Math-Champ M8 Klasse: Datum: Name:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Math-Champ M8 Klasse: Datum: Name:"

Transkript

1 Math-Champ M8 Klasse: Datum: Name: 1) Britta erzählt ihrer Freundin: ist keine rationale, sondern eine irrationale Zahl. Ihre Freundin möchte nun wissen, warum keine rationale Zahl ist. Welche der folgenden Argumente Brittas sind zutreffend, welche nicht? zutreffend nicht zutreffend A ist keine rationale Zahl, weil die Wurzel einer Zahl nie rational ist. B ist keine rationale Zahl, weil man nicht als Bruch zweier natürlicher Zahlen darstellen kann. C ist keine rationale Zahl, weil man nicht am Zahlenstrahl darstellen kann. D ist keine rationale Zahl, weil in Dezimalschreibweise unendlich, aber nicht periodisch ist. 2) In der Grafik ist der Grundriss einer Wohnung abgebildet. Ermittle eine Formel zur Berechnung des Flächeninhalts a) der Küche b) der Wohnung ohne Terrasse 3) Das Volumen V eines Zylinders kann man nach folgender Formel berechnen: V = r 2 π h r... Radius des Basiskreises h... Höhe des Zylinders Wenn die Höhe h drei Mal so lang wird und der Radius r zwei Mal so lang, wie verändert sich dadurch das Volumen V? Kreuze die zutreffende Antwort an. O Das Volumen V misst dann zwei Mal so viel. O Das Volumen V misst dann drei Mal so viel. O Das Volumen V misst dann vier Mal so viel. O Das Volumen V misst dann sechs Mal so viel. O Das Volumen V misst dann neun Mal so viel. O Das Volumen V misst dann zwölf Mal so viel.

2 4) Über den Seiten eines rechtwinkligen Dreiecks werden, wie in der Abbildung dargestellt, Quadrate errichtet. Begründe, warum die Seitenlänge des größten Quadrats 10 cm misst. Formuliere deine Argumente auch in Worten. 5) Gegeben ist das folgende Gleichungssystem: x + 2 y = 12 und 2 x + 5 y = 29 Löse dieses Gleichungssystem! x = y = 6) Eine Telefongesellschaft bietet einen neuen Handytarif an. Man kann den Rechnungsbetrag für einen Monat aus nebenstehender Grafik (ungefähr) ablesen. Wie viel beträgt die Gesprächsgebühr pro Minute? Die Gesprächsgebühr beträgt pro Minute. 7) Ein Straßenstück soll gebaut werden. Erste Berechnungen für vier Bagger ergeben, dass die Fertigstellung dann 24 Tage dauern wird. Nun können aber statt der vier Bagger sogar acht Bagger eingesetzt werden. Wenn man wissen will, wie lange die Fertigstellung nun dauern wird, wie kann man da überlegen? Viele Schüler(innen) melden sich zu Wort. Welche der folgenden Überlegungen ist für dich dem Sachverhalt angemessen? Kreuze entsprechend an. Die Überlegung ist dem Sachverhalt angemessen nicht angemessen Anna: Doppelt so viele Bagger arbeiten doppelt so viel und doppelt so lange; also 48 Tage Bernd: Jeder zusätzliche Bagger bringt gleich viele Tage Ersparnis, nämlich 4 Tage. Also dauert die Arbeit für vier zusätzliche Bagger 24 minus 4 mal 4 Tage, also 8 Tage. Chris: Jeder Bagger arbeitet etwa gleich viel, doppelt so viele Bagger brauchen nur etwa halb so viel Zeit für die selbe Arbeit. Wenn eine ungefähre Abschätzung reicht: etwa 12 Tage.

3 8) Die Klasse will am Wandertag mit dem Bus zu einem Schloss fahren. Sandra und Lukas haben bei zwei Reisebüros nachgefragt und folgende Auskünfte erhalten: Tarif 180/2: Für den Bus wird eine Tagesgebühr von 180,- verlangt; zusätzlich kostet jeder gefahrene Kilometer noch 2,-. Tarif 120/3: Für den Bus wird eine Tagesgebühr von 120,- verlangt; zusätzlich kostet jeder gefahrene Kilometer noch 3,-. Sandra hat auch schon ausgerechnet, dass beide Tarife gleich teuer wären, wenn man genau 60 Kilometer fährt. Bei welchen Fahrtstrecken ist welcher Tarif günstiger? Warum ist dies so? 9) Eine zylinderförmige Regentonne ist 82 cm hoch und hat einen Durchmesser von 82cm. Sie ist zur Hälfte mit Regenwasser gefüllt. Was wird durch die Rechnung ermittelt? Kreuze die richtige Antwort an. O Das Volumen der Regentonne O Die Oberfläche der Regentonne O Das Volumen des Regenwassers O Die Mantelfläche der Regentonne O Die Grundfläche der Regentonne O Der Umfang der Grundfläche der Regentonne 10) In ein Quadrat ist ein Dreieck eingeschrieben. Gib eine Formel für den Flächeninhalt A des schraffierten Dreiecks an. Verwende als Variable nur x. 11) Im Schlussverkauf wird eine Jeans-Hose um 30% billiger verkauft. Vor dem Schlussverkauf hat die Hose 75 gekostet. Wie teuer ist die Hose im Schlussverkauf? 12) Zeichne das Dreieck ABC mit A (-6-2), B (5-2) und C (4 3).

