ϕ k (t)ψ j (s) 2 ds)dt < folgt ϕ k (t)ψ j (s) δ j1,j 2 und daher handelt es sich um ein Orthonormalsystem in L 2 (Ω 1 Ω 2 ).

Größe: px
Ab Seite anzeigen:

Download "ϕ k (t)ψ j (s) 2 ds)dt < folgt ϕ k (t)ψ j (s) δ j1,j 2 und daher handelt es sich um ein Orthonormalsystem in L 2 (Ω 1 Ω 2 )."

Transkript

1 1) a) Wir wollen zeigen, dass {ϕ k (t)ψ j (s)} j,k N0 eine Orthonormalbasis ist. Beachte dabei zunächst, dass (t, s) ϕ k (t)ψ j (s) für alle j, k N 0 messbare Abbildungen auf Ω 1 Ω 2 sind und da Ω 1 ϕ k (t)ψ j (s) 2 ds)dt < folgt ϕ k (t)ψ j (s) L 2 (Ω 1 Ω 2 ). Man rechnet jetzt mit Fubini leicht nach, dass (ϕ k1 (t)ψ j1 (s), ϕ k2 (t)ψ j2 (s)) L2 (Ω 1 Ω 2 ) = (ϕ k1, ϕ k2 ) L2 (Ω 1 )(ψ j1, ψ j2 ) L2 (Ω 2 ) = δ k1,k 2 δ j1,j 2 und daher handelt es sich um ein Orthonormalsystem in L 2 (Ω 1 Ω 2 ). Sei jetzt g L 2 (Ω 1 Ω 2 ), dass auf allen ϕ k (t)ψ j (s) senkrecht steht, wir müssen g = 0 zeigen. Es gilt also 0 = (g, ϕ k (t)ψ j (s)) L2 (Ω 1 Ω 2 ) = Ω 1 g(t, s)ψ j (s)ds)ϕ k (t)dt für alle j, k N 0. Da Ω 2 g(t, s)ψ j (s)ds L 2 (Ω 1 ) und {ϕ k } eine Orthonormalbasis von L 2 (Ω 1 ) ist, folgt für alle j N 0 also Ω 2 g(t, s)ψ j (s)ds = 0 für fast alle t Ω 1. Also gibt es eine Nullmenge N Ω 1, so dass Ω 2 g(t, s)ψ j (s)ds = 0 für alle j N 0 und t N c gilt. Da {ψ j } j=0 eine Orthonormalbasis von L 2 (Ω 2 ) ist, gilt für alle t N c also g t := g(t, ) = 0 fast überall. Also ist g 2 L 2 (Ω 2 ) = Ω 1 g(t, s) 2 ds)dt = 0 und daher g = 0. b) Sei {e k } k=1 eine Orthonormalbasis von L 2 (Ω), dann gilt a ij = (S κ e j, e i ) für alle i, j N. Es ist dann natürlich auch {e j (s)} j=1 eine Orthonormalbasis von L 2 (Ω) und daher ist nach a) die Menge {e i (t)e j (s)} eine Orthonormalbasis von L 2 (Ω 2 ). Da für den Integralkern κ L 2 (Ω 2 ) gilt, folgt aus der Parsevalschen Gleichung Ω 2 κ(t, s) 2 d(t, s) = κ 2 L 2 (Ω 2 ) = (κ, e i (t)e j (s)) 2. Es gilt aber (κ, e i (t)e j (s)) = Ω 2 κ(t, s)e i(t)e j (s)d(t, s) = Ω ( Ω κ(t, s)e j(s)ds)e i (t)dt = (S κ e j, e i ) = a ij für alle i, j N und daher a ij 2 und die Behauptung folgt. (κ, e i (t)e j (s)) 2 = 2) a) Es seien U, V, G E Unterräume mit E = U G und V G = {0}. Weiter sei U endlichdimensional, dann wollen wir dim(v ) dim(u) zeigen. Beachte dabei, dass gilt U = E/G als Vektorraum und das man V in E/G einbetten kann via V E/G, x x + G, da V G = {0} gilt nach Voraussetzung. Also

2 folgt dim(v ) dim(e/g) = dim(u). b) Sei f k e k 2 <. Es gibt dann ein m N mit f k e k 2 < 1. Wir betrachten den Operator Sx := m (x, e k )e k + (x, e k )f k für alle x H. Dann ist S stetig linear, denn x ist offensichtlich stetig linear und (x, e k )f k 2 = x H nach der Besselschen Ungleichung. Also ist x m (x, e k )e k (x, e k ) 2 x 2 für alle (x, e k )f k stetig linear und daher auch S. Wir zeigen jetzt S GL(H). Es ist x Sx = (x, e k )e k Sx = (x, e k )(e k f k ) ( e k f k 2 ) 1/2 x für alle x H, d.h. I S ( e k f k 2 ) 1/2 < 1 und damit ist nach dem Satz von der Neumannschen Reihe S = I (I S) GL(H). Es folgt dann aus H = [e k ] m [e k ] k>m die Zerlegung H = S(H) = S([e k ] m ) S([e k ] k>m ) = [e k ] m [f k ] k>m, also gilt dim(h/[f k ] k>m ) = m + 1 und da f 0 + [f k ] k>m,..., f m + [f k ] k>m H/[f k ] k>m linear unabhängig sind, spannen sie den ganzen Raum auf und es folgt H = [f k ] m [f k ] k>m und {f k } ist eine Orthonormalbasis in H nach Satz 6.4, d). 3) a) Nach Satz 7.5 gilt für einen stetig linearen Operator T L(H, G) zwischen den Hilberträumen H und G die Aussage R(T ) = N(T ). Nun ist aber der Faltungsoperator S a normal, wie schon in der Vorlesung bemerkt wurde und daher ist auch λi S a normal. Nach Satz 7.12 folgt daraus insbesondere N(λI S a ) = N((λI S a ) ). Also folgt R(λI S a ) = N((λI S a ) ) = N(λI S a ). Wir müssen also noch zeigen, dass R(λI S a ) abgeschlossen ist in L 2 [ π, π]. Es gilt aber (λi S a )f = k= (λ â(k))(f, e k )e k sowie g = k= (g, e k )e k für f, g L 2 [ π, π], wobei wir e k (t) := e ikt für alle k Z gesetzt haben.

