Prüfung DAV-Spezialwissen in Finanzmathematik 2010 Version 4. September 2011

Größe: px
Ab Seite anzeigen:

Download "Prüfung DAV-Spezialwissen in Finanzmathematik 2010 Version 4. September 2011"

Transkript

1 Prüfug DAV-Spezalwsse Fazmaemak 1 Verso 4 Sepember 11 Block I (Albrec) Aufgabe 1: (3 Mue) a) De Rede R V / v eer Fazposo über e Zeervall der Läge se ormalverel, R ~ N(, ) Lee Se de Value a Rsk deser Fazposo zum Kofdezveau er! b) Gegebe se e Porfolo aus Fazel, desse Wer V() zum Zepuk gegebe s durc V() x S () 1 Als Rskofakore werde de Größe Z() ls () defer ) Selle Se de Weräderug V V( ) v() der Porfoloposo als Fuko der esprecede Weräderuge Z() Z ( ) z() der Rskofakore dar! ) Lee Se de Dela-Approxmao deser Poso er! ) Besmme Se auf deser Grudlage de (approxmave) Value a Rsk der Porfoloposo zum Kofdezveau, we ( Z1(),, Z ()) mulvara ormalverel s m E[ Z ()] ( 1,, ) ud Cov[ Z (), Z j()] j (, j 1,, )! Hwes 1: Seze Se de Value a Rsk eer ormalverele Größe als beka voraus! Hwes : exp( x) 1 x

2 Klausur zum DAV-Spezalwsse Fazmaemak am 311 See vo 16 Lösugsskzze: a) Es gl zuäcs V v R ~ N(v,v ) ud dam L V ~ N( v,v ) Da L ormalverel s, gl für de Value a Rsk VaR (L ) E(L ) N v N v (N (L v ) ) b) ) Es gl V 1 1 Da adererses x [S ( ) s ()] S ( ) xs() 1 s() Z () Z ( ) z () ls ( ) ls () l[s ( )/s ()], folg sgesam V 1 x s ()(exp[ Z ()] 1) ) De Dela-Approxmao laue ac Hwes som V ) Es gl E( V ) 1 Var( V ) x s () Z () x s()e[ Z ()] x s() x s() xx j s()s j()j xx j s()s j() 1 j1 1 j1 Da x s() Z () ormalverel s, gl m L : V sgesam VaR [ V ] E( V ) N 1 x s () 1 N Var( V ) 1 1 j1 x x s ()s () j j j j

3 Klausur zum DAV-Spezalwsse Fazmaemak am 311 See 3 vo 16 Aufgabe : (15 Mue) De Ewcklug {A } der Markwere der Akva ees Ueremes folge eer geomersce Browsce Bewegug, sbesodere gl da zum Zepuk = A A exp{m Z }, wobe Z ~ N(,1) a) Gee Se aus vom Mero-Modell, wobe de Ausfallscrake H vorgegebe se Besmme Se de Ausfallwarscelcke PD erme der Verelugsfuko N( ) der Sadardormalverelug! b) Uerselle Se u für Z e Efakormodell der Form Z F 1 U, d fasse Se Z als ormere Boäsdkaor auf ) Besmme Se u be vorgegebeer Ausfallwarscelcke PD de dam mplz fesgelege (ormere) Ausfallscrake H ) We laue de dam mplz fesgelege Ausfallscrake H auf Ebee der Markwerewcklug der Akva? Lösugsskzze: a) Es gl PD P(A H) P[A l(h / A) N m exp(m P[m Z l(h / A)] l(h / A) m P Z l(h / A) m P Z Z ) H] b) ) PD P(Z H ) P(Z H ) N(H ) Heraus folg: H N 1 (PD) ) Aus Aufgabeel a) folg:

4 Klausur zum DAV-Spezalwsse Fazmaemak am 311 See 4 vo 16 l(h / A ) m (PD) 1 N Heraus folg 1 l(h / A) m N (PD) ud dam sgesam 1 H A exp{m N (PD) } Aufgabe 3: (15 Mue) a) Defere Se de Größe Dsace o Defaul (DD) m Rame des KMV-Modells! b) Wese Se ac, dass m Rame des Mero-Modells de fudameale Bezeug PD N( DD) gl Dabe bezece PD de Ausfallwarscelcke m Zepuk ud N de Verelugsfuko der Sadardormalverelug Hwes: De Ewcklug {A } der Markwere der Akva wurde beres Aufgabe spezfzer Lösugsskzze: a) Defo Dsace o Defaul DD: E(l A) l(dp) DD : Dabe s DP der Defaul Po ud es gl 1 DP : Sor erm Deb Log erm Deb b) Es gl ac Hwes A A exp{m ud dam: Z } l( A ) l A m Z Heraus folg zuäcs (l A ) l A m, E da E(Z ) Es folg dam weer