4 13) Ein Tischler überprüft, ob zwei zusammengefügte Holzbalken tatsächlich einen rechten Winkel bilden. Er bringt dazu an beiden Balken jeweils eine Markierung an, die erste 60 cm und die zweite 80 cm von der Innenkante des jeweils anderen Balkens entfernt (siehe Grafik!). Dann misst er den Abstand zwischen den beiden Markierungen. Gib eine mathematische Begründung dieses Messverfahrens für rechte Winkel an. 14) Ärzte bestimmen zur Feststellung von Übergewicht den sogenannten Bodymassindex (BMI). Dieser wird nach folgender Formel berechnet: Es gilt: 20 < BMI < 25 Idealgewicht 25 < BMI < 30 Übergewicht (Abnehmen empfohlen) 30 BMI starkes Übergewicht (Abnehmen dringend empfohlen) Welchen BMI errechnet der Arzt für Herrn M., der bei 176 cm Körpergröße 85 kg wiegt. 15) Anton macht in seiner Klasse eine anonyme Umfrage über die Höhe des Taschengeldes pro Woche. Die folgende Tabelle ist unvollständig. Anton weiß aber noch, dass die durchschnittliche Taschengeldhöhe (Mittelwert) in der Klasse 4 betragen hat. Ergänze den fehlenden Taschengeldbetrag in der Tabelle. Taschengeld Anzahl der Schüler/innen ) Ein Passagierflugzeug fliegt mit einer gleich bleibenden Geschwindigkeit von 700 km/h. In einer Formel soll dargestellt werden, wie die Länge der Flugstrecke y (in km) von der Flugzeit x (in h) abhängt. Kennzeiche den Buchstaben mit der richtigen Formel. A) B) C) y = 700 x D) y = x E) y = 700 x F) y = x ) Die ganze Kreisfläche steht für die Zahl 1. Welche Zahlen stehen für den dunkel markierten Teil der Kreisfläche? Zwei der folgenden Antworten sind richtig. Kennzeichne sie. A) 25% B) C) D) E) 0,4

5 18) Auf dem Parkplatz vor dem Kino stehen 12 Fahrzeuge Motorräder und Autos. Julian zählt die Reifen der Fahrzeuge: es sind insgesamt 32 Reifen. Wie viele Autos und Motorräder stehen auf dem Parkplatz? Kreuze die richtige Lösung an! Auf dem Parkplatz stehen: 8 Autos und 4 Motorräder 4 Autos und 7 Motorräder 6 Autos und 4 Motorräder 5 Autos und 7 Motorräder 4 Autos und 8 Motorräder 3 Autos und 8 Motorräder 19) 500 Schülerinnen und Schüler einer Schule wurden nach ihren bevorzugten Frühstücksgetränken befragt. Es war nur eine der angeführten Antworten anzukreuzen. Kakao Kaffee Milch Tee Saft Sonstiges Die Auswertung führte zu folgender Häufigkeitstabelle: Kakao Milch Saft Kaffee Tee Sonstiges Aufgabe: Stelle diese Häufigkeitstabelle in Form einer Grafik dar! 20) Du willst eine Waschmaschine im Wert von 1 000, die zugestellt werden muss, kaufen. Du hast die Möglichkeit, zwischen den Angeboten dreier Firmen zu wählen. Firma A: Wir verrechnen zuerst einen Transportzuschlag von 10 % des Warenpreises und ziehen dann vom Gesamtbetrag einen Rabatt von 20 % ab. Firma B: Wir verrechnen keinen Transportzuschlag und gewähren auf den Warenpreis einen Rabatt von 10 %. Firma C: Wir ziehen zuerst vom Warenpreis einen Rabatt von 20 % ab und verrechnen dann einen Transportzuschlag von 10 % dieses verringerten Betrages. Du möchtest die Waschmaschine zu einem möglichst günstigen Preis beziehen. Für welches Angebot (welche Firma) würdest du dich entscheiden? Begründe deine Entscheidung.

Math-Champ M7 Klasse: Datum: Name:

Math-Champ M7 Klasse: Datum: Name: Math-Champ M7 Klasse: Datum: Name: 1) Die Abbildung zeigt den unvollständigen Schrägriss eines Würfels. Vervollständige die Figur richtig. Verwende dein Geo-Dreieck. 2) In der Grafik ist der Grundriss

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

Alkoholkranke (Testaufgabe)

Alkoholkranke (Testaufgabe) Alkoholkranke (Testaufgabe) In einer Zeitschrift ist zu lesen: ''Untenstehende Graphik demonstriert, dass die Anzahl der Alkoholkranken in der Stadt X von 2007 bis 2008 stark zugenommen hat.'' Ist diese

Mehr

2006/1. Ist diese Aussage gerechtfertigt? Schreib deine Begründung im Antwortbogen auf. Zuordnung: H3/I4

2006/1. Ist diese Aussage gerechtfertigt? Schreib deine Begründung im Antwortbogen auf. Zuordnung: H3/I4 2006/1. In einer Zeitschrift ist zu lesen: Untenstehende Graphik demonstriert, dass die Anzahl der Alkoholkranken in der Stadt X von 2002 bis 2003 stark zugenommen hat Ist diese Aussage gerechtfertigt?