3 Also ist g R(λI S a ) genau dann, wenn es ein f L 2 [ π, π] gibt, mit (λ â(k))(f, e k ) = (g, e k ) für alle k Z und dies ist genau dann der Fall, wenn (g, e k ) = 0 ist für alle k Z mit â(k) = λ. Also ist R(λI S a ) abgeschlossen und wir haben weiterhin gesehen, dass die Kodimension von R(λI S a ) gleich der Kardinalität von {k Z : â(k) = λ}, also insbesondere endlich ist (da λ 0, aber â(k) 0 für k nach dem Lemma von Riemann-Lebesgue). Bemerkung. Da S a nach dem Lemma von Riemann-Lebesgue ein kompakter Operator ist, ist λi S a nach Theorem 11.7 ein Fredholmoperator vom Index 0. Insbesondere ist R(λI S a ) abgeschlossen und es gilt dim(n(λi S )) = codim (R(λI S a )) für alle λ 0. b) Wir können die Integralgleichung in der Form (λi S a )f = g schreiben. In a) haben wir gesehen, dass sie normal auflösbar ist, d.h. R(λI S a ) ist abgeschlossen. Aus der Beschreibung des Bildes in a) können wir schließen, dass für ein g L 2 [ π, π] die Gleichung genau dann lösbar ist, wenn (g, e k ) = 0 ist für alle k Z mit â(k) = λ, bzw. g N(λI S a ) gilt. In diesem Falle ist (λi S a )f = g genau dann, wenn (λ â(k))(f, e k ) = (g, e k ) für alle k Z gilt. Also kann man jede Lösung eindeutig in der Form f = wobei λ k C beliebig sind. â(k) λ (g,e k ) λ â(k) e k + 4) Für n N 0 definieren wir die abgeschlossenen Unterräume â(k)=λ λ k e k schreiben, V n := {(x k ) k N0 : x j = 0 für 0 j n} von l 2. Offensichtlich sind diese S + -invariant. Weitere nichttriviale abgeschlossene und S + -invariante Unterräume sind auf den ersten Blick nicht offensichtlich. Wir betrachten nun den Hardy-Raum H 2 (D) := {f H(D) : sup π π f(reit ) 2 dt < },

4 wobei H(D) den Raum der holomorphen Funktionen auf der offenen Einheitskreisscheibe D := {z C : z < 1} bezeichne. Mit der Parsevalschen Gleichung kann man leicht sehen, dass sup π π f(reit ) 2 dt = a k 2 gilt für f H 2 (D), wenn wir f(z) = a k z k für z D schreiben. Die H 2 -Norm ( sup π π f(reit ) 2 dt) 1/2 = ( a k 2 ) 1/2 macht dann H 2 (D) zu einem Banachraum und der Operator T : l 2 H 2 (D), (a k ) k N0 a k z k ist ein isometrischer Isomorphismus. Da die Elemente von H 2 (D) Funktionen auf D sind, gibt es nun weit mehr Möglichkeiten abgeschlossene Unterräume von H 2 (D) zu definieren, etwa durch Auswertung von Funktionen auf Teilmengen von D. Wir betrachten jetzt auf H 2 (D) den Operator S : H 2 (D) H 2 (D), f zf(z). Es gilt dann offenbar ST = T S +, bzw. S + = T 1 ST. Wenn wir also l 2 mit H 2 (D) via T identifizieren, so ist S + = S, d.h. der Shift-Operator ist gleich dem Multiplikationsoperator mit z auf dem Hardy-Raum. Die invarianten abgeschlossenen Unterräume von S + und die von S stehen dann natürlich in bijektiver Korrespondenz und wir können daher die abgeschlossenen S-invarianten Unterräume von H 2 (D) untersuchen. Für jeden Punkt α D können wir jetzt den abgeschlossenen Unterraum V α := {f H 2 (D) : f(α) = 0} betrachten und dieser ist offenbar auch S-invariant; beachte dabei, dass man für jedes α D zeigen kann, dass die Punktauswertung δ α : H 2 (D) C, f f(α) stetig ist. Also hat S + sogar überabzählbar viele abgeschlossene invariante Unterräume. Um alle abgeschlossenen invarianten Unterräume von S beschreiben zu können,

