Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz"

Transkript

1 Wachsum Exponenielles Wachsum Aufgabensammlung Teil 2a Auch mi Verwendung von Mehoden aus der Analysis: Wachsumsraen Differenialgleichungen Auch mi CAS-Einsaz Sand: 23. Februar 2012 Daei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK DEMO für

2 45811 Aufgabensammlung: Exp. Wachsum 2 2 Vorwor Die vorliegenden Aufgaben wurde anderen Texen ennommen, in denen auch viel Theorie seh. Der Zweck is es, hier eine reine Aufgabensammlung zu haben, die man in dieser Form besser im Unerrich einsezen kann, ewa im schulinernen Inrane. Ganz zu Beginn sehen die reinen Aufgaben, im hineren Teil die Lösungen. Hier die Übersich über die Vielfal der Texe zum Wachsum: Niveau Klassensufe 10: Lineares Wachsum Aufgaben dazu Exponenielles Wachsum Finanzmahemaik Didakische Hinweise dazu Aufgaben Exponenielles Wachsum 1a Begrenzes Wachsum Aufgaben Begrenzes Wachsum 1b Niveau Obersufe (mi Hilfsmieln der Analysis) Zenralex mi Übersich Mahemaische Hinergründe Quadraisches Wachsum Exponenielles Wachsum Aufgaben Exponenielles Wachsum 2a Begrenzes Wachsum Aufgaben begrenzes Wachsum 2b Logisisches Wachsum Aufgaben logisisches Wachsum Andere Wachsumsmodelle (Logisischer Zerfall, vergifees, chaoisches sowie verzögeres Wachsum) Im Momen sind noch alle Texe verfügbar - Februar 2012 DEMO für

3 45811 Aufgabensammlung: Exp. Wachsum Exponenielles Wachsum Aufgabe 110 Das Wachsum einer Pflanze soll unersuch werden. Man beginn mi der Beobachung einer jungen, kleinen Pflanze und erhäl diese Messwere: in Tagen g() in cm 30 33, ,5 a) Zeige, dass näherungsweise exponenielles Wachsum vorlieg. Berechne dann rekursiv die Größen g(100), g(120), g(140) und g(160). b) Selle aus zwei Werepaaren der Tabelle die explizie Größenfunkion g() auf. Konrolliere dami die drei anderen Were der Tabelle c) Erselle durch exponenielle Regression eine Wachsumsgleichung, die ebenfalls das Wachsum der Pflanze beschreib. Warum is diese Gleichung noch besser geeigne als deine Gleichung aus b) DEMO für

4 45811 Aufgabensammlung: Exp. Wachsum 2 4 Aufgabe 120 Die Wachsumsfunkion ( ) B = 80 1,02 is gegeben. a) In welcher Zeispanne verdoppel sich der Besand? b) Berechne die mileren Wachsumsraen für die Zeispannen [ 35 ; 70 ] und [ 70 ; 105 ]. c) Berechne die momenanen Wachsumsraen zu = 35, = 70 und = 105. d) In jedem der beiden Zeiinervalle von [ 35 ; 70 ] und [ 70 ; 105 ] gib es einen Zeipunk, in dem die momenane Änderungsrae gleich groß is wie die milere Wachsumsrae des jeweiligen Inervalls. Aufgabe 121 Eine Pflanze beginn ihr Wachsum exponeniell. Man ha herausgefunden, dasss die Funkion g( ) = 30,05 1,00564 rech gu das anfängliche Wachsum beschreib. ( in Tagen, g in cm) a) Berechne dazu die folgenden für Were: in Tagen g() in cm b) Wie groß sind die durchschnilichen Wachsumsraen für die Zeiinervalle [ 0 ; 20 ], [ ] [ 40 ; 60 ] und [ 60 ; 80 ]? Beschreibe mi Woren, was diese mileren Wachsumsraen bedeuen und in welcher 0 ; 80 sehen. Beziehung sie zur mileren Wachsumsrae in [ ] c) Berechne die momenane Wachsumsrae als Funkion R( ) und speziell für die Zeipunke 0 min, 40 min und 80 min. Beschreibe die Bedeuung von R( 40 ). d) Zeige: Es gib genau einen Zeipunk * im Innern des Inervalls, in dem die momenane 20 ; 40, Wachsumsrae denselben Wer ha wie die milere Wachsumsrae über das Inervall [ 0 ; 80 ]. Berechne *. e) Selle die Gleichung der Tangenenfunkion T() an der Selle = 40 auf. Diese Funkion is als lineare Funkion viel einfacher zu behandeln als die wirkliche Wachsumsfunkion g(), die ja eine Exponenialfunkion is. Berechne die Abweichung der Funkionswere g ( ) T ( ) Wie viel Prozen sind dies, bezogen auf die g-were? Inerpreiere das Ergebnis. für die Sellen = 50, 60, 30 und 40. DEMO für