5 Klausur zum DAV-Spezalwsse Fazmaemak am 311 See 5 vo 16 E (l A ) l(dp) l(a / DP) m Nac dese Vorüberleguge erale wr: PD P(A P[m l(a N N( DD) DP) P(A Z / DP) DP) l(dp / A P[m Z l(a / DP)] l(a / DP) m P Z m )]

6 Klausur zum DAV-Spezalwsse Fazmaemak am 311 See 6 vo 16 Block II (Barels) Aufgabe 4: (6 Mue) Um eer zsarme Ze oc albwegs passable Erräge zu erwrscafe, scleß e 6-järger Ma ee zwejärge ree Erlebesfallverscerug ab m zwe glec oe Jarespräme Es sd folgede Dae beka: De e- bzw zwejärge Überlebeswarscelcke ees 6-järge Maes berage ac der DAV-Serbeafel R4RM : 997, p 9947 p6 6 () M dese Dae berece ma be eer Ablauflesug vo 1 - m Erlebesfall de owedge Jareseopräme be eem Garaezs vo 5% bzw alerav vo 3% (1 Mue) De Alagesraege des Verscerugsueremes se ur Ivesmes Zerobods m dem glece Ablaufdaum we de esprecede Verscerug vor De Vorgabe a de Akuar laue, dass ur solce Garaezse be der Kalkulao verwede werde dürfe, de für dese Versceruge kee Abscerug des Zsverspreces ewa über Europäsce Call-Opoe auf Zerobods beöge Herbe wrd uersell, dass auc ac eem Jar de Prese für Zerobods ses uer 1 lege, d dass auc eem Jar de Kapalmärke kee egave Zse auswese Aufgrud der akuell gülge Zssrukurkurve ke ma de akuelle Prese vo e- bzw zwejärge Zerobods: P(,1) = 963 P(,) = 93 sowe de Pres ees Europäsce Calls auf ee Zerobod m Ausübugspres 9846: C P (,1,,9846) =4 Herbe bezece we üblc: P(,) de Pres ees Zerobods zum Zepuk ud Ablaufdaum, so dass also zum Ablaufdaum gl P(,) = 1; CP (,,B,X) bezece zum Zepuk de Pres eer Europäsce Call- Opo m Ausübugspres X, Laufze auf ee Zerobod, der zu eem Zepuk B fällg wrd, so dass zb der Wer der Call-Opo zum Zepuk gerade C (,,,X) (P(, ) X) max(p(, ) X,) s P B B () We ka geerell für de geae Verscerug ee Abscerug ees Garaezses m Call-Opoe auf Zerobods vorgeomme werde? (15 Mue) () Ma prüfe ac, ob be eem Garaezs vo 5 % bzw 3 % ee solce Abscerug dem er vorlegede Fall wrklc beög wrd (15 Mue) (v) Falls ee Abscerug owedg s, was wäre da der Pres der Abscerug be de er vorlegede umersce Dae mels Call-Opoe auf Zerobods? (1 Mue) Dem Kude wrd auc de Möglcke egeräum, bede Präme eer Emalzalug zu lese; de zuäcs c beöge zwee Präme wrd da eem Prämedepo für e Jar verzs ud se da für de zwee fällge Zalug zur Verfügug B

7 Klausur zum DAV-Spezalwsse Fazmaemak am 311 See 7 vo 16 (v) Be welcem ejärge Zs für das Prämedepo läss sc jedem der bede Fälle ses ee Abscerug durc Call-Opoe vermede? (1 Mue) Aleug: Herbe gee ma we m Semar vo eem deermssce Asaz für de Bomere aus, de ezge Uscere bese also er der zuküfge Zsewcklug Außerdem werde Abscluss- ud Verwalugskose deser Beracug komple auße vor gelasse Lösugsskzze: Zu (): Der Zusammeag zwsce der Erlebesfallsumme VS = 1 ud der järlce Präme ergb sc we m Semar aufgrud der Äquvalezglecug: 1 1 p x VS (1 p x ) (1 g) 1 g Für g = 5% gl: ( 1 1 1g 997 ) 1 1g ud für g = 3 % berece sc zu Zu (): Iveser ma de erse Präme komple Zerobods zum Pres vo P(,), so eräl ma dafür be Ablauf der Verscerug ac zwe Jare de Berag De zwee Jarespräme muss daer für de edfällge Erlebesfallsumme ur oc folgede Berag erwr- P(,) scafe: S : px VS P(,) Der erfür owedgerwese zu erwrscafede Zssaz y berece sc ac der folgede Äquvalezglecug: (1) ( 1 y) px S Falls jez der beöge Zssaz y < s, wrd kee Abscerug beög: Ma errec jedem Fall de aus der zwee Präme zu erwrscafede Summe S Für y > gl: Is zum Zepuk =1 der Pres vo ejärge Zerobods öer als 1/(1+y), d der da gülge Markzs zu edrg, ka ma m der voradee Präme de Summe S durc Ze-