5 braucht man den Begriff der inneren Funktion. Eine Funktion φ H 2 (D) heißt innere Funktion, wenn Rφ = 1 fast überall, dabei bezeichne Rφ(e it ) = lim r 1 φ(re it ) den Radialen Limes für t [ π, π]. Dieser existiert nach dem Satz von Fatou für fast alle t [ π, π]. Es gilt dann sogar φ H (D), d.h. φ ist sogar eine beschränkte holomorphe Funktion auf D und der Multiplikationsoperator M φ : H 2 (D) H 2 (D), f φf ist eine Isometrie. Der Satz von Beurling (vgl. Kaballo, Aufbaukurs, Theorem 14.33, S.386) besagt nun, dass es zu jedem abgeschlossenen S-invarianten Unterraum V von H 2 (D) eine innere Funktion φ V gibt, mit V = M φ (H 2 (D)) = φh 2 (D) und weiterhin ist für jede innere Funktion φ H 2 (D) der Raum φh 2 (D) ein abgeschlossener S-invarianter Unterraum von H 2 (D).

Die von Neumannsche Ungleichung

Die von Neumannsche Ungleichung Die von Neumannsche Ungleichung Dominik Schillo 12. November 2012 Satz (Die von Neumannsche Ungleichung) Seien p C[z] ein Polynom in einer Variablen und T L(H) eine Kontraktion (d.h. T 1). Dann gilt: p(t

Mehr

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11 Institut für Analysis Prof. Dr. Wolfgang Reichel Dipl.-Math. Anton Verbitsky Aufgabe 1 Differentialgleichungen und Hilberträume Sommersemester 14 Übungsblatt 11 5 Punkte In dieser Aufgabe geht es um die

Mehr

Höhere Funktionalanalysis WS2016/17 Übungsblatt

Höhere Funktionalanalysis WS2016/17 Übungsblatt Höhere Funktionalanalysis WS2016/17 Übungsblatt 1 11.10.2016 Aufgabe 1. Berechne die Normen der Operatoren (a) f L [0, 1], M f : L 2 [0, 1] L 2 [0, 1], (M f g)(x) = f(x)g(x). (b) g C[0, 1], T g : C[0,

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

L 2 -Theorie und Plancherel-Theorem

L 2 -Theorie und Plancherel-Theorem L -Theorie und Plancherel-Theorem Seminar Grundideen der Harmonischen Analysis bei Porf Dr Michael Struwe HS 007 Vortrag von Manuela Dübendorfer 1 Wiederholung aus der L 1 -Theorie Um die Fourier-Transformation

Mehr

Kompakte Operatoren in Hilberträumen

Kompakte Operatoren in Hilberträumen Kompakte Operatoren in Hilberträumen 1 Vorbemerkungen Im Folgenden bezeichne H immer einen seperablen Hilbertraum über C Mit B(H 1, H 2 ) bezeichnen wir die Menge aller beschränkten linearen Operatoren

Mehr

12 Aufgaben zu linearen Funktionalen

12 Aufgaben zu linearen Funktionalen 266 12. Aufgaben zu linearen Funktionalen A B C 12 Aufgaben zu linearen Funktionalen 12.1 Stetige Funktionale (siehe auch 11.6.E, 12.2, 13.4.A) Sei E ein topologischer Vektorraum und ϕ: E K (ϕ ) linear.

Mehr

Satz 2.3. Jeder lineare normierte Raum wird durch Einführung einer Metrik

Satz 2.3. Jeder lineare normierte Raum wird durch Einführung einer Metrik Kapitel Lineare normierte Räume.1 Allgemeiner Überblick Definition.1. Eine Menge X, in der über einem Zahlenkörper K (K = R oder K = C) die Addition und λ-multiplikation mit den üblichen Verbindungsaxiomen

Mehr

72 Orthonormalbasen und Konvergenz im quadratischen Mittel

72 Orthonormalbasen und Konvergenz im quadratischen Mittel 72 Orthonormalbasen und Konvergenz im quadratischen Mittel 30 72 Orthonormalbasen und Konvergenz im quadratischen Mittel Wir untersuchen nun die Konvergenz von Fourier-Reihen im quadratischen Mittel in

Mehr

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1).

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1). Kapitel 4 Stetige lineare Funktionale 4.1 Der Satz von Hahn - Banach Definition 4.1. Sei X ein linearer normierter Raum über dem Körper K (R oder C). Ein linearer Operator f : X K heißt (reelles oder komplexes)

Mehr

45 Hilberträume. v = 2 <v, v>.

45 Hilberträume. v = 2 <v, v>. 45 Hilberträume Zusammenfassung Unter dem Begriff Hilbertraum werden solche euklidische oder unitäre Vektorräume zusammengefasst, die auch noch vollständig sind. Damit werden die in 41, 42 und in 43, 44

Mehr

10 Hilberträume. (b) λx,y = λ x,y für x,y X, λ K. (c) x, y = y, x für x, y X (Komplexe Konjugation nur im Falle K = C)

10 Hilberträume. (b) λx,y = λ x,y für x,y X, λ K. (c) x, y = y, x für x, y X (Komplexe Konjugation nur im Falle K = C) 10 Hilberträume 10.1. Definition. Sei X ein Vektorraum über K. Eine Abbildung, : X X K heißt Skalarprodukt, falls (a) x 1 + x,y = x 1,y + x,y für x 1,x,y X (b) λx,y = λ x,y für x,y X, λ K (c) x, y = y,