5 45811 Aufgabensammlung: Exp. Wachsum 2 5 Aufgabe 131 Ein radioakives Elemen zerfäll innerhalb von 24 Sekunden von 10,5 g auf 6,5 g. a) Selle das Zerfallsgesez auf und inerpreiere es. b) Berechne die Halbwerszei. c) In welcher Zeispanne zerfäll dieses Elemen auf ein Achel? d) Wie viel is nach 10 Minuen übrig, wann is weniger als 1 mg übrig? e) Berechne die momenane Zerfallsrae allgemein und zum Zeipunk = 10 min. DEMO für

6 45811 Aufgabensammlung: Exp. Wachsum 2 6 Aufgabe 140 Berechne aus der momenanen Wachsumsrae die Besandsfunkion 0,0198 a) R( ) = 1,584 e mi B( 0) = 80 bzw. mi ( ) b) R( ) = 28 1,04 mi B( 10) = 50 0,25 c) R( ) = 400 e mi ( ) B 0 = 200 d) R( ) = 24 0,87 mi B( 2) = 20 /2 e) R( ) = 2500 e mi ( ) Aufgabe 141 B 20 = 1 B 0 = 40 Die Zerfallsrae einer radioakiven Subsanz wird durch R( ) = 0,212 0,98 angegeben. Besimm die Besandsfunkion m() der Subsanz, wenn die Anfangsmenge 10,5 g war. Aufgabe 145 Erselle zu einer Besandsfunkion eine Differenialgleichung. 0,2 a) B( ) 20 e b) B( ) = 50 1,05 c) m( ) = 10,5 0,92 f x = 24 5 x d) B( ) = 180 0,98 e) m( ) = 20 1,08 f) ( ) Aufgabe 147 Besäige die Lösung der Differenialgleichung durch eine Probe. a) B ( ) = 45 1, 2 und B' ( ) = 0,1823 B( ) 0,5 b) m( ) = 42 e 1 und m' ( ) = m( ) c) B( ) = 144 1,5 und B' ( ) = 0,4055 B( ) 1,4918 d) m( ) = 68 e und m' ( ) = 1,4918 m( ) 2x e) f ( x) = 200 e und f' ( x) = 2 f( x) f) = und y' = 0,233 y y 12 0,8 Aufgabe 148 Löse die Differenialgleichungen a) B' ( ) = 0,1823 B( ) mi ( ) 2 B 0 = 50 b) m' ( ) = 0,25 m( ) mi ( ) c) B '( ) = 0,45 B ( ) d) m' ( ) = 2 m( ) e) f '( x) = 0,9 f ( x) m 0 = 25 DEMO für

7 45811 Aufgabensammlung: Exp. Wachsum 2 7 Aufgabe 161 Für jedes k 0 und jedes a > 0 is eine Funkion f gegeben durch f k a e, R. a) f beschreibe den Kernzerfall bei einem radioakiven Präpara. Dabei gib f() die Zerfallsgeschwindigkei (Anzahl der Zerfälle pro Sekunde) zum Zeipunk Sekunden nach Beobachungsbeginn an. Zu Beginn der Beobachung werden 1000 Zerfälle pro Sekunde, 30 Sekunden späer noch 741 Zerfälle pro Sekunde gemessen. Berechne a und k auf zwei Dezimalen gerunde, (Ergebnis: 0,01 f 1000 e ). Innerhalb welcher Zei nimm f() auf die Hälfe ab? Es soll nun eine lineare Näherungsfunkion h ersell werden, die mi f in den Zeipunken 0 s und 100 s übereinsimm. Zeichne das Schaubild C von f und das Schaubild von h für in ein gemeinsames Achsenkreuz ein. (20 Sekunden 1 cm, 100 Zerfälle pro Sekunde 1 cm). Für welches mi is die Differenz h() f() maximal und wie sark is die größe Abweichung prozenual? b) Die Funkion F beschreibe für 0 die Zahl der sei Beobachungsbeginn zerfallenen Kerne zum Zeipunk (Sekunden). Dabei is F(0) = 0 und F' f mi der Funkion f aus Teilaufgabe a). Berechne F(). Besimme den Werebereich von F. Wie groß is demnach die Anzahl der unzerfallenen Kerne bei Zerfallsbeginn? Skizziere das Schaubild von F. g sei die Funkion, welche die zur Zei vorhandenen Kerne angib. Selle ihre Gleichung auf. 5 Zeige: F is Lösung dieser Differenialgleichung: y ' 0,01 10 y Keine Wachsumsaufgabe:. c) Gegeben sind für a > 0, k 0 und x R die beiden Funkionen f und g durch kx 1 kx f x a e und g x e. Ihre Schaubilder seien K und K*. 2 ak Zeige, da0 an jeder Selle x O die Tangene von K senkrech auf der Tangene von K* seh. Zeige weier, dass K* aus K durch Spiegelung an der Parallelen zur y-achse durch den Schnipunk von K und K* enseh. DEMO für

