 8. Erwarteter Nutzen. Intertemporaler Nutzen für Mehrperioden-Entscheidungen Kapitel 8 Erwarteter Nutzen Josef Leydold c 2006 Mathematische Methoden VIII Erwarteter Nutzen / 27 Lernziele Nutzenfunktion zur Risikobewertung Erwarteter Nutzen Maße für Risikoaversion Indifferenzkurven

Mehr

4.2 Moment und Varianz

4.2 Moment und Varianz 4.2 Moment und Varianz Def. 2.10 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: EX p

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 21. Dezember 2011 1 Definition Binomialverteilung Geometrische Verteilung Poissonverteilung 2 Standardisierte Verteilung

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Aufgabenkomplex 1: Funktionen, Interpolation, Grenzwerte, Ableitung

Aufgabenkomplex 1: Funktionen, Interpolation, Grenzwerte, Ableitung Technische Universität Chemnitz 8. April 203 Fakultät für Mathematik Höhere Mathematik I.2 Aufgabenkomple : Funktionen, Interpolation, Grenzwerte, Ableitung Letzter Abgabetermin: 30. April 203 in Übung

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion f(x) =

Mehr

6.6 Poisson-Verteilung

6.6 Poisson-Verteilung 6.6 Poisson-Verteilung Die Poisson-Verteilung ist eine Wahrscheinlichkeitsverteilung, die zur Modellierung der Anzahl von zufälligen Vorkommnissen in einem bestimmten räumlichen oder zeitlichen Abschnitt

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 x 1, x 2,..., x n ) x 2... f 2 x 1, x 2,..., x n )... x n f m x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man: f

Mehr

12. Stetigkeit und Differenzierbarkeit.

12. Stetigkeit und Differenzierbarkeit. 2- Funktionen 2 Stetigkeit und Differenzierbarkeit Wenn man von Analsis spricht, so meint man die Untersuchung von Funktionen in einer oder oder in mehreren Variablen, vor allem denkt man an das Differenzieren

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Mathematik für Bauingenieure

Mathematik für Bauingenieure Mathematik für Bauingenieure von Kerstin Rjasanowa 1. Auflage Mathematik für Bauingenieure Rjasanowa schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 2006 Verlag C.H.

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Zufallsvariablen rekapituliert

Zufallsvariablen rekapituliert Zufallsvariablen rekapituliert Wolfgang Konen TH Köln, Campus Gummersbach April 2016 Wolfgang Konen (TH Köln) Zufallsvariablen April 2016 1 / 11 1 Einleitung 2 Zufallsvariablen 3 Linearität und Varianz

Mehr

QUADRATISCHE FUNKTIONEN

QUADRATISCHE FUNKTIONEN QUADRATISCHE FUNKTION DARSTELLUNG MIT DER FUNKTIONSGLEICHUNG Allgemeine Form - Vorzeichen von a gibt an, ob die Funktion nach oben (+) oder unten (-) geöffnet ist. Der Wert (Betrag) von gibt an, ob die

Mehr

Funktionenklassen. Einiges, was wir bisher über Funktionen gelernt haben kann auf alle Funktionen übertragen werden.

Funktionenklassen. Einiges, was wir bisher über Funktionen gelernt haben kann auf alle Funktionen übertragen werden. R. Brinkmann http://brinkmann-du.de Seite 0.0.008 Einführung: Funktionenklassen Bisher haben wir nur ganzrationale Funktionen kennen gelernt. Sie gehören zu der Klasse der Rationalen Funktionen. In der

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Stichproben Parameterschätzung Konfidenzintervalle:

Stichproben Parameterschätzung Konfidenzintervalle: Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,

Mehr

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

Vorwort Abbildungsverzeichnis Teil I Mathematik 1

Vorwort Abbildungsverzeichnis Teil I Mathematik 1 Inhaltsverzeichnis Vorwort Abbildungsverzeichnis V XIII Teil I Mathematik 1 1 Elementare Grundlagen 3 1.1 Grundzüge der Mengenlehre... 3 1.1.1 Darstellungsmöglichkeiten von Mengen... 4 1.1.2 Mengenverknüpfungen...

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

Maclaurinsche Reihe 1-E1. Ma 2 Lubov Vassilevskaya

Maclaurinsche Reihe 1-E1. Ma 2 Lubov Vassilevskaya Maclaurinsche Reihe 1-E1 Colin Maclaurin Colin Maclaurin (1698-1746), schottischer Mathematiker, der Erfinder der nach ihm benannten Maclaurinschen Reihe und Mitentwickler der Euler-Maclaurin-Formel. 1-E

Mehr

Zentralübung zur Vorlesung Diskrete Wahrscheinlichkeitstheorie

Zentralübung zur Vorlesung Diskrete Wahrscheinlichkeitstheorie SS 2014 Zentralübung zur Vorlesung Diskrete Wahrscheinlichkeitstheorie Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2014ss/dwt/uebung/ 5. Juni 2014 ZÜ DWT ZÜ VI Übersicht:

Mehr

Reihen und Potenzreihen

Reihen und Potenzreihen Kapitel Reihen und Potenzreihen. Potenzreihen Aufgabe. : Überprüfen Sie die folgenden unendlichen Reihen auf absolute Konvergenz. ( ) n f) k 2 2 k b) ( ) k k k 3 + g) ( 2) k k c) sin(n) + cos 2 (n) h)

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Keyl M. Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis ) MA903 http://www-m5.ma.tum.de/allgemeines/ma903 06S Sommersem. 06 Lösungsblatt 8 (3.6.06)

Mehr

Wirtschaftsmathematik Formelsammlung

Wirtschaftsmathematik Formelsammlung Wirtschaftsmathematik Formelsammlung Binomische Formeln Stand März 2019 (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) (a b) = a 2 b 2 Fakultät (Faktorielle) n! = 1 2 3 4 (n 1) n Intervalle

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 10

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 10 RMG Haßfurt Grundwissen Mathematik Jahrgangsstufe 0 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 0 Wissen und Können. Berechnungen am Kreis Bogenmaß Das Bogenmaß ist das zu

Mehr