Mehr

7.3 Unitäre Operatoren

7.3 Unitäre Operatoren Wir können jeden Operator T wie folgt schreiben: Dabei gilt T = 1 2 (T + T ) + i( 1 2 i (T T )) (T + T ) = T + T sowie ( 1 2 i (T T )) = 1 2 i (T T) = 1 2 i (T T ). Wir können T also in zwei lineare Operatoren

Mehr

Lösungsvorschlag zur Klausur

Lösungsvorschlag zur Klausur FAKULTÄT FÜ MATHEMATIK Prof. Dr. Patrizio Neff Frank Osterbrink Johannes Lankeit 27.7.23 Lösungsvorschlag zur Klausur Hinweise zur Bearbeitung: - Die Bearbeitungszeit für die Klausur beträgt 8 Minuten.

Mehr

2. Isotropie. Beweis: (i) (ii): β U ist nicht ausgeartet. U U = {0} (ii) (iii): β U ist nicht ausgeartet. Da β nicht ausgeartet ist, gilt U = U:

2. Isotropie. Beweis: (i) (ii): β U ist nicht ausgeartet. U U = {0} (ii) (iii): β U ist nicht ausgeartet. Da β nicht ausgeartet ist, gilt U = U: 2. Isotropie Im folgenden sei V ein K-Vektorraum der Dimension n. Es sei q eine quadratische Form darüber und β die zugehörige symmetrische Bilinearform. Zudem gelte in K: 1 + 1 0. Notation 2.0: Wir nennen

Mehr

53 Die Parsevalsche Gleichung

53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 5 53. Skalarprodukte auf Räumen quadratintegrierbarer Funktionen. a) Die Orthogonalitätsrelationen (5.5) legen die Interpretation des Ausdrucks

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

35 Stetige lineare Abbildungen

35 Stetige lineare Abbildungen 171 35 Stetige lineare Abbildungen Lernziele: Konzepte: Lineare Operatoren und ihre Normen Resultate: Abschätzungen für Matrizennormen Kompetenzen: Abschätzung von Operatornormen 35.1 Lineare Abbildungen.

Mehr

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme Optimale Steuerung, Prof.Dr. L. Blank 1 II Linear-quadratische elliptische Steuerungsprobleme Zuerst: Zusammenstellung einiger Begriffe und Aussagen aus der Funktionalanalysis (FA), um dann etwas über

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

1 Endlich additive Volumen auf R n

1 Endlich additive Volumen auf R n Endlich additive Volumen auf R n In Satz. im Skript haben wir gezeigt, dass kein σ-additives Volumen auf der Potenzmenge P (R n ) definiert werden kann. Man könnte sich vorstellen, das Problem ist aus

Mehr

Spektraltheorie. 2. Übungsblatt - Lösungsvorschläge. (Elementare Aussagen über Spektrum & Resolventenfunktion)

Spektraltheorie. 2. Übungsblatt - Lösungsvorschläge. (Elementare Aussagen über Spektrum & Resolventenfunktion) 4.4.8 PD Dr. Peer Kunstmann M.Sc. Michael Ullmann Spektraltheorie. Übungsblatt - Lösungsvorschläge Aufgabe Elementare Aussagen über Spektrum & Resolventenfunktion Seien X, X, Y, Y Banachräume und S, T

Mehr

9. Übung zur Maß- und Integrationstheorie, Lösungsskizze Aufgaben

9. Übung zur Maß- und Integrationstheorie, Lösungsskizze Aufgaben 9. Übung zur aß- und Integrationstheorie, Lösungsskizze Aufgaben A 50 (Eine Flächenberechnung mit dem Cavalierischen Prinzip). Es seien a, b > 0 und : { (x, y) R 2 : (x/a) 2 + (y/b) 2 1 }. (a) Skizzieren

Mehr

(c) Ein inneres Produkt (Skalarprodukt) auf H ist eine positiv definite hermitesche Form auf H.

(c) Ein inneres Produkt (Skalarprodukt) auf H ist eine positiv definite hermitesche Form auf H. 11 Hilberträume Sei H ein Vektorraum über K = R oder K = C. Definition 11.1. (a) Eine sesquilineare Form auf H ist eine Abbildung, : H H K so, dass für alle x, x, y, y H und α, β K gilt αx + βx, y = α

Mehr

Ferienkurs in Maß- und Integrationstheorie

Ferienkurs in Maß- und Integrationstheorie Zentrum Mathematik Technische Universität München Dipl. Math. Wolfgang Erb WS 9/ Übungsblatt Ferienkurs in Maß- und Integrationstheorie Aufgabe. (σ-algebren Sei eine Menge und A eine σ-algebra in. Seien

Mehr

= ( n x j x j ) 1 / 2

= ( n x j x j ) 1 / 2 15 Skalarprodukte 77 15 Skalarprodukte 15.1 Einführung. a) Ab jetzt sei stets K = R oder K = C, da Wurzeln eine wichtige Rolle spielen werden. b) Nach dem Satz des Pythagoras ist die Länge eines Vektors

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen.