8 45811 Aufgabensammlung: Exp. Wachsum 2 8 Usw. DEMO für

Teil 2. Hier: Verwendung von Methoden aus der Analysis: Wachstumsraten Differenzialgleichungen. Auch mit CAS-Einsatz. Stand: 1.

Teil 2. Hier: Verwendung von Methoden aus der Analysis: Wachstumsraten Differenzialgleichungen. Auch mit CAS-Einsatz. Stand: 1. Themenhef Begrenzes Wachsum Teil 2 Hier: Verwendung von Mehoden aus der Analysis: Wachsumsraen Differenzialgleichungen Auch mi CAS-Einsaz Sand: 1. Augus 2012 Daei Nr. 45820 Gaisex für www.mahe-cd.de INTERNETBIBLIOTHEK

Mehr

Didaktische Übersicht über das Thema Wachstum Klassifizierung verschiedener Modelle Übersicht über die Texte: Wo finde ich was? Datei Nr.

Didaktische Übersicht über das Thema Wachstum Klassifizierung verschiedener Modelle Übersicht über die Texte: Wo finde ich was? Datei Nr. Wachsum Zenralex Didakische Übersich über das Thema Wachsum Klassifizierung verschiedener Modelle Übersich über die Texe: Wo finde ich was? Daei Nr. 45800 Sand: 1. März 2012 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Exponentielles Wachstum

Exponentielles Wachstum Exponenielles Wachsum Teil 1 Prozenuales Wachsum wird mi Exponenialfunkionen berechne Themenhef für die Grundlagen ab Klasse 10 Viel Theorie mi Muserbeispielen Aber auch gründliche Besprechung aller Grundaufgaben

Mehr

Aufgabensammlung Teil 2: Funktionen mit Parametern Funktionenscharen. Aufgaben im Abiturstil

Aufgabensammlung Teil 2: Funktionen mit Parametern Funktionenscharen. Aufgaben im Abiturstil ANALYSIS Gebrochen raionale Funkionen Aufgabensammlung Teil : Funkionen mi Parameern Funkionenscharen Aufgaben im Abiursil Die Lösungen aller verwendeen Abiuraufgaben sammen von mir Neu eingerichee Sammlung

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

4.7. Prüfungsaufgaben zum beschränkten Wachstum

4.7. Prüfungsaufgaben zum beschränkten Wachstum .7. Prüfungsaufgaben zum beschränken Wachsum Aufgabe : Exponenielle Abnahme und beschränkes Wachsum In einem Raum befinden sich eine Million Radonaome. Duch radioakiven Zerfall verminder sich die Zahl

Mehr

Wiederholung: Radioaktiver Zerfall. Radioaktive Zerfallsprozesse können durch die Funktion

Wiederholung: Radioaktiver Zerfall. Radioaktive Zerfallsprozesse können durch die Funktion Wiederholung: Radioakiver Zerfall Radioakive Zerfallsprozesse können durch die Funkion f ( ) c a beschrieben werden. Eine charakerisische Größe hierbei is die Halbwerszei der radioakiven Elemene. Diese

Mehr

Demo-Text für Funktionen und Kurven. Differentialgeometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Friedrich Buckel.