Mehr

Alkoholkranke (Testaufgabe)

Alkoholkranke (Testaufgabe) Alkoholkranke (Testaufgabe) In einer Zeitschrift ist zu lesen: ''Untenstehende Graphik demonstriert, dass die Anzahl der Alkoholkranken in der Stadt X von 2007 bis 2008 stark zugenommen hat.'' Ist diese

Mehr

Standards für die mathematischen Fähigkeiten österreichischer Schülerinnen und Schüler am Ende der 8. Schulstufe

Standards für die mathematischen Fähigkeiten österreichischer Schülerinnen und Schüler am Ende der 8. Schulstufe Standards für die mathematischen Fähigkeiten österreichischer Schülerinnen und Schüler am Ende der 8. Schulstufe Versiion 4//07 Herausgegeben vom Institut für Didaktik der Mathematik Österreichisches Kompetenzzentrum

Mehr

Übungen. a) 7+6y = 37 (G) b) 9y-39 = 7 (U) c) 1+y = 6 (L) d) 4+3y = 13 (R) e) 3y-6 = 9 (Ü) f) 4+5y = 29 (C) g) y:2+2,5 = 5 (K) h) 2y-7,2 = 2,8 (S)

Übungen. a) 7+6y = 37 (G) b) 9y-39 = 7 (U) c) 1+y = 6 (L) d) 4+3y = 13 (R) e) 3y-6 = 9 (Ü) f) 4+5y = 29 (C) g) y:2+2,5 = 5 (K) h) 2y-7,2 = 2,8 (S) Übungen Inhalt 5. Gleichungen... 1 6. Daten, Diagramme und Prozentrechnung... 3 7. Kongruenz und Dreiecke... 4 8. Besondere Linien im Dreieck und Konstruktionen... 5 [nach Lambacher Schweizer 7, Arbeitsheft]

Mehr

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit Korrekturanweisung Hauptschulabschluss

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit Korrekturanweisung Hauptschulabschluss Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 2013 Korrekturanweisung Hauptschulabschluss Impressum Herausgeber Ministerium für Bildung und Wissenschaft

Mehr

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480

Mehr

Lerneinheit Statistik

Lerneinheit Statistik Lerneinheit Statistik In dieser Lerneinheit findest du zu verschiedenen statistischen Themen jeweils ein durchgerechnetes Musterbeispiel und anschließend ähnliche Beispiele zum eigenständigen Arbeiten.

Mehr

Wiederholung aus der 3. Klasse Seite Ganze Zahlen ( 3, 2, 1, 0, +1, + 2, + 3 ) und rationale Zahlen. Arbeite ohne Taschenrechner.

Wiederholung aus der 3. Klasse Seite Ganze Zahlen ( 3, 2, 1, 0, +1, + 2, + 3 ) und rationale Zahlen. Arbeite ohne Taschenrechner. Wiederholung aus der 3. Klasse Seite 1 1. Ganze Zahlen ( 3, 2, 1, 0, +1, + 2, + 3 ) und rationale Zahlen. Arbeite ohne Taschenrechner. Setze ein: >,

Mehr

VERGLEICHSARBEIT Mathematik. Schuljahrgang 8

VERGLEICHSARBEIT Mathematik. Schuljahrgang 8 VERGLEICHSARBEIT 2007 Mathematik Schuljahrgang 8 Aufgabe 1 Kreuze jeweils an, ob die angegebene Zahl x Lösung der Gleichung ist oder nicht. Gleichung Lösung ja nein a) 6x 3 + 15 = 8 x = 4 b) 2(6x + 24)

Mehr

JAHRGANGSSTUFENTEST 2012 IM FACH MATHEMATIK WAHLPFLICHTFÄCHERGRUPPE I NAME: KLASSE: 8 PUNKTE: / 21 NOTE:

JAHRGANGSSTUFENTEST 2012 IM FACH MATHEMATIK WAHLPFLICHTFÄCHERGRUPPE I NAME: KLASSE: 8 PUNKTE: / 21 NOTE: JAHRGANGSSTUFENTEST 2012 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 8 DER REALSCHULEN WAHLPFLICHTFÄCHERGRUPPE I (ARBEITSZEIT: 45 MINUTEN) NAME: KLASSE: 8 PUNKTE: / 21 NOTE: 1 Auf dem Oktoberfest wirbt die

Mehr

Übungsaufgaben Klassenarbeit

Übungsaufgaben Klassenarbeit Übungsaufgaben Klassenarbeit Aufgabe 1 (mdb633193): Berechne die Länge an der Flussmündung. (Maße in m) Aufgabe 2 (mdb633583): Die Höhe eines Kirchturms wird ermittelt. Dazu werden, wie in der Skizze dargestellt,

Mehr

Einstiege: Volumen eines Zylinders

Einstiege: Volumen eines Zylinders An Abbildungen Höhe und Radius bestimmen und Volumen berechnen (1/3) 1 Schneide die Netze der beiden Zylinder aus und stelle zwei Modelle her. a) Schätze, welcher Zylinder das größere Volumen und die größere

Mehr

K l a s s e n a r b e i t N r. 2

K l a s s e n a r b e i t N r. 2 K l a s s e n a r b e i t N r. Aufgabe 1 Der Stamm einer Buche hat den Umfang U = 370 cm. a) Berechne den Durchmesser. b) Man kann das Alter eines Baumes an der Anzahl der Jahresringe erkennen. Die durchschnittliche

Mehr

Vergleichsarbeit Mathematik. Gesamtschulen, Jahrgang 8, Kurs II. Schuljahr 2005/2006

Vergleichsarbeit Mathematik. Gesamtschulen, Jahrgang 8, Kurs II. Schuljahr 2005/2006 , Jahrgang 8, Kurs II Schuljahr 00/006 9. März 006 Unterlagen für die Lehrerinnen und Lehrer Diese Unterlagen enthalten: I II III Allgemeine Hinweise zur Arbeit Aufgabenblätter in den Versionen A und B

Mehr

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.