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Wiederholung Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Definition. Sei X eine Menge und d : X X R eine Abbildung mit den Eigenschaften 1.

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

Prof. Dr. Linus Kramer

Prof. Dr. Linus Kramer 1. Übungszettel zur Vorlesung Geometrische Gruppentheorie 2 Musterlösung SoSe 2016 WWU Münster Prof. Dr. Linus Kramer Nils Leder Antoine Beljean Aufgabe 1.1 Häufig wird der Begriff der quasi-isometrie

Mehr

Merkblatt zur Funktionalanalysis

Merkblatt zur Funktionalanalysis Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

Mehr

Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 :

Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 : 24 Meßbare Funktionen bilden die Grundlage der Integrationstheorie. Definition 24. : Sei X eine beliebige Menge, Y ein topologischer Raum, λ ein Maß auf X. f : X Y heißt λ-messbar, falls f (Ω) λ-messbar

Mehr

([0, 1]) und int K = p 1

([0, 1]) und int K = p 1 126 III. Der Satz von Hahn-Banach und seine Konsequenzen wie man durch Einsetzen unmittelbar erkennt. Zeigen wir noch die Halbstetigkeit von f: Sei(x n ) eine Folge in L p (R) mitx n x in L p (R) und f(x

Mehr

Zusammenfassung Analysis 2

Zusammenfassung Analysis 2 Zusammenfassung Analysis 2 1.2 Metrische Räume Die Grundlage metrischer Räume bildet der Begriff des Abstandes (Metrik). Definition 1.1 Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge

Mehr

11.2 Orthogonalität. Wintersemester 2013/2014

11.2 Orthogonalität. Wintersemester 2013/2014 Universität Konstanz Fachbereich Mathematik und Statistik Wintersemester 2013/2014 Markus Scheighofer Lineare Algebra I 11.2 Orthogonalität Definition 11.2.1. Seien V ein K-Vektorraum mit Skalarprodukt

Mehr

5.2 Diagonalisierbarkeit und Trigonalisierung

5.2 Diagonalisierbarkeit und Trigonalisierung HINWEIS: Sie finden hier eine vorläufige Kurzfassung des Inhalts; es sind weder Beweise ausgeführt noch ausführliche Beispiele angegeben. Bitte informieren Sie sich in der Vorlesung. c M. Roczen und H.

Mehr

Bezeichnungen und Hilfsmittel aus der Analysis

Bezeichnungen und Hilfsmittel aus der Analysis Finite Elemente I 169 A Bezeichnungen und Hilfsmittel aus der Analysis A Bezeichnungen und Hilfsmittel aus der Analysis TU Bergakademie Freiberg, WS 2010/111 Finite Elemente I 170 A.1 Normierte Vektorräume

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

α + x x 1 F c y + x 1 F (y) c z + x 1 F (z) für alle y, z M. Dies folgt aus

α + x x 1 F c y + x 1 F (y) c z + x 1 F (z) für alle y, z M. Dies folgt aus 4. Dualräume und schwache Topologien Den Begriff des Dualraums hatten wir bereits in Kapitel 2 definiert. Der Dualraum X eines Banachraums X ist X = B(X, C). X ist mit der Abbildungsnorm F = sup x =1 F

Mehr

17. Orthogonalsysteme

17. Orthogonalsysteme 17. Orthogonalsysteme 17.1. Winkel und Orthogonalität Vorbemerkung: Sei V ein Vektorraum mit Skalaprodukt, und zugehöriger Norm, dann gilt nach Cauchy-Schwarz: x, y V \ {0} : x, y x y 1 Definition: (a)

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

Beispiel: Die Sägezahnfunktion.

Beispiel: Die Sägezahnfunktion. Beispiel: Die Sägezahnfunktion. Betrachte die Sägezahnfunktion : für t = oder t = π S(t) := 1 (π t) : für < t < π Die Sägezahnfunktion ist ungerade, also gilt (mit ω = 1) a k = und b k = π π und damit

Mehr

Schwartz Raum und gemässigte Distributionen

Schwartz Raum und gemässigte Distributionen 1 ETH Zürich (Pro)Seminar: Grundideen der Harmonischen Analysis Schwartz Raum und gemässigte Distributionen David Bernhardsgrütter und David Umbricht 18 Dezember 2007 Schwartz Raum und gemässigte Distributionen

Mehr

2.6 Der Satz von Fubini

2.6 Der Satz von Fubini 1 2.6 Der Satz von Fubini Unser Ziel ist der Beweis des folgenden Ergebnisses. 6.1. Satz von Fubini Sei f : R n+m R integrierbar. Dann gibt es eine Nullmenge N R m, so dass gilt: 1. Für alle y R m \ N

Mehr

Irreduzible Darstellungen von SU 2 (C)

Irreduzible Darstellungen von SU 2 (C) Irreduzible Darstellungen von SU 2 (C) Alessandro Fasse Email: fasse@thp.uni-koeln.de WS14/15 - Universität zu Köln 26.01.2015 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 2 2 Darstellungstheorie

Mehr

Vollständiger Raum, Banachraum

Vollständiger Raum, Banachraum Grundbegriffe beschränkte Menge Cauchyfolge Vollständiger Raum, Banachraum Kriterium für die Vollständigkeit Präkompakte Menge Kompakte Menge Entropiezahl Eigenschaften kompakter und präkompakter Mengen