8 Klausur zum DAV-Spezalwsse Fazmaemak am 311 See 8 vo 16 robods c mer erwrscafe Um für dese Fall Vorsorge zu reffe, kauf ma be 1 Verragsabscluss Call-Opoe auf Zerobods m Ausübugspres fällg zum Zepuk 1, ud zwar geau ( 1 y) px Sück zum Pres vo C P 1 y 1 (,1,, ) 1 y Zu (): Be de er vorlegede umersce Dae ergebe sc folgede Were: Für g = 5% s = ud daer S = = ud eraus 93 ergb sc ac Glecug (1) für 1+y e Wer kleer als 1, d selbs oe ee Zs ka ma de Summe S aus der zwee Präme besree Für g = 5 % wrd also desem kokree Bespel eer zwejärge Verscerug kee Abscerug über Call-Opoe beög Für g = 3 % s = ud daer S = = ud eraus 93 ergb sc ac Glecug (1) folgeder Wer für 1+y: 1+y = 1156 ud dam s , das s gerade der Ausübugspres der agegebee Call-Opo Her wrd 1 y der a ee Abscerug für de Fall zu edrger Markzse ac eem Jar beög Zu (v): Als Gesampres für de Abscerug über Call-Opoe we () bescrebe ergb sc so: Zu (v): Falls m sclecese Fall m zwee Jar ke Zs zu erzele s, muss durc Aufzsug m Prämedepo der Wer S errec werde Nur m Fall g = 3 % bese überaup de eveuelle Nowedgke eer Abscerug ac () Für g = 3 % a ma zur Besmmug für de Zssaz (p) des Prämedepos de folgede Glecug: p 6 (1 (p)) 48 49, woraus sc der mmal owedge Zssaz (p) für das Prämedepo zu 1,56 % berece

9 Klausur zum DAV-Spezalwsse Fazmaemak am 311 See 9 vo 16 Block III (Maurer) Aufgabe 5: Scäzrske ud Ieraoale Porfolo-Dversfkao (3 Mue) Gegebe se ee Zwe-Läder-Wel m eem Werpaper 1 aus Lad 1 (Hemalad des Ivesors) ud eem Werpaper aus Lad (Auslad) Es werde folgede Bezecuge für de beracee Ivesmeperode geroffe R := lokale Rede vo Werpaper ( = 1, ), e : = Wecselkursrede zwsce Lad ud Lad 1, Gegebe see de Erwarugswere ud Sadardabwecuge der Rede: μ(r 1 ) =,75; μ(r ) =,175; μ(e ) =,4 σ(r 1 ) =,3; σ(r ) =,1; σ(e ) =,8 De Rede-Kovarazmarx s gegebe durc: R 1 R e R 1,9,45 -,45 R,1 -,3 e,64 - Füre Se de folgede Berecuge aus der Sc des lädsce Ivesors durc - Veraclässge Se be Ire Berecuge alle Varaze, Kovaraze ud Erwarugswere der (R e ) Kreuzproduke - Füre Se alle Berecuge m 4 Nackommaselle durc - Beace Se de abelle zur Sadardormalverelug m Aag a) E Ivesor forder ee Porfolorede, de m eer Warscelcke vo 9% über eer Mdesrede vo % leg Welce Srukur (relave Ivesosgewce), welce Sadardabwecug ud welce erwaree Rede besz das Porfolo aus Werpaper 1 ud, welces de obge Bedgug erfüll, ud de erwaree Rede maxmer Uerselle Se zur Lösug des Problems ormalverele Rede ud gee davo aus, dass der Ivesor kee Wärugsscerug durcfür (9 Mue) Hwes: Der effzee Rad (oe Wärugsscerug) der aus Werpaper 1 ud kosruerbare Porfolos a de Form,16,1565(,9)