Mehr

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN: GRUNDWISSENTEST 05 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 7 DER REALSCHULE HINWEISE: Beim Kopieren der Aufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Bei formalen

Mehr

Tägliche Nutzungsdauer in Minuten

Tägliche Nutzungsdauer in Minuten Mathematik 6. Schulstufe 1) Von einem Dreieck sind die Winkel α = 20 und β = 70 bekannt. Warum muss in diesem Dreieck der dritte Winkel 90 betragen? 2) Bei der Schuluntersuchung stellte der Schularzt fest,

Mehr

Raum- und Flächenmessung bei Körpern

Raum- und Flächenmessung bei Körpern Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-

Mehr

Repetition Mathematik 8. Klasse

Repetition Mathematik 8. Klasse Repetition Mathematik 8. Klasse. Berechne schrittweise mit einem korrekten Lösungsweg: + 3 3 4 : 3. Berechne schrittweise mit einem korrekten Lösungsweg: 0 + 0 b.) 3 4 + 3 5 c.) 9 8 8 9 5 3. Berechne schrittweise

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E1 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note:

Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: MATHEMATIK - Teil A Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: Aufnahmeprüfung 2017 Pädagogische Maturitätsschule Kreuzlingen Zur Verfügung stehende Zeit: 45 Minuten. Die Lösungsgedanken und

Mehr

Serie W1 Klasse 9 RS. 3. 5% von ,5 h = min. 1 und. 8. Stelle die Formel nach der Größe in der Klammer um. V = A G h (A g )

Serie W1 Klasse 9 RS. 3. 5% von ,5 h = min. 1 und. 8. Stelle die Formel nach der Größe in der Klammer um. V = A G h (A g ) Serie W1 Klasse 9 RS 1. 1 1 + 2. -14(-3 + 5) 3 5 3. 5% von 600 4. 4,5 h = min 5. 4³ 6. Runde auf Tausender. 56508 7. Vergleiche (). 1 und 5 1 4 8. Stelle die Formel nach der Größe in der Klammer

Mehr

Fach Mathematik. (Schuljahr 2006/2007) Name: Klasse: Schülercode:

Fach Mathematik. (Schuljahr 2006/2007) Name: Klasse: Schülercode: Kompetenztest für Schülerinnen und Schüler der Klassenstufe 8 an Regelschulen, Gymnasien, Gesamtschulen und Förderzentren mit dem Bildungsgang der Regelschule Fach Mathematik (Schuljahr 2006/2007) Name:

Mehr

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2014 HEFT 1. Realschulabschluss

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2014 HEFT 1. Realschulabschluss Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 014 HEFT 1 Realschulabschluss Herausgeber Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein

Mehr

- Zeichenutensilien, kein Taschenrechner, keine Formelsammlung

- Zeichenutensilien, kein Taschenrechner, keine Formelsammlung Bildungsdirektion des Kantons Zürich Mittelschul- und Bildungsamt BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel (alt): Arithmetik und Algebra (Hohl) Fach Mathematik Teil 1 Serie D Dauer 45 Minuten

Mehr

1. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

1. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner 1. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: AG1.1 Wissen über die Zahlenmengen,,, verständig einsetzen können

Mehr

Probeunterricht 2012 an Wirtschaftsschulen in Bayern

Probeunterricht 2012 an Wirtschaftsschulen in Bayern Probeunterricht 2012 an Wirtschaftsschulen in Bayern Mathematik 7. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 4: Arbeitszeit Teil II (Textrechnen) Seiten 5 bis 7: 45 Minuten 45 Minuten

Mehr

G-Kurs. c) Berechne, wie viele Freundinnen sich am Geschenk beteiligen müssten, wenn jede nur 15 ausgeben will.

G-Kurs. c) Berechne, wie viele Freundinnen sich am Geschenk beteiligen müssten, wenn jede nur 15 ausgeben will. Abschlussarbeiten 2017 Hauptschulabschluss 9 Mathematik 04.05.2017 Pflichtteil / Wahlteile G-Kurs Schülermaterial Hauptschule 9 Name:. Klasse: Beachte: - Alle Rechenwege müssen klar und übersichtlich aufgeschrieben

Mehr

1 Rätselrechnungen Welches Streichholz muss umgelegt werden, damit die Rechnung stimmt? (Material: Streichhölzer) a) b)

1 Rätselrechnungen Welches Streichholz muss umgelegt werden, damit die Rechnung stimmt? (Material: Streichhölzer) a) b) 1 Rätselrechnungen Welches Streichholz muss umgelegt werden, damit die Rechnung stimmt? (Material: Streichhölzer) a) b) Berechne den Wert der Variablen. Eine Gleichung kannst du dir als eine Balkenwaage

Mehr

z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm².