Demo-Text für  Funktionen und Kurven. Differentialgeometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Friedrich Buckel. Funkionen und Kurven Differenialgeomerie Tex Nummer: 5 Sand: 9. März 6 Demo-Tex für www.mahe-cd.de INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mahe-cd.de 5 Differenialgeomerie Vorwor Das Thema Kurven is

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Kapitel : Exponentielles Wachstum

Kapitel : Exponentielles Wachstum Wachsumsprozesse Kapiel : Exponenielles Wachsum Die Grundbegriffe aus wachsum 1.xmcd werden auch hier verwende! Wir verwenden im Beispiel 2 auch fas die gleiche Angabe wie in Beispiel 1 - lediglich eine

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Struktur und Verhalten I

Struktur und Verhalten I Kapiel 9 Srukur und Verhalen I Ganz allgemein gesag is das Thema dieses Kurses die Ersellung, Simulaion und Unersuchung von Modellen räumlich homogener dynamischer Syseme aus Naur und Technik. Wir haben

Mehr

Wiederholung Exponentialfunktion

Wiederholung Exponentialfunktion SEITE 1 VON 9 Wiederholung Eponenialfunkion VON HEINZ BÖER 1. Regeln und Beispiele Der Funkionserm Eponenialfunkionen haben die Form f() = b a. Die y-achse wird bei b geschnien, denn f(0) = 0 b a = b 1

Mehr

4.7. Exponential- und Logarithmusfunktionen

4.7. Exponential- und Logarithmusfunktionen ... Eonenialfunkionen Definiion:.. Eonenial- und Logarihmusfunkionen Die Funkion f() = c a mi D = R, c und a R + \{}heiß Eonenialfunkion zur Basis a. Die Eonenialfunkion zur Basis a = e mi der Eulerschen

Mehr

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum www.mahe-aufgaben.com Analysis: Exp. und beschränkes Wachsum Analysis Übungsaufgaben zum exponeniellen und beschränken Wachsum Gymnasium Klasse 10 Alexander Schwarz www.mahe-aufgaben.com Februar 2014 1

Mehr

MATHEMATIK. Fachabituiprüfung 2013 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabituiprüfung 2013 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiuiprüfung 2013 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichung Technik Diensag, 4. Juni 2013, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

Ganzrationale Funktionenscharen. 3. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr.

Ganzrationale Funktionenscharen. 3. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr. Ganzraionale Funionenscharen. Grades Umfangreiche Aufgaben Lösungen ohne CAS und GTR Alle Mehoden ganz ausführlich Daei Nr. 47 Sand 7. Sepember 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Schriftliche Abiturprüfung Mathematik 2013

Schriftliche Abiturprüfung Mathematik 2013 Schrifliche Abiurprüfung Mahemaik 03 Aufgabe (NT 008, Nr) Pflicheil Bilden Sie die Ableiung der Funkion f mi f(x) = 3x e x+ und vereinfachen Sie so wei wie möglich ( VP) Aufgabe (HT 008, Nr ) G is eine

Mehr

Medikamentendosierung A. M.

Medikamentendosierung A. M. Medikamenendosierung A M Inhalsverzeichnis 1 Einleiung 2 2 Ar der Einnahme 3 3 Tropfenweise Einnahme 4 31 Differenialgleichung 4 32 Exake Lösung 5 33 Näherungsweise Lösung 5 4 Periodische Einnahme 7 41

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung 4.5. Prüfungsaufgaben zu Symmerie und Verschiebung Aufgabe : Symmerie (6) Unersuche die folgenden Funkionen auf Punk- oder Achsensymmerie: a) f() = 6 6 + 4 + 8 + 7 b) f() = 8 5 5 + 5 c) f() = (a 5 b +

Mehr

Lösungen Test 2 Büro: Semester: 2

Lösungen Test 2 Büro: Semester: 2 Fachhochschule Nordwesschweiz (FHNW) Hochschule für Technik Insiu für Geises- und Naurwissenschaf Dozen: Roger Burkhard Klasse: Sudiengang ST Lösungen Tes Büro: 4.613 Semeser: Modul: MDS Daum: FS1 Bemerkungen:

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

(x) 2tx t 2 1, x R, t R 0.

(x) 2tx t 2 1, x R, t R 0. Aufgaben zu Geradenscharen. Folgende Funkionen beschreiben Geradenscharen. Sellen Sie diese Scharen dar, inde sie die Geraden für k = -, k = 0, k = und k = 3 zeichnen. a) f k (x) (k )x, x R, k R b) f k

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

C. Abituraufgabe MV GK 2006 B1

C. Abituraufgabe MV GK 2006 B1 9.5.216 biuraufgabe MV GK 26 B1 Die bbildung zeig einen usschni einer Nuklidkare. Die Linie k wird im Bereich leicher Kerne als Sabiliäslinie bezeichne. omkerne auf oder dich neben dieser Linie sind sabil.