10 Klausur zum DAV-Spezalwsse Fazmaemak am 311 See 1 vo 16 b) Uerselle Se umer, der Ivesor korrger de Scäzwere für de erwaree Rede (oe Wärugsscerug) gemäß dem Bayes-Se-Verfare m eem Scrumpfugsfakor ( zum Mmum Varaz Porfolo) Berece Se zuäcs de korrgere erwaree Rede Uerscede Se dre Fälle: ) =, ) = 1 ) = Der Ivesor versuc wederum de erwaree Porfolorede zu maxmere uer der Nebebedgug, dass m eer Warscelcke vo 9% ee Mdesrede vo % erzel wrd Welce Srukur (relave Ivesosgewce), welce Sadardabwecug ud welce erwaree Rede ergebe sc u? Skzzere Se Ire Ergebsse eer geegee Grafk (9 Mue) Hwes: Der effzee Rad (oe Wärugsscerug) der aus Werpaper 1 ud kosruerbare Porfolos m Fall =, a de Form,16,1(,9) c) Erläuer Se krsc de Resamplg-eck zur Berückscgug vo Scäzfeler be der Besmmug opmaler Porfolos (5 Mue) Lösugsskzze: Es ergb sc für de ugescere Werpapere lädscer Wärug: µ(r 1 ) =,75; µ(r + e ) =,1475; σ(r 1 ) =,3; σ(r + e ) =,1; Weer gl: Cov(R 1, R + e ) = Cov(R 1, e ) + Cov(R 1, R ) = a) 1) Effzeer Rad,16,1565(,9) ) Se N 9 das 9% Qual der Sadardormalverelug da resuler für de Sorfallresrko = + N 9 Gemäß begefüger abelle der N(, 1)- Verelug gl 1,8 < N,9 < 1,9 Im Folgede wrd (approxmav vo der scere See) N 9 = 1,9 gesez =, + 1,9 Seze 1) = ), 1,9,16,1565(,9) Maxmaler Erwarugswer uer Ealug der Sorfallresrko op,141, 7 =,75x +,1475(1-x); x 1 =,461; x =,5739

11 Klausur zum DAV-Spezalwsse Fazmaemak am 311 See 11 vo 16 b) ) ) E(R 1, BS ) =,75(1-) +,16 =,5 E(R 1, BS +e, BS ) =,1475(1-) +,16 =,15 1) Effzeer Rad,16,1(,9) ) Sorfallresrko =, + 1,9 1) = ), 1,9,16,1(,9) Maxmaler Erwarugswer uer Ealug der Sorfallresrko op,135, 1883 =,5x +,15(1-x) x 1 =,3833; x =,6167 Der effzee Rad scrumpf auf de Puk des MVP zusamme Das MVP erfüll offesclc de Sorfall-Resrko, d Prob(R MVP <,) = (-1,476) = 6,94% < 1% I desem Fall fäll das Ergebs m dem MVP aus elaufgabe b zusamme ) Kee Adjuserug der Erwarugswere, d der effzee Rad s desc zu elaufgabe a Ergebsse see a) c) Es exsere verscedee Verfare um Probleme aus Scäzrske m Rame eer Porfoloopmerug zu berückscge Ausgagspuk s ee sassce Scwese der MV Opmerug: De beobacee (sorsce) Rede selle ur ee Realsao des daegeererede Prozesses dar Um de Varablä zu berückscge, werde wederol aus der sorsce Redeverelug ( resamplg ) eue Rede smuler Dese resampled reurs füre zu jewels eem eue Se a Ipuparameer (Melwere, Kovaraze) für de ascleßede (wederole) Opmerug De für c zu eem, soder eem Spekrum a Effce Froers Durc geegee Durcscsbldug werde da de opmale Asse- Gewce besmm Problem deser eurssce Verfare s dere magelde eoresce Begrüdug; es wrd a de Sympome (sclecer Dversfkaosgrad) ud c a de Ursace (Uscere bzgl der Ipufakore) agesez (see Albrec/Maurer 8, S 8f) Aufgabe 6: "Devseforwards" (17 Mue) Se sd e europäscer Ivesor Der rskolose dskree Zs der Eurozoe beräg r EU = 3% pa Der rskolose dskree Zs m US-Dollarraum beräg gege r US = 6% pa Der Wecselkurs s akuell S =,8 /USD a) Berece Se de arbragefree Forwardkurs F ( /USD) ud de Forwardpräme f für ee Devseforward m Laufze 1 Jar (4 Mue)