z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm². Einsetzbar ab Lerneinheit Zuordnungen a) Runde 34,92 auf Zehntel. 35,0 b) Berechne: 3 5 11 3 +. = 1 4 8 8 8 z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne

Mehr

Serie 1 Klasse 9 RS. 3. 4% von ,5 h = min. 1 und Stelle die Formel nach der Größe in der Klammer um. V = A G h (h)

Serie 1 Klasse 9 RS. 3. 4% von ,5 h = min. 1 und Stelle die Formel nach der Größe in der Klammer um. V = A G h (h) Serie 1 Klasse 9 RS 1. 1 1 2. -15 (- + 5) 4. 4% von 600 4.,5 h = min 5. 5³ 6. Runde auf Tausender. 56608 7. Vergleiche (). 1 und 1 4 8. Stelle die Formel nach der Größe in der Klammer um. V = A

Mehr

Spezieller Teil / Wahlteil

Spezieller Teil / Wahlteil Aufgabenvorschläge für die schriftliche Abschlussprüfung in Mathematik Förderschule Schwerpunkt Lernen, 9. Schuljahrgang, Schuljahr 2005 / 06 Spezieller Teil / Wahlteil Themenbereich: Umfang und Flächeninhalt

Mehr

Rechnen mit Variablen

Rechnen mit Variablen E Rechnen mit Variablen 5. Gleichungen 1 Rätselrechnungen Welches Streichholz muss umgelegt werden, damit die Rechnung stimmt? (Material: Streichhölzer) a) b) Berechne den Wert der Variablen. Eine Gleichung

Mehr

Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:

Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse: Prüfung zum mittleren Bildungsabschluss 2008 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten

Mehr

Mathematik. Prüfung zum mittleren Bildungsabschluss Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse:

Mathematik. Prüfung zum mittleren Bildungsabschluss Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse: Prüfung zum mittleren Bildungsabschluss 2011 Schriftliche Prüfung Wahlaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 60 Minuten Fach: Mathematik Wahlaufgaben

Mehr

Aufwärmübung 1 Lösungen

Aufwärmübung 1 Lösungen Aufwärmübung 1 1) Die Tabellen gehören zu direkt proportionalen Zuordnungen. Ergänze die fehlenden Werte. a) b) Weg in km Zeit in h Menge in kg Preis in 20 1 1_ 4 4 1_ 4 60 120 12 24 2) Vereinfache. (n

Mehr

GRUNDWISSENTEST 2013 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 7 DER REALSCHULE (ARBEITSZEIT: 45 MINUTEN)

GRUNDWISSENTEST 2013 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 7 DER REALSCHULE (ARBEITSZEIT: 45 MINUTEN) GRUNDWISSENTEST 03 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 7 DER REALSCHULE (ARBEITSZEIT: 45 MINUTEN) NAME: Lösungsmuster KLASSE: 7 PUNKTE: /3 NOTE: Berechne. a) 53 b) 8 4 3 40 c) 0, 0,5 d) 4 : 5 3 0,05

Mehr

St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe Punkte

St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe Punkte St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 Punkte Löse

Mehr

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17 Textgleichungen Aus der Geometrie Lösungen 1. Von zwei Strecken ist die eine viermal so lang wie die andere. Zusammen ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke:

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr

Vergleichsarbeit Mathematik 8. Schuljahrgang 6. März 2007

Vergleichsarbeit Mathematik 8. Schuljahrgang 6. März 2007 Niedersächsisches Kultusministerium Vergleichsarbeit Mathematik 8. Schuljahrgang 6. März 2007 VA TYP 1 Realschule Realschulzweig der KGS A(E)-Kurs der IGS Realschülerinnen und Realschüler der Förderschule

Mehr

Musteraufgaben Mathematik Teil I

Musteraufgaben Mathematik Teil I Musteraufgaben Mathematik Teil I Bearbeitung ohne Taschenrechner und ohne Formelsammlung Arbeitszeit: 30 Minuten Name: Klasse:. nur 8 Monatsraten zu je 00 Preis: 500 bei Barzahlung % Skonto,5 Ratenkauf

Mehr

Probeunterricht 2016 an Wirtschaftsschulen in Bayern

Probeunterricht 2016 an Wirtschaftsschulen in Bayern Probeunterricht 2016 an Wirtschaftsschulen in Bayern Mathematik 7. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 5: 45 Minuten Arbeitszeit Teil II (Textrechnen) Seiten 6 bis 9: 45 Minuten

Mehr

Umfang des Parallelogramms. Flächeninhalt des Parallelogramms

Umfang des Parallelogramms. Flächeninhalt des Parallelogramms Parallelogramm Umfang des Parallelogramms Gegeben ist ein Parallelogramm mit den Seitenlängen a und b. Um den Umfang (u P ) zu berechnen, wird folgende Formel verwendet: u P = 2a + 2b a b a = 6 cm; b =

Mehr

Übungsheft Hauptschulabschluss Mathematik. Korrekturanweisung. Zentrale Abschlussarbeit 2013

Übungsheft Hauptschulabschluss Mathematik. Korrekturanweisung. Zentrale Abschlussarbeit 2013 Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 2013 Übungsheft Hauptschulabschluss Mathematik Korrekturanweisung Herausgeber Ministerium für Bildung und

Mehr

Üben für die 1. Schularbeit Mathematik 3. Üben für die 1. Schularbeit Mathematik 3 TEIL 2. von 0 nach 1,8 willst? von 2,5 nach 7,5 willst?