Mehr

2) Neoklassisches Wachstumsmodell (ohne technischen Fortschritt)

2) Neoklassisches Wachstumsmodell (ohne technischen Fortschritt) ) Neoklassisches Wachsumsmodell (ohne echnischen Forschri).1) Problemsellung (Arbeismark) Das Problem, das von Solow - dem Begründer der neoklassischen Wachsumsheorie - angegangen wurde, bezog sich auf

Mehr

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat Fachag Mahemaik: Kurvenscharen Ablauf: 1. Sunde Gemeinsame Einsiegsaufgabe. Sunde Sammgruppenaufgaben Sammgruppen (a bis 6 Schüler) Jedes Gruppenmiglied erhäl eine unerschiedliche Aufgabe A, B, C, D in

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Analysis: Exponentialfunktionen Analysis

Analysis: Exponentialfunktionen Analysis www.mahe-aufgaben.com Analysis: Eponenialfunkionen Analysis Übungsaufgaben u Eponenialfunkionen Pflich- und Wahleil gesames Soffgebie (insbesondere Funkionsscharen) ohne Wachsum Gymnasium ab J Aleander

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

5.5. Abstrakte Abituraufgaben zu Exponentialfunktionen

5.5. Abstrakte Abituraufgaben zu Exponentialfunktionen 5.5. Absrake Abiuraufgaben zu Eponenialfunkionen Aufgabe : Kurvenunersuchung, Inegraion, Opimierungsaufgabe Gegeben is die Funkion f() ( ) e,5. a) Unersuchen Sie das Schaubild von f auf Achsenschnipunke,

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

Staatsexamen Didaktiken einer Fächergruppe der Hauptschule Herbst 2007 Thema 2

Staatsexamen Didaktiken einer Fächergruppe der Hauptschule Herbst 2007 Thema 2 Referenin: Chrisina Börger Dozen: Dr. Thomas Wilhelm Daum: 16. 01.2008 Saasexamen Didakiken einer Fächergruppe der Haupschule Herbs 2007 Thema 2 Geschwindigkei 1. Viele physikalische Geseze drücken eine

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

Messung der Ladung. Wie kann man Ladungen messen? /Kapitel Formeln auf S.134: Elektrische Ladung

Messung der Ladung. Wie kann man Ladungen messen? /Kapitel Formeln auf S.134: Elektrische Ladung --- Meung der Ladung Wie kann man Ladungen meen? -/Kapiel.. Formeln auf S.: Elekriche Ladung Zur Ladungmeung können wir einen au der Mielufe bekannen Zuammenhang zwichen der Ladung Q und der Sromärke I

Mehr

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor) Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 14.04.2011 für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname:

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

Demo für

Demo für Aufgabensammlung Mit ausführlichen Lösungen Geradengleichungen und lineare Funktionen Zeichnen von Geraden in vorgefertigte Koordinatensysteme Aufstellen von Geradengleichungen Schnitt von Geraden Die

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppiz, Dr. I. Rbak 8. Gruppenübung zur Vorlesung Höhere Mahemaik Sommersemeser 9 Prof. Dr. M. Sroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H. Konvergenzverhalen

Mehr

3.2 Festlegung der relevanten Brandszenarien

3.2 Festlegung der relevanten Brandszenarien B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen

Mehr

Berechnen Sie die Extrem- und Wendepunkte des Graphen von f 1. Berechnen Sie die Gleichung der Tangente an den Graphen von f 1 an der Stelle 2.

Berechnen Sie die Extrem- und Wendepunkte des Graphen von f 1. Berechnen Sie die Gleichung der Tangente an den Graphen von f 1 an der Stelle 2. Miniserium für Schule und Berufsbildung 05 Bei der Bearbeiung der Aufgabe dürfen alle Funkionen des Taschenrechners genuz werden. Aufgabe : Analysis Gegeben is eine Funkionenschar durch f () = e mi R;

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 c 001 by Rainer Müller - www.emah.de 1 Lösng Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR a Asympoen Senkreche Asympoen Es

Mehr

Wachstumsformen. Dabei ist m die Änderungsrate und c der Anfangsbestand B(0).