12 Klausur zum DAV-Spezalwsse Fazmaemak am 311 See 1 vo 16 b) Am Mark beobace Se gege ee Forwardkurs vo F =,79 /USD Formulere Se ee Sraege, um dese Arbrage auszuuze, we Se m Euroraum Kred aufeme köe (4 Mue) c) Welce Arbragegew ( Euro) köe Se dam erzele, we Se eue maxmal 1 Kred aufeme köe (Kredaufame Dollar s Ie c möglc) (4 Mue) d) I der acfolgede abelle sd de Crossraes verscedeer Wäruge eale Ermel Se de felede Were A bs E uer der Aame, dass zwsce de Devsemärke kee (Dreecks-) Arbragemöglckee exsere! (5 Mue) Wärug EUR USD GBP SFR EUR 1 B,6758 1,5896 USD A 1,5363 1,61 GBP 1,4797 C 1 E SFR,691,799 D 1 Lösugsskzze: a) $ b) ) Kredaufame Euro ) ) v) Umausc USD Alage US Geldmark Forward für aufgezse Berag egee v) Geld eem Jar zum Forwardkurs zurückausce v) Kred lge Geld bleb übrg, bzw äe c Sraege verwede werde müsse

13 Klausur zum DAV-Spezalwsse Fazmaemak am 311 See 13 vo 16 c) 1 ü: 13 : $ ö : $ : $ Für Kredlgug werde also ur 984 beög Heuger Arbragegew s demac 16 Ebefalls volle Puke gb es für de Sraege, de komplee Euroberag de USA azulege: $ : Da ur 13 zurückgezal werde müsse, leg ( eem Jar) e Arbragegew vo 1675 vor d) Wärug EUR USD GBP SFR EUR 1 B,6758 1,5896 USD A 1,5363 1,61 GBP 1,4797 C 1 E SFR,691,799 D 1 A =,7936 B = 1,61 C = 1,8646 D =,45 E =,3517

14 Klausur zum DAV-Spezalwsse Fazmaemak am 311 See 14 vo 16 Aufgabe 7: "Lagfrsvesmes Immoble" ( Mue) Aufgrud des akuelle edrge Zsveaus aalyser der Fazvorsad ees Versorgugswerkes de Vorele/Nacele eer Iveso ee Offee Immoblefods Das verfügbare Ivesosvolume beräg EUR 5 Mlloe Nac grüdlcer Recerce erware Se für de auf kouerlcer Bass berecee järlce (Log-)Rede r des Ivesmes ee mlere Rede vo 4% pa, be eer Volalä vo % pa ud eer Auokorrelao 1 Ordug vo a =,6 Der akuelle Pres für ee Fodsael beräg EUR 1 zzgl eem Ausgabeaufsclag vo 5% auf de Aelswer (es köe belebge Brucele ees Aels erworbe werde) Be Verkauf der Fodsaele vor Ablauf vo ver Jare falle weere rasakoskose Form ees Rückameabsclags vo 1% auf de da erzelbare Aelswer a Uerselle Se m Folgede ormalverele d-rede m adjuserer Volalä ac dem Bludell/Ward-Verfare a) Berece Se be Iveso der 5 Mo Aele des Offee Immoblefods für das erzelbare Edvermöge ac ver ud eu Jare: de Erwarugswer, de Sadardabwecug, de Meda sowe das Mdesvermöge, welces m eer Warscelcke vo = 9% c uerscre wrd (7 Mue) b) We groß s de Warscelcke, dass sc das afäglc vesere Kapal ac ver bzw ac Ablauf vo eu Jare mdeses m eer (kouerlce) Rede vo,5% pa verzs a? (7 Mue) c) Was verse ma verse ma uer eem edosce Immobledex? (6 Mue) Hwese: Se X ~ LN(m, v²) ee logarmsc ormalverele Zufallsgröße m de Parameer m ud v², ud N das -Qual der Sadardormalverelug (see abelle m Aag), da gl ax b ~ LN(la + bm, b²v²) sowe für Erwarugswer, Varaz, ud -Qual E(X) m,5v e E(X) e v 1 mnv mn1 v Var(X) LN (m, v ) e e 1 a Das Bludell/Ward-Verfare korrger de Varaz gemäß: VAR(r ) VAR(r ) (1 a) Lösugsskzze: a) Korrekur vo SD der Eperode Log-Rede gemäß dem Bludell/Ward-Verfare: 1 a 1,6 ( r ) SD( r ) % (1 a) (1,6) % 4% Be (berege) d Eperode-Rede r ~ N; = N(4%; 4%) resuler für kumu- lere Logrede bs r r ~ N ; 1, Für das Edvermöge ac Jare ud