Üben für die 1. Schularbeit Mathematik 3. Üben für die 1. Schularbeit Mathematik 3 TEIL 2. von 0 nach 1,8 willst? von 2,5 nach 7,5 willst? Üben für die 1. Schularbeit Mathematik 3 TEIL 2 (1) Rationale Zahlen ordnen a) ANGABE: In welche Richtung musst du auf dem Zahlenstrahl gehen, wenn du von 0 nach 1,8 willst? von 2,5 nach 7,5 willst? von

Mehr

Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: B1 basierend auf dem Lehrmittel «Mathematik Sekundarstufe I»

Mehr

Thema aus dem Bereich Analysis Funktionen 1.Grades

Thema aus dem Bereich Analysis Funktionen 1.Grades Thema aus dem Bereich Analysis -. Funktionen.Grades Inhaltsverzeichnis Einführung in den Funktionsbegriff Der Funktionsgraph und die Wertetabelle Was ist eine Funktion.Grades? Die Steigung einer Geraden

Mehr

Repetition Mathematik 7. Klasse

Repetition Mathematik 7. Klasse Repetition Mathematik 7. Klasse 1. Ein neugeborenes Kätzchen wiegt bei der Geburt durchschnittlich 100g. Es nimmt in den ersten 8 Wochen pro Woche 60g zu. Wie viel beträgt nachher die Gewichtszunahme pro

Mehr

Übertrittsprüfung 2014

Übertrittsprüfung 2014 Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2014 Aufgaben Prüfung an die 3. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule...

Mehr

Erprobungsarbeit Mathematik

Erprobungsarbeit Mathematik Sächsisches Staatsministerium Geltungsbereich: für Klassen 8 für Kultus an Erprobungsschulen Schuljahr 2001/2002 Erprobungsarbeit Mathematik Realschulbildungsgang Allgemeine Arbeitshinweise Die Erprobungsarbeit

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele. Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.

Mehr

Modulare Förderung Mathematik

Modulare Förderung Mathematik 1) 1 Umfang und Fläche begrifflich verstehen Welche Aussagen stimmen? Kreuze an. Der Umfang einer Figur ist immer größer als sein Flächeninhalt. Der Flächeninhalt wird kleiner, wenn ich eine Fläche zerschneide

Mehr

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit Hauptschulabschluss

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit Hauptschulabschluss Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 2013 Hauptschulabschluss Impressum Herausgeber Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

Flächeninhalt des Kreises

Flächeninhalt des Kreises Flächeninhalt des Kreises 1 Schätze die Fläche der Antarktis, indem du den Maßstab der Karte benutzt Schreibe deine Rechnung auf und erkläre, wie du zu deiner Schätzung gekommen bist (Du kannst in der

Mehr

Probeunterricht 2012 an Wirtschaftsschulen in Bayern

Probeunterricht 2012 an Wirtschaftsschulen in Bayern an Wirtschaftsschulen in Bayern Mathematik 7. Jahrgangsstufe Nachtermin Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 4: Arbeitszeit Teil II (Textrechnen) Seiten 5 bis 9: 45 Minuten 45 Minuten Name:..

Mehr

Zahlensystem und Grundrechnen Gleichungen und Formeln umstellen

Zahlensystem und Grundrechnen Gleichungen und Formeln umstellen Seite 1 M 1.11 Das Gleichheitszeichen wird in der nicht nur benutzt, um ein Ergebnis auszudrücken. Mathematische Ausdrücke mit einem Gleichheitszeichen nennt man auch Gleichung. Eine Gleichung besteht

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Terme binomische Formeln lineare Gleichungen mit einer Variablen Maschine A produziert a Werkstücke, davon sind 2 % fehlerhaft, Maschine B produziert b Werkstücke, davon sind

Mehr

Demo-Text für Klasse 6. Vergleichsarbeiten. Mecklenburg-Vorpommern INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Demo-Text für  Klasse 6. Vergleichsarbeiten. Mecklenburg-Vorpommern INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Vergleichsarbeiten Klasse 6 2010 Mecklenburg-Vorpommern Mit ausführlicher Lösung Text 19060 Stand: 13. November 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 19060 Vergleichsarbeit Klasse

Mehr

Kreis Kreisabschnitt Kreissegment Kreisbogen

Kreis Kreisabschnitt Kreissegment Kreisbogen Kreis Kreisabschnitt Kreissegment Kreisbogen Bezeichnung in einem Kreis: M = Mittelpunkt d = Durchmesser r = Radius k = Kreislinie Die Menge aller Punkte, die von einem bestimmten Punkt M (= Mittelpunkt)

Mehr

Probeunterricht 2007 für die Realschulen in Bayern

Probeunterricht 2007 für die Realschulen in Bayern Probeunterricht 007 für die Realschulen in Bayern Mathematik 4. Jahrgangsstufe 1. Tag Name: Gruppe: Punkte: / 3 1. Berechne. a) 47 85 + 798 675 = b) 7 095 57 = / 1 / 1 c) 75 634 007 51 89 = d) 19 656 :

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

Realschulabschluss/Sekundarabschluss I 2013 Mathematik

Realschulabschluss/Sekundarabschluss I 2013 Mathematik Hauptteil Wichtiger Hinweis für alle Aufgaben: Runde Endergebnisse auf 2 Stellen hinter dem Komma! Schreibe jeden deiner Lösungswege auf! Aufgaben 1. Die Abbildung zeigt den Grundriss eines Swimmingpools.