Mehr

Universität Ulm Abgabe: Mittwoch,

Universität Ulm Abgabe: Mittwoch, Universität Ulm Abgabe: Mittwoch, 8.5.23 Prof. Dr. W. Arendt Jochen Glück Sommersemester 23 Punktzahl: 36+4* Lösungen Halbgruppen und Evolutionsgleichungen: Blatt 2. Sei X ein Banachraum und (T (t)) t

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Klausur zur Höheren Mathematik IV

Klausur zur Höheren Mathematik IV Düll Höhere Mathematik IV 8. 1. 1 Klausur zur Höheren Mathematik IV für Fachrichtung: kyb Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 1 Minuten Erlaubte Hilfsmittel: 1 eigenhändig beschriebene

Mehr

Beispiele. Grundlagen. Kompakte Operatoren. Regularisierungsoperatoren

Beispiele. Grundlagen. Kompakte Operatoren. Regularisierungsoperatoren Beispiele Grundlagen Kompakte Operatoren Regularisierungsoperatoren Transportgleichung Dierenzieren ( nx ) (f δ n ) (x) = f (x) + n cos, x [0, 1], δ Regularisierung!! Inverse Wärmeleitung Durc f (f δ n

Mehr

( ) ( ) < b k, 1 k n} (2) < x k

( ) ( ) < b k, 1 k n} (2) < x k Technische Universität Dortmund Fakultät für Mathematik Proseminar Analysis Prof. Dr. Röger Benjamin Czyszczon Satz von Heine Borel Gliederung 1. Zellen und offene Überdeckungen 2. Satz von Heine Borel

Mehr

10 Der Satz von Fubini

10 Der Satz von Fubini er Satz von Fubini ie Bezeichnungen seien wie in den Paragraphen 8 und 9. Satz. (Satz von Tonelli Es sei f : d [, + ] messbar. (Aus 8 folgt dann, dass f, f y messbar sind, wobei klar ist, dass f, f y sind.

Mehr

Lineare Algebra II Lösungen der Klausur

Lineare Algebra II Lösungen der Klausur Prof Dr K Doerk 673 Jens Mandavid Christian Sevenheck Lineare Algebra II Lösungen der Klausur (a Diese Aussage ist richtig, sie stimmt nämlich für k = Sei nämlich n N beliebig und bezeichne N die Menge

Mehr

Grundlagen der Fourier Analysis

Grundlagen der Fourier Analysis KAPITEL A Grundlagen der Fourier Analysis Wir definieren wie üblich die L p -Räume { ( } 1/p L p (R) = f : R C f(x) dx) p =: f p < 1. Fourier Transformation in L 1 (R) Definition A.1. (Fourier Transformation,

Mehr

4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit

4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit 4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit Definition 4.41. Eine Familie F linearer Operatoren heißt vertauschbar oder kommutierend, wenn für je zwei Operatoren U,T in F gilt: UT = TU.

Mehr

FUNKTIONALANALYSIS. Carsten Schütt WS 2006/7

FUNKTIONALANALYSIS. Carsten Schütt WS 2006/7 1. Eine Teilmenge K eines topologischen Raumes heißt folgenkompakt, wenn jede Folge in K eine Teilfolge enthält, die in K konvergiert. Die Menge K heißt abzählbar kompakt, wenn jede unendliche Teilmenge

Mehr

Übungen zur Funktionalanalysis Lösungshinweise Blatt 4

Übungen zur Funktionalanalysis Lösungshinweise Blatt 4 Übungen zur Funktionalanalysis Lösungshinweise Blatt 4 Aufgabe 13 Wie üblich sei l 1 = {x : N K x n < } mit Norm x l 1 = x n und l = {x : N K sup n N x n < } mit x l = sup n N x n Für die Unterräume d

Mehr

4.2 Die adjungierte Abbildung

4.2 Die adjungierte Abbildung 4.2. DIE ADJUNGIERTE ABBILDUNG 177 4.2 Die adjungierte Abbildung Die Vektorräume dieses Paragraphen seien sämtlich euklidisch, die Norm kommt jetzt also vom inneren Produkt her, v = v v. Zu f Hom R (V,

Mehr

Beziehungen zwischen Vektorräumen und ihren Dimensionen

Beziehungen zwischen Vektorräumen und ihren Dimensionen Beziehungen zwischen Vektorräumen und ihren Dimensionen Lineare Algebra I Kapitel 9 20. Juni 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz

Mehr

Skript zur Vorlesung Analysis 3

Skript zur Vorlesung Analysis 3 Skript zur Vorlesung Analysis 3 Wintersemester 2013/2014 Prof. Dr. Benjamin Schlein Inhaltsverzeichnis 1 Masstheorie 2 1.1 σ-algebren.................................. 6 1.2 Masse.....................................

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

2 Vektorräume und Gleichungssysteme

2 Vektorräume und Gleichungssysteme 2 Vektorräume und Gleichungssysteme 21 Der n-dimensionale K-Vektorraum 2 Vektorräume und Gleichungssysteme 21 Der n-dimensionale K-Vektorraum Definition 21 Seien K = (K, +, ) ein Körper, V eine Menge und

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 15 Unterräume und Dualraum Untervektorräume eines K-Vektorraumes stehen in direkter Beziehung zu Untervektorräumen

Mehr

Hilbertpolynom von I, i.z. a HP I.