Wachstumsformen. Dabei ist m die Änderungsrate und c der Anfangsbestand B(0). Kanonsschule Solohurn Fachmauriä: Wachsumsformen WS14/15 Wachsumsformen Von Wachsum sprechen wir, wenn sich ein Besand mi der Zei veränder. Wachsum bedeue nich immer eine Zunahme des Anfangsbesandes, es

Mehr

Übungen zur Einführung in die Physik II (Nebenfach)

Übungen zur Einführung in die Physik II (Nebenfach) Übungen zur Einführung in ie Physik Nebenfach --- Muserlösung --- Aufgabe: Konensaorenlaung Ein mi Glimmer ε r = 8 gefüller Plaenkonensaor mi er Fläche A=6 cm un einem Plaenabsan = 5 μm enlä sich wegen

Mehr

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme Arbeiaufrag Thema: Gleichungen umformen, Gechwindigkei, Diagramme Achung: - So ähnlich (aber kürzer) könne die näche Klaenarbei auehen! - Bearbeie die Aufgaben während der Verreungunde. - Wa du nich chaff

Mehr

Kurzrepetition Ökonometrie I - Lösungen

Kurzrepetition Ökonometrie I - Lösungen . Einführung Ökonomerie II - Peer Salder Kurzrepeiion Ökonomerie I - Lösungen Aufgabe (Inerpreaion von Regressionsergebnissen) a) Der prozenuale Aneil der Varianz der abhängigen Variablen, der durch die

Mehr

Zwischenwerteigenschaft

Zwischenwerteigenschaft Zwischenwereigenschaf Markus Berberich Ausarbeiung zum Vorrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemeser 2009, Leiung PD Dr. Gudrun Thäer) Zusammenfassung: In dieser

Mehr

Musterbeispiele zur Zinsrechnung

Musterbeispiele zur Zinsrechnung R. Brinkann h://brinkann-du.de Seie 1 20.02.2013 Muserbeisiele zur Zinsrechnung Ein Bankkunde uss Zinsen zahlen, wenn er sich bei der Bank Geld leih. Das Geld was er sich leih, nenn an aial. Die Höhe der

Mehr

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G wwwmhe-ufgbencom Abiurprüfung Mhemik 0 (Bden-Würemberg) Berufliche ymnsien Anlysis, Aufgbe Für jedes mi > is die Funkion g gegeben durch x g (x) = e, x Ds Schubild von g is ( Punke) Nennen Sie drei gemeinsme

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K Abiurprüfung Mhemik (Bden-Würemberg) Berufliche Gymnsien Anlysis, Aufgbe. Für jedes * is die Funkion f gegeben durch f (x) = x x + x +, x Ds Schubild von f is K. ( )( ).. (4 Punke) Zeichnen Sie K und K

Mehr

Vorlesung 3 ERNEUERBARE RESSOURCEN. 1. Bioökonomische Grundbegriffe. 2. Ökonomische Modelle der optimalen Erntepolitiken. 2.1 Der Fall freien Zugangs

Vorlesung 3 ERNEUERBARE RESSOURCEN. 1. Bioökonomische Grundbegriffe. 2. Ökonomische Modelle der optimalen Erntepolitiken. 2.1 Der Fall freien Zugangs Vorlesung 3 ERNEUERBARE RESSOURCEN 1. Bioökonomische Grundbegriffe 2. Ökonomische Modelle der opimalen Ernepoliiken 2.1 Der Fall freien Zugangs 2.2 Ineremporale Allokaion erneuerbarer Ressourcen 1 ERNEUERBARE

Mehr

DAS MATHE - ZK - BUCH

DAS MATHE - ZK - BUCH DAS MATHE - ZK - BUCH Alle Originalaufgaben Haupermine Gruppe A und B von 1997 008 Ausführlich gerechnee und kommeniere Lösungswege der Jahre 1998-008 (1998-000 nur Gruppe A) Zusäzliche Hilfen zur Poenzrechnung,

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universiä München WS 11/1 Insiu für Informaik Prof. Dr. Hans-Joachim Bungarz Michael Lieb, M. Sc. Dipl.-Inf. Chrisoph Riesinger Dipl.-Inf. Marin Schreiber Numerisches Programmieren 4. Programmieraufgabe:

Mehr

Thema : Rendite und Renditemessung

Thema : Rendite und Renditemessung Thema : Rendie und Rendiemessung Lernziele Es is wichig, die Zeigewichung der Rendie als ennzahl zu versehen, den Unerschied zwischen einer koninuierlichen und einer diskreen erzinsung zu begreifen und

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte www.mahe-aufgaben.com Analysis: Ganzraionale Funkionen Analysis Ganzraionale Funkionen Differenzialrechnung, Exrem- und Wendepunke Gymnasium Klasse 0 Alexander Schwarz www.mahe-aufgaben.com Juni 0 www.mahe-aufgaben.com

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Bewegung. Einteilung der Mechanik. Kinematik. Bezugssystem. Modell Massepunkt. Geradlinig gleichförmige Bewegung