Mehr

Sicheres Wissen und Können zum Kreis 1

Sicheres Wissen und Können zum Kreis 1 Sicheres Wissen und Können zum Kreis 1 Die Schüler können Figuren als Kreise erkennen und Kreise nach gegebenen Maßen mit dem Zirkel zeichnen. Die Schüler beherrschen folgende Bezeichnungen: Mittelpunkt

Mehr

MATHEMATIK-WETTBEWERB 1997/98 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 1997/98 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 1997/98 DES LANDES HESSEN AUFGABEN DER GRUPPE A 1. Gib die jeweilige Lösungsmenge in aufzählender Form an; G = Z. a) 5(2x 4) + 3x 16 = 5(8 5x) b) 8(x 6) 3(8 x) = 4(x + 3) c) 12(2x

Mehr

Mathematik. Aufnahmeprüfung vom 15. Juni

Mathematik. Aufnahmeprüfung vom 15. Juni Berufsmaturität 1 Mathematik Aufnahmeprüfung vom 15. Juni 2016 Kandidaten-Nr.: Name: Vorname:......... Allgemeine Hinweise: Die Prüfungszeit beträgt 60 Minuten. Erlaubte Hilfsmittel: Netzunabhängiger Taschenrechner

Mehr

Kompetenztest. Testheft

Kompetenztest. Testheft Kompetenztest Testheft Klassenstufe 6 Mittelschule und Förderschule Schuljahr 2009/2010 Fach Mathematik 1. Schule In eine Schule gehen insgesamt 280 Schülerinnen und Schüler. Die Hälfte der Schülerinnen

Mehr

Kodieranweisung (1) 2. Welcher Term besitzt den Wert 25? (1) 3 Dreiecke müssen gefärbt sein (1)

Kodieranweisung (1) 2. Welcher Term besitzt den Wert 25? (1) 3 Dreiecke müssen gefärbt sein (1) Teil 1 Kurzform Kodieranweisung Zu erreichende Punktzahl: 4 1. Mit welcher Zahl geht die Zahlenreihe...5, 4, 8, 7, 14 weiter? 1 8 15 9. Welcher Term besitzt den Wert 5? 50 5 50 + 5 17 8 5 + 50. Färbe 10

Mehr

Wiederholung aus der 3. Klasse Seite Ganze Zahlen ( 3, 2, 1, 0, +1, + 2, + 3 ) und rationale Zahlen. Arbeite ohne Taschenrechner.

Wiederholung aus der 3. Klasse Seite Ganze Zahlen ( 3, 2, 1, 0, +1, + 2, + 3 ) und rationale Zahlen. Arbeite ohne Taschenrechner. Wiederholung aus der 3. Klasse Seite 1 1. Ganze Zahlen ( 3,, 1, 0, +1, +, + 3 ) und rationale Zahlen. Arbeite ohne Taschenrechner. Setze ein: >,

Mehr

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten.

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten. Realschulabschlussprüfung 2000 Mathematik Seite 1 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Pflichtteil sind alle vier Aufgaben zu

Mehr

Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: Hilfsmittel: Nicht-programmierbarer Taschenrechner erlaubt, nicht aber Formelsammlungen usw.

Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: Hilfsmittel: Nicht-programmierbarer Taschenrechner erlaubt, nicht aber Formelsammlungen usw. MATHEMATIK - Teil B Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: Aufnahmeprüfung 2015 Pädagogische Maturitätsschule Kreuzlingen Zur Verfügung stehende Zeit: 45 Minuten. Die Lösungsgedanken und

Mehr

Zylinder, Kegel, Kugel, weitere Körper

Zylinder, Kegel, Kugel, weitere Körper Zylinder, Kegel, Kugel, weitere Körper Aufgabe 1 Ein Messzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Messzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel geht es um die Berechnung von Volumen und Oberfläche von zusammengesetzten Körpern aus z.b. Würfeln, Quadern, Pyramiden, Kegeln, Halbkugeln usw. s kommen auch Aufgaben

Mehr

Probeunterricht 2016 an Wirtschaftsschulen in Bayern

Probeunterricht 2016 an Wirtschaftsschulen in Bayern Probeunterricht 2016 an Wirtschaftsschulen in Bayern Mathematik 8. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 5: 45 Minuten Arbeitszeit Teil II (Textrechnen) Seiten 6 bis 9: 45 Minuten

Mehr

1. Schularbeit R

1. Schularbeit R 1. Schularbeit 23.10.1997... 3R 1a) Stelle die Rechnung 5-3 auf der Zahlengerade durch Pfeile dar! Gibt es mehrere Möglichkeiten der Darstellung? Wenn ja, zeichne alle diese auf! 1b) Ergänze die Tabelle:

Mehr

Arbeitsblatt Lösen von Problemen mit Gleichungen

Arbeitsblatt Lösen von Problemen mit Gleichungen Arbeitsblatt Lösen von Problemen mit Gleichungen 203 L Die Summe von zwei aufeinander folgenden ganzen Zahlen ist a) 35, b) 50. Berechne die beiden Zahlen. 204 L Das 10fache einer Zahl ist um a) 32, b)