15 Klausur zum DAV-Spezalwsse Fazmaemak am 311 See 15 vo 16 Ausgabeaufsclag vo a = 5% ud Rückamegebüre vo b=1% (für >4) bzw b=% des Verkaufspreses gl dam: S (1 b) /(1 a) 5Mo e ~ LN M de Hwese ergb sc da m ; v LNl(5Mo(1 b) /(1 a)) ; r, E( S ) 5Mo(1 b) /(1 a) e LN LN SD( S ) E( S ) 9% 5% e 1 (,5 ) ( S ) 5Mo(1 b) /(1 a) e ( S ) 5Mo(1 b) /(1 a) e 1,8 ) Jare () 4 9 E() 5,45 68,75 SD() 4,4 8,8 LN()_9% 45,39 58,5 LN()_5% 5,9 68,5 b) Für kumulere Logrede bs ac rasakoskose Hv a = 5% des Kaufpreses ud b = 1% (bzw %) des Verkaufspreses gl: K 1 b 1 b r, r, l ~ N[ l, ] 1 a 1 a Be eer kouerlce Zelrede vo z =,5% per aum resuler für de kumulere Zelrede z, = z z [ l(1 b) l(1 a)] SW P( r K z) Φ, Für = 4 resuler 1-SW = 1-Φ(1,519) = 14,64% Für = 9 resuler 1-SW = 1-Φ(-,959) = 81,75% c) Hedoscer Immobledex: Es adel sc um ee spezelle Form rasakosbaserer Idzes Dese versuce, de Heerogeäsproblemak dadurc zu löse, dass mels ees ökoomersce Modells de werbeeflussede Fakore vo Immoble erfass ud vo de zelce Eflussfakore separer werde De eoresce Kozepo deser Idzes baser auf der Aame, dass der Wer eer Immoble vollsädg durc ee Vekor vo separa bewerbare Egescafe (Größe, Lage, Aler, Aussaug, Zal der Räume, ua) bescrebe werde ka Demac blde sc Prese für Immobleobjeke als Summe der erworbee ezele Egescafe we bespelswese Lage oder Größe Sassc leg dem Asaz e mulples Regressosmodell zugrude m de rasakosprese als zu erklärede ud de Egescafe als erklärede Varable Des erlaub es, de egelc eerogee Alageklasse der Immoble omogee Arbue zu separere ud gleczeg dere Efluss auf de Wer der Objeke zu besmme (see Albrec/Maurer 8, S 833)

16 Klausur zum DAV-Spezalwsse Fazmaemak am 311 See 16 vo 16 Aag Verelugsfuko der Sadardormalverelug (x) x

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F B - - Überführgszahle d Wadergsgeschwdgke fgabe: Besmmg der orfsche Überführgszahle vo - d O - -oe 0N O oder vo 2 - d SO 4 -oe 0N 2SO 4 d Berechg hrer oeäqvalelefähgkee 2 Besmmg der Wadergsgeschwdgkee

Mehr

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden Oeserrechsche Korollbak AG esoskasse erformaceberechug Asse Allocao Berechugsmehode Jul 200 Ihal erformaceberechug der OeKB...3 2 erformace...3 2. Defo der erformace...3 2.2 Berechugsmehode...4 2.3 Formel...4

Mehr

Nachtrag Nr. 72 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt

Nachtrag Nr. 72 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt London Branch Nachrag Nr. 72 a gemäß 10 Verkaufsprospekgesez (n der vor dem 1. Jul 2005 gelenden Fassung) vom 6. November 2006 zum Unvollsändgen Verkaufsprospek vom 31. März 2005 über Zerfkae auf * über

Mehr

Finanzmathematische Grundlagen zur Zins- und Rentenrechnung

Finanzmathematische Grundlagen zur Zins- und Rentenrechnung Fazmahemasche Grudlage zur Zs- ud Reerechug Fazmahemasche Grudlage zur Zs- ud Reerechug (Fassug - November 008) /3 Markus Scheche Emal: mal@markus-scheche.de Homepage: www.markus-scheche.de Fazmahemasche

Mehr

Tutorium Investition & Finanzierung Tutorium 1: Kostenvergleichs und Gewinnvergleichsrechnung

Tutorium Investition & Finanzierung Tutorium 1: Kostenvergleichs und Gewinnvergleichsrechnung Fachhochschule Schmalkalde Fakulä Iformak Professur Wrschafsformak, sb. Mulmeda Markeg Prof. Dr. rer. pol. Thomas Urba Tuorum Iveso & Fazerug Tuorum : oseverglechs ud Gewverglechsrechug T : Der Tu Fru

Mehr

Formelsammlung gültig ab Einstellungstermin 1. April 2011 (Stand: 1. April 2011)

Formelsammlung gültig ab Einstellungstermin 1. April 2011 (Stand: 1. April 2011) Formelsammlug gülg ab Esellugserm. Aprl (Sad:. Aprl ) FACHHOCHSCHULE DER DEUTSCHEN BUNDESBANK - UNIVERSITY OF APPLIED SCIENCES - Schloss Hacheburg Fachsude für de gehobee Bades m Bachelorsudegag Fachhochschule