Bewegung. Einteilung der Mechanik. Kinematik. Bezugssystem. Modell Massepunkt. Geradlinig gleichförmige Bewegung Eineilung der Mechanik Kinemaik Mechanik Kinemaik Dynamik Lehre von den Bewegungen und ihren Gesezen, ohne Beachung der zu Grunde liegenden Ursachen Lehre von den Kräfen und deren Wirkungen und dami der

Mehr

Dynamische Systeme in Unterricht und Praxis

Dynamische Systeme in Unterricht und Praxis Dynamische Syseme in Unerrich und Praxis Günher Karigl und Gerhard Dorfer Im Rahmen der AG-Tagung AHS Mahemaik Bildungshaus S. Hippoly, S. Pölen, 5. November 00 Inhalsübersich. Differenialgleichungen.

Mehr

Weg im tv-diagramm. 1. Rennwagen

Weg im tv-diagramm. 1. Rennwagen Weg im v-diagramm 1. Rennwagen Löung: (a). (a) Bechreibe die Fahr de Rennwagen. (b) Wie wei kommm der Rennwagen in den eren vier Minuen, wie wei komm er über den geamen Zeiraum? (c) Wie groß i die Durchchnigechwindigkei

Mehr

Üben, üben, üben das Tangentenproblem. Christian Rühenbeck, Bovenden. Klasse: Dauer: 10 Stunden Inhalt:

Üben, üben, üben das Tangentenproblem. Christian Rühenbeck, Bovenden. Klasse: Dauer: 10 Stunden Inhalt: Das Tangenenproblem Reihe 7 S Verlauf Maerial LEK Glossar Lösungen Üben, üben, üben das Tangenenproblem en ung e n s ö L g e i p p ka r ndi T! ä n 5 ls Vol rm vo -ROM y o F D in au f C Chrisian Rühenbeck,

Mehr

Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe

Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe Moivaion: Sampling (4) Sampling Vorlesung Phoorealisische Compuergraphik S. Müller Ein naiver (und sehr eurer) Ansaz, die Rendering Equaion mi Hilfe eines Rayracing-Ansazes zu lösen, wäre wird eine diffuse

Mehr

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 5 Die Phillipskurve

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 5 Die Phillipskurve AVWL II, Prof. Dr. T. Wollmershäuser Kapiel 5 Die Phillipskurve Version: 22.11.2010 Der empirische Befund in den 60er Jahren Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 : 1931-1939 In

Mehr

Prognosestudien bei der Swissair

Prognosestudien bei der Swissair Prognosesudien bei der Swissair Von W. Grassmann, Swissair, Zürich Vorrag, gehalen an der Jahresversammlung der Schweizerischen Gesellschaf für Saisik und Volkswirschaf am 21.Mai 1966 in Baden 1. Aufgabensellung

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

Der Allee - Effekt. Ein biomathematisches Modell mit Tabellenkalkulationen bearbeitet. Christoph Ableitinger. Fakultät für Mathematik Universität Wien

Der Allee - Effekt. Ein biomathematisches Modell mit Tabellenkalkulationen bearbeitet. Christoph Ableitinger. Fakultät für Mathematik Universität Wien Der Allee - Effek Ein biomahemaisches Modell mi Tabellenkalkulaionen bearbeie Chrisoph Ableiinger Fakulä für Mahemaik Universiä Wien Das Phänomen Allee - Effek - Umgekehre innerspezifische Konkurrenz Bevölkerungsgröße

Mehr

Multiple Regression: Übung 1

Multiple Regression: Übung 1 4. Muliple Regression Ökonomerie I - Peer Salder 1 Muliple Regression: Übung 1 Schäzung einer erweieren Konsumfunkion für die Schweiz Wir unersuchen die Abhängigkei der Konsumausgaben der Schweizer Haushale

Mehr

Öffentliches Pensionssystem in Österreich. Praxis der Ökonomie. Pensionen. Umlageverfahren

Öffentliches Pensionssystem in Österreich. Praxis der Ökonomie. Pensionen. Umlageverfahren Öffenliches Pensionssysem in Öserreich Praxis der Ökonomie - Erwerbsorienier (sa allgemeiner Grundversorgung) - Umlageverfahren Pensionen 19. November 8 Johann K. Brunner Insiu für Volkswirschafslehre

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung zkm (mi CAS) Miniserium für Landes Nordrhein-Wesfalen Seie 'les l von 6 Zenrale Klausur am Ende der Einführungsphase 202 Mahemaik Aufgabensellung Aufgabe : Unersuchung ganzraionaler Funkionen Gegeben is