Mehr

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen. Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe 1 a) Kreuze an, wie viele Minuten du ungefähr seit deiner Geburt gelebt hast.! 80 000 000! 8 000 000! 800 000! 80 000! 8 000 b) Bei einer Durchschnittsgeschwindigkeit von 80

Mehr

Übungsheft Hauptschulabschluss Mathematik. Korrekturanweisung. Zentrale Abschlussarbeit 2014

Übungsheft Hauptschulabschluss Mathematik. Korrekturanweisung. Zentrale Abschlussarbeit 2014 Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 04 Übungsheft Hauptschulabschluss Mathematik Korrekturanweisung Herausgeber Ministerium für Bildung und Wissenschaft

Mehr

Mathematik Aufnahmeprüfung 2014 Profile m,n,s

Mathematik Aufnahmeprüfung 2014 Profile m,n,s Mathematik Aufnahmeprüfung 2014 Profile m,n,s Zeit: Rechner: Hinweis: 2 Stunden. TI30/TI34 oder vergleichbare. Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Numerische

Mehr

Zentrale Abschlussprüfung 10 Gymnasiales Niveau für die Gesamtschule Mathematik (A)

Zentrale Abschlussprüfung 10 Gymnasiales Niveau für die Gesamtschule Mathematik (A) Die Senatorin für Bildung und Wissenschaft Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 Gymnasiales Niveau für die Gesamtschule 2010 Mathematik (A) Teil 1 Taschenrechner und Formelsammlung sind

Mehr

3e 1. Schularbeit/ A

3e 1. Schularbeit/ A 3e 1. Schularbeit/ A 27.10.1997 1) Löse folgende Gleichung: 5 + 4 x = 7 ( 4 P ) 10 2) Berechne und kürze das Ergebnis so weit es geht: 2 1 11 : 3 3 + 1 1 * 2 2 = ( 9 P ) 16 12 4 24 15 3 a) Konstruiere

Mehr

Repetition Mathematik 6. Klasse (Zahlenbuch 6)

Repetition Mathematik 6. Klasse (Zahlenbuch 6) Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von

Mehr

BEISPIELARBEIT. erstmalig 2017 ZENTRALE KLASSENARBEIT MATHEMATIK. Schuljahrgang 6. Gymnasium

BEISPIELARBEIT. erstmalig 2017 ZENTRALE KLASSENARBEIT MATHEMATIK. Schuljahrgang 6. Gymnasium ARBEIT erstmalig 2017 ZENTRALE KLASSENARBEIT Schuljahrgang 6 Gymnasium Arbeitszeit: 45 Minuten Alle Aufgaben sind auf den Arbeitsblättern zu bearbeiten. Dazu gehören auch eventuell erforderliche Nebenrechnungen,

Mehr

Download. Basics Mathe Flächenberechnung. Kreisfläche. Michael Franck. Downloadauszug aus dem Originaltitel:

Download. Basics Mathe Flächenberechnung. Kreisfläche. Michael Franck. Downloadauszug aus dem Originaltitel: Download Michael Franck Basics Mathe Flächenberechnung Kreisfläche Downloadauszug aus dem Originaltitel: Basics Mathe Flächenberechnung Kreisfläche Dieser Download ist ein Auszug aus dem Originaltitel

Mehr

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen

Mehr

Mathematik für die Ferien Seite 1

Mathematik für die Ferien Seite 1 Mathematik für die Ferien Seite. Zähle die natürlichen geraden Zahlen auf, die größer als 0 und kleiner oder gleich 20 sind: 2, 4, 6, 8, 20 2. Schreib als Zahl: Deutschland hat 8 Millionen = 8 000 000

Mehr

Standards Mathematik Klasse 7

Standards Mathematik Klasse 7 Standards Mathematik Klasse 7 ) Ein Hobby-Imker füllt seinen Jahresertrag an Honig in Gläser mit je 500 g Inhalt ab. Er kann Gläser füllen. Wie viele Gläser zu je 50 g Inhalt könnte er mit diesem Jahresertrag

Mehr

Abschlussprüfung im Bildungsgang Realschule Hessen 2016

Abschlussprüfung im Bildungsgang Realschule Hessen 2016 1 Aufgaben des Haupttermins 2016 Bearbeitungshinweise: Die Pflichtaufgaben müssen alle gerechnet werden. Von den Wahlaufgaben sind zwei Aufgaben zu bearbeiten. Die Bearbeitungszeit beträgt 135 Minuten.

Mehr

J Quadratwurzeln Reelle Zahlen

J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden,

Mehr

(3r) r 2 =? xy 3y a + 6b 14. ( xy

(3r) r 2 =? xy 3y a + 6b 14. ( xy Mathematik Aufnahmeprüfung 2014 Profile m,n,s Lösungen Aufgabe 1 (a) Vereinfache (schreibe als einen Bruch): 2 + a 2 + 3b 7 =? (b) (c) Vereinfache so weit wie möglich: Vereinfache so weit wie möglich:

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:

Mehr

Kapitel D : Flächen- und Volumenberechnungen

Kapitel D : Flächen- und Volumenberechnungen Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung

Mehr

min km/h

min km/h Proportionalität 1. Gegeben sind die folgenden Zuordnungen: 1) x - 3-1 0 0,5 4 y 9 3 0-1,5-6 -1 y : x - 3-3 ) km/h 30 45 60 70 85 100 min 45 30,5 13,5 min km/h 1350 1350 1350 3) s -,5 3,3 7, 8 9,1 4) t

Mehr