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

Finanzmathematik II: Barwert- und Endwertrechnung

Finanzmathematik II: Barwert- und Endwertrechnung D. habl. Bukhad Uech Beufsakademe Thüge Saalche Sudeakademe Sudeabelug Eseach Sudebeech Wschaf Wschafsmahemak Wesemese 004/0 Fazmahemak II: Bawe- ud Edweechug. Bawee ud Edwee vo Zahlugsehe. Effekve Jaheszssaz

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Name: Vorame: Matrkel-Nr.: BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Itegrerter Studegag Wrtshaftswsseshaft Klausuraufgabe zur Hauptprüfug Prüfugsgebet: BWW 2.8

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage

Mehr

2 Integrierte Sicherheitstechnik

2 Integrierte Sicherheitstechnik Iegrere Scherhesechk Scherhesechsche Archekur o MOISAFE UCS..B 2 2 Iegrere Scherhesechk De acholged beschrebee Scherhesechk des MOISAFE UCS..B erüll olgede Scherhesaorderuge: Kaegore 4 ud erorace Leel

Mehr

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf Das Verfahre vo Goduov Semar Numerk 5..00 Aja Beedorf Das Verfahre vo Goduov Übersch Goduov - Goduovs Verfahre für Leare Syseme Aweduge & Folgeruge aus Goduovs Verfahre - De Numersche Fluss-Fuko m Goduov

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Übungsaufgaben zur Finanzmathematik - Lösungen

Übungsaufgaben zur Finanzmathematik - Lösungen Wshfsmhemk II Übugsufgbe zu Fzmhemk - Lösuge. Ee Bk lok m dem Agebo " W vedoppel h pl Jhe!! ". ) Welhe Vezsug bee Ihe de Bk? ( ) Edkpl od. Ede : Lufze od. Läge des Algezeumes Zse " Zseszsehug" z. B.: (

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug

Mehr

Dominik Stein Kapitalmarkttheorie SS97 - Portfolio Selection Theory (Markowitz) - Seite 1

Dominik Stein Kapitalmarkttheorie SS97 - Portfolio Selection Theory (Markowitz) - Seite 1 Dom Se Kapalmarheore SS97 - Porfolo Seleco Theory (arowz - See azerug : Are der azerug Außefazerug Egefazerug Beelgugsfazerug Elage, Ae remdfazerug Kredfazerug Geld-/Kapalmar lagfrsge Darlehe, Oblgaoe,

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Praktikumsbericht AUSFALLRATEN

Praktikumsbericht AUSFALLRATEN Praumsberch AUSALLATEN.7. Clauda Hallau Tel.: 5-95- E-Mal: verehrssysemech@dlr.de> Copyrgh ach DIN beache. Weergabe sowe Vervelfälgug deses Doumes, Verwerug ud Melug sees Ihales sd verboe, sowe ch ausdrüclch

Mehr

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.

Mehr

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen .. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt

Mehr

Inhaltsverzeichnis. Risikomgmt SS06

Inhaltsverzeichnis. Risikomgmt SS06 Ihalsverzechs Ihalsverzechs Fole Vorlesug : Hoeywell, Ic. ad Iegraed Rsk Maageme Vorlesug : Eführug Value-a-Rsk (va für Markrsko) Vorlesug 3: Rskofakore 3 Vorlesug 4: Umsezug Value-a-Rsk 4 Vorlesug 5:

Mehr

Finanzmathematik Folien zur Vorlesung

Finanzmathematik Folien zur Vorlesung Fazmahemak Fole zu Volesug FINANZMAHEMAI. Zsechug.. Gudbegffe de Zsechug.. De ve Fageselluge de Zsechug.3. Beechug des Edkapals.4. Beechug vo Afagskapal, Zssaz ud Laufze.5. Uejähge Vezsug.6. Sege Vezsug.

Mehr

Realisierung von Bezier-Flächen durch Anwendung von De Casteljau

Realisierung von Bezier-Flächen durch Anwendung von De Casteljau Projekarbe Compergrafk Dokmeao Compergrafk Thema: Realerg vo ezer-fläche drch Awedg vo De Caelja Doze: earbeer: Lehrgag: Prof. Dr. Zho Mar Sommer, Elv Corbo 12. Ifo NTA Iy Iy, de 8.7.25-1 - Projekarbe

Mehr

Prüfungsfach: Wahlfach Steuerlehre Punktzahl: 100. Prüfer: Prof. Dr. Volker Breithecker Bearbeitungszeit: 240 Min.