Hilbertpolynom von I, i.z. a HP I. 9.4.4 Korollar/Def. Sei (1) I k[x 1,..., X n ] ein Ideal. Dann ist die affine Hilbertfunktion a HF I (s) für s 0 ein Polynom in s mit Koeffizienten in Q; es heißt das affine Hilbertpolynom von I, i.z.

Mehr

Holomorphe Funktionen

Holomorphe Funktionen 1 Kapitel 1 Holomorphe Funktionen 1 Komplexe Differenzierbarkeit Ist z = (z 1,..., z n ) ein Element des C n und z ν = x ν + i y ν, so können wir auch schreiben: z = x + i y, mit x = (x 1,..., x n ) und

Mehr

3.5 Duale Vektorräume und Abbildungen

3.5 Duale Vektorräume und Abbildungen 3.5. DUALE VEKTORRÄUME UND ABBILDUNGEN 103 3.5 Duale Vektorräume und Abbildungen Wir wollen im Folgenden auch geometrische Zusammenhänge mathematisch beschreiben und beginnen deshalb jetzt mit der Einführung

Mehr

Schwartz-Raum (Teil 1)

Schwartz-Raum (Teil 1) Schwartz-Raum (Teil 1) Federico Remonda, Robin Krom 10. Januar 2008 Zusammenfassung Der Schwartz-Raum ist ein Funktionenraum, der besondere Regularitätseigenschaften besitzt, die uns bei der Fouriertransformation

Mehr

1 Definition und Grundeigenschaften

1 Definition und Grundeigenschaften Christian Bönicke Vektorbündel I Im Folgenden sei immer F = R, C oder H. 1 Definition und Grundeigenschaften 1.1 Definition Ein k-dimensionales Vektorbündel ξ über F ist ein Bündel (E, p, B) mit folgenden

Mehr

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von

Mehr

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153 3.3. SKALARPRODUKTE 153 Hierzu müssen wir noch die Eindeutigkeit (Unabhängigkeit von der Wahl der Basis bzw. des Koordinatensystems) zeigen. Sei hierzu β eine Bilinearform und q die entsprechende quadratische

Mehr

Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses

Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses Thomas Steinle Seminar Zufällige Felder Universität Ulm 18. November, 2008 Einleitung Inhalt Einleitung Wiederholung und Themenvorstellung Wichtiges

Mehr

1 Lineare Abbildungen

1 Lineare Abbildungen 1 Lineare Abbildungen Definition 1 Sei K ein Körper und V und W K-Vektoräume. Eine Abbildung f : V W heisst linear oder Homomoprhismus, wenn gilt: fv 1 + v 2 = fv 1 + fv 2 v 1, v 2 V fλv = λfv λ K, v V

Mehr

Lösung zu Serie 24. a ij b i b j. v = j=1. v = v j b j.

Lösung zu Serie 24. a ij b i b j. v = j=1. v = v j b j. Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 24 1. Zeige: Ist 1 n := min{dim K (V 1 ), dim K (V 2 )} < für Vektorräume V 1 und V 2, so ist jeder Tensor in V 1 K V 2 eine Summe von

Mehr

Singuläre Integrale 1 Grundideen der harmonischen Analysis

Singuläre Integrale 1 Grundideen der harmonischen Analysis Singuläre Integrale Grundideen der harmonischen Analsis Jens Hinrichsen und Annina Saluz November 2007 Motivation Ein tpisches Beispiel für ein singuläres Integral ist die Hilbert-Transformation, welche

Mehr

Lösungsvorschlag zu den Hausaufgaben der 8. Übung

Lösungsvorschlag zu den Hausaufgaben der 8. Übung FAKULTÄT FÜR MATHEMATIK Prof Dr Patrizio Ne Frank Osterbrink Johannes Lankeit 9503 Lösungsvorschlag zu den Hausaufgaben der 8 Übung Hausaufgabe : Beweise den Satz über die Parallelogrammgleichung Sei H

Mehr

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt 2 Linere Opertoren Im Folgenden seien X,Y, Z stets normierte Räumen über dem selben Körper K = C oder K = R. 2.1. Definition. () Eine Abbildung T : X Y heißt liner, flls T(αx + βy) = αtx + βty x,y X, α,

Mehr

Schauderbasen und das Beispiel der Riesz-Basen auf Hilberträumen

Schauderbasen und das Beispiel der Riesz-Basen auf Hilberträumen Schauderbasen und das Beispiel der Riesz-Basen auf ilberträumen Bernhard Stiftner 0. Dezember 0 Inhaltsverzeichnis Allgemeines zu Schauderbasen Spezielle Schauderbasen auf ilberträumen 8 3 Literatur 8

Mehr

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mathematik 2 für Ingenieure (Sommersemester 216) Kapitel 11: Potenzreihen und Fourier-Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

8 Euklidische und unitäre Vektorräume. Skalarprodukte Orthogonalität Matrizen

8 Euklidische und unitäre Vektorräume. Skalarprodukte Orthogonalität Matrizen 8 Euklidische und unitäre Vektorräume Skalarprodukte Orthogonalität Matrizen 8 Euklidische und unitäre Vektorräume Skalarprodukte Orthogonalität Matrizen In diesem Kapitel werden nur endlich dimensionale