Mehr

WADI 7/8 Aufgaben A17 Terme. Name: Klasse:

WADI 7/8 Aufgaben A17 Terme. Name: Klasse: WADI 7/8 Aufgaben A17 Terme 1 Berechne den Wert für x = -1,5. x x + x x + x 1000x c) 10. (10x) d) 100(x 2x) 2 Welche Terme sind äquivalent zu 4x? x + 2(x+1) 2 + 2x c) x + x+ x + x d) 2. (2 x) 3 Sind beim

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN Mahemaik Mag. Schmid Wolfgang Arbeisbla. Semeser ARBEITSBLATT LAGEBEZIEHUNG DREIER EBENEN Nachdem wir die Lage weier Ebenen unersuch haben, wollen wir uns nun mi der Lage von drei Ebenen beschäfigen. Anders

Mehr

2.2 Rechnen mit Fourierreihen

2.2 Rechnen mit Fourierreihen 2.2 Rechnen mi Fourierreihen In diesem Abschni sollen alle Funkionen als sückweise seig und -periodisch vorausgesez werden. Ses sei ω 2π/. Wir sezen jez aus Funkionen neue Funkionen zusammen und schauen,

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am

Mehr

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten V 32 Kondensaor, Spule und Widersand Zei- u. Frequenzverhalen.Aufgaben:. Besimmen Sie das Zei- und Frequenzverhalen der Kombinaionen von Kondensaor und Widersand bzw. Spule und Widersand..2 Ermieln Sie

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seie von 9 Unerlagen für die Lehrkraf Abiurprüfung 9 Mahemaik, Leisungskurs. Aufgabenar Lineare Algebra/Geomerie ohne Alernaive. Aufgabensellung siehe Prüfungsaufgabe. Maerialgrundlage 4. Bezüge zu den

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung 11PS KINEMATIK P. Rendulić 2011 EINTEILUNG VON BEWEGUNGEN 1 KINEMATIK Die Kinemaik (Bewegunglehre) behandel die Geezmäßigkeien, die den Bewegungabläufen zugrunde liegen. Die bei der Bewegung aufreenden

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

I-Strecken (Strecken ohne Ausgleich)

I-Strecken (Strecken ohne Ausgleich) FELJC 7_I-Srecken.o 1 I-Srecken (Srecken ohne Ausgleich) Woher der Name? Srecken ohne Ausgleich: Bei einem Sprung der Eingangsgrösse (Sellgrösse) nimm die Ausgangsgrösse seig zu, ohne einem fesen Endwer

Mehr

Prüfungsaufgaben Wiederholungsklausur

Prüfungsaufgaben Wiederholungsklausur NIVESITÄT LEIPZIG Insiu für Informaik Prüfungsaufgaben Wiederholungsklausur Ab. Technische Informaik Prof. Dr. do Kebschull Dr. Hans-Joachim Lieske 5. März / 9 - / H7 Winersemeser 999/ Aufgaben zur Wiederholungsklausur

Mehr

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil Sächsisches Saasminiserium Gelungsbereich: Berufliches Gymnasium für Kulus und Spor Fachrichung: Technikwissenschaf Schuljahr 20/202 Schwerpunk: Daenverarbeiungsechnik Schrifliche Abiurprüfung Technik/Daenverarbeiungsechnik

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 1. Übung (KW 43) Schwingender Körper ) Notbremse ) Stahlkugel )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 1. Übung (KW 43) Schwingender Körper ) Notbremse ) Stahlkugel ) 1. Übun KW 43) Aufabe 1 M 1. Schwinender Körper ) Ein schwinender Körper ha die Geschwindiei v x ) = v m cosπ ). Er befinde T sich zur Zei 0 = T am Or x 4 0. Geben Sie den Or x und die Beschleuniun a x

Mehr

4.6. Aufgaben zu rationalen Funktionen

4.6. Aufgaben zu rationalen Funktionen Aufgabe : Raionale Funkionen Formuliere jeweils ein Beispiel für eine a) ganzraionale Funkion 0. Grades b) ganzraionale Funkion. Grades c) ganzraionale Funkion. Grades d) raionale Funkion mi Nennergrad

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen Hochschule Esslingen SS 2010 4 3 2 1 0 5 10 15 20 25 30 Fakulä Grundlagen (Hochschule Esslingen) SS 2010 1 / 9 Übersich 1 Vorberachungen Ableiungsbegri

Mehr