Mehr

43 Unitäre Vektorräume

43 Unitäre Vektorräume 43 Unitäre Vektorräume 43 1 Zusammenfassung In diesem Paragrafen werden die gleichen Themen wie in 41 abgehandelt, jetzt allerdings für den komplexen Fall. Die Aussagen entsprechen sich weitgehend, daher

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 34 Die Diagonalisierbarkeit von Isometrien im Komplexen Satz 34.1. Es sei V ein endlichdimensionaler C-Vektorraum

Mehr

Studienbegleitende Prüfung Stochastik 2

Studienbegleitende Prüfung Stochastik 2 Universität Karlsruhe (TH) Institut für Stochastik Prof. Dr. N. Bäuerle Name: Vorname: Matr.-Nr.: Studienbegleitende Prüfung Stochastik 2 27. März 2007 Diese Klausur hat bestanden, wer mindestens 20 Punkte

Mehr

Kapitel 5. Vektorräume mit Skalarprodukt

Kapitel 5. Vektorräume mit Skalarprodukt Kapitel 5 Vektorräume mit Skalarprodukt 119 120 Kapitel V: Vektorräume mit Skalarprodukt 5.1 Elementare Eigenschaften des Skalarprodukts Dienstag, 20. April 04 Wollen wir in einem Vektorraum wie in der

Mehr

Summen und direkte Summen

Summen und direkte Summen Summen und direkte Summen Sei V ein K-Vektorraum. Wie früher erwähnt, ist für beliebige Teilmengen M, N V die Teilmenge M +N V wie folgt definiert M +N = {v+w : v M, w N}. Man sieht leicht, dass i.a. M

Mehr

Musterlösung Serie 12

Musterlösung Serie 12 Prof. D. Salamon Analysis II MATH, PHYS, CHAB FS 05 Musterlösung Serie. Es sei wie in der Aufgabenstellung M R n eine C -Untermannigfaltigkeit und B M eine kompakte Teilmenge. Des weiteren nehmen wir an,

Mehr

Hilberträume und Quantenmechanik

Hilberträume und Quantenmechanik 1 Hilberträume und Quantenmechanik Inhalt: I. Hilberträume und beschränkte lineare Operatoren 1. Hilberträume 2. Beschränkte lineare Operatoren 3. Fourier-Reihen und der Satz von Fejér 4. Orthonormalbasen

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen:

Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen: Musterlösung 1 Hilberträume Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen: Die durch das Skalarprodukt induzierte

Mehr

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015 sskizzen der Klausur zur Linearen Algebra im Herbst 5 Aufgabe I. Es sei (G, ) eine Gruppe mit neutralem Element e und M {x G x x e}. Zeigen Sie: (a) Ist G kommutativ, so ist M eine Untergruppe von G. (b)

Mehr

Lösungsvorschlag zum 2. Übungsblatt zur Vorlesung Analysis II im Sommersemester Mai 2018

Lösungsvorschlag zum 2. Übungsblatt zur Vorlesung Analysis II im Sommersemester Mai 2018 Institut für Analysis Prof. Dr. Michael Plum M.Sc. Jonathan Wunderlich Lösungsvorschlag zum. Übungsblatt zur Vorlesung Analysis II im Sommersemester 08 3. Mai 08 Aufgabe 5 (K: Es seien n N und A R n eine

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

V. Lineare Algebra. 35 Lineare Abbildungen und Matrizen. 156 V. Lineare Algebra

V. Lineare Algebra. 35 Lineare Abbildungen und Matrizen. 156 V. Lineare Algebra 156 V. Lineare Algebra V. Lineare Algebra 35. Lineare Abbildungen und Matrizen 156 36. Eigenwerte und Eigenvektoren 161 37. Hauptvektoren 165 38. Normen und Neumannsche Reihe 168 39. Numerische Anwendungen

Mehr

also ist Sx m eine Cauchyfolge und somit konvergent. Zusammen sagen die Sätze 11.1 und 11.2, dass B (X) ein abgeschlossenes zweiseitiges

also ist Sx m eine Cauchyfolge und somit konvergent. Zusammen sagen die Sätze 11.1 und 11.2, dass B (X) ein abgeschlossenes zweiseitiges 11. Kompakte Operatoren Seien X, Y Banachräume, und sei T : X Y ein linearer Operator. Definition 11.1. T heißt kompakt, enn T (B) eine kompakte Teilmenge von Y ist für alle beschränkten Mengen B X. Wir

Mehr

Inverse Fourier Transformation

Inverse Fourier Transformation ETH Zürich HS 27 Departement Mathematik Seminararbeit Inverse Fourier Transformation Patricia Hinder Sandra König Oktober 27 Prof. M. Struwe Im Vortrag der letzten Woche haben wir gesehen, dass die Faltung

Mehr

Periodische Funktionen, Fourier Reihen

Periodische Funktionen, Fourier Reihen Kapitel 1: Periodische Funktionen, Fourier Reihen 1.1 Grundlegende Begriffe Periodische Funktionen Definition: Eine Funktion f : R R oder f : R C) heißt periodisch mit der Periode T, falls für alle t R

Mehr