Prüfungsfach: Wahlfach Steuerlehre Punktzahl: 100. Prüfer: Prof. Dr. Volker Breithecker Bearbeitungszeit: 240 Min. Facbereic Wirtscaftswissescaft PO 95 D I P L O M P R Ü F U N G Prüfugstermi: Sommersemester 2002 Studiescwerpukt: - - - Prüfugsfac: Walfac Steuerlere Puktzal: 100 Prüfer: Prof. Dr. Volker Breitecker Bearbeitugszeit:

Mehr

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen?

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen? Aufgabe 1 (60 Pukte) De Gesellschaft XYZ betet als prvate Reteverscherug ee Idepolce gege Emalbetrag a mt eer Aufschubfrst vo zwe Jahre. Ivestert wrd e so geates IdeZertfkat, das be Retebeg das folgede

Mehr

4. Ratenmonotones Scheduling Rate-Monotonic Scheduling (LIU/LAYLAND 1973)

4. Ratenmonotones Scheduling Rate-Monotonic Scheduling (LIU/LAYLAND 1973) 4. Raenmonoones Schedulng Rae-Monoonc Schedulng (LIU/LAYLAND 973) 4.. Tasbeschrebung Tas Planungsenhe. Perodsche Folge von Jobs. T = {,..., n } Tasparameer Anforderungsze, Bereze (release me) Bearbeungs-,

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

Integriertes Investitionsmanagement zur Gestaltung von Multi-Channel-Strategien

Integriertes Investitionsmanagement zur Gestaltung von Multi-Channel-Strategien Uversä ugsburg Prof. Dr. Has Ulrch Buhl Kerkompeezzerum Faz- & Iformaosmaageme Lehrsuhl für BWL, Wrschafsformak, Iformaos- & Fazmaageme Dskussospaper WI-62 Iegreres Ivesosmaageme zur Gesalug vo Mul-Chael-Sraege

Mehr

qu.j. an = a 0 q unterjährlich wobei Zinsen in m gleiche zeitliche Abstände innerhalb eines Jahrs (n). = q -n a 0 = a n q -n

qu.j. an = a 0 q unterjährlich wobei Zinsen in m gleiche zeitliche Abstände innerhalb eines Jahrs (n). = q -n a 0 = a n q -n cd. rer. oec. Brzosk Zusefssug Fzerug ud Iveso cd. rer. oec. Mr T. ocybk A. Ivesosrechug I. Fzhesche Zsrechug (BvC/L, F., S. 8 S. 39) Aufzsugsfkor: ( ) + q q Erreche, welche Edwer ( ) ee elge Ezhlug eer

Mehr

Bericht zur Prüfung im Oktober 2008 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2008 über Finanzmathematik und Investmentmanagement Beric zur rüfung im Okober 008 über Finanzmaemaik und Invesmenmanagemen (Grundwissen) eer Albrec (Manneim) Am 7 Okober 008 wurde zum drien Mal eine rüfung im Fac Finanzmaemaik und Invesmenmanagemen nac

Mehr

Zweidimensionale Verteilungen

Zweidimensionale Verteilungen Bblografsce Iformato der Deutsce Natoalbblotek De Deutsce Natoalbblotek verzecet dese Publkato der Deutsce Natoalbblografe; detallerte bblografsce Date sd m Iteret über abrufbar. De Iformatoe

Mehr

Ein Kredit von 350.000 soll mit 10% p.a. verzinst werden. Folgende Tilgungen sind vereinbart:

Ein Kredit von 350.000 soll mit 10% p.a. verzinst werden. Folgende Tilgungen sind vereinbart: E. Tlgugsechuge Aufgabe E Ked vo 350.000 soll 0% p.a. vezs wede. Folgede Tlguge sd veeba: Ede Jah : 70.000 Ede Jah : 63.000 Ede Jah 6:.500 Ede Jah 7: Reslgug. A Ede des 3. ud 5. Jahes efolge keele Zahluge

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

Optimale Steuerung von Rüst- und Produktionsprozessen

Optimale Steuerung von Rüst- und Produktionsprozessen JOHANNES KEPLER UNIVERSITÄT LINZ Nezwerk für Forschug, Lehre ud Praxs Opale Seuerug vo Rüs- ud Produkosprozesse DISSERTATION zur Erlagug des akadesche Grades DOKTOR DER NATURWISSENSCHAFTEN Ageferg a Isu

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

I. Finanzmathe. Zinsrechnung. K 1 K 0 K 0 wird vorgezogen K 1 > K 0 Indifferenz möglich Bei Indifferenz: q. 1. Einfache Zinsen: K = K (1+

I. Finanzmathe. Zinsrechnung. K 1 K 0 K 0 wird vorgezogen K 1 > K 0 Indifferenz möglich Bei Indifferenz: q. 1. Einfache Zinsen: K = K (1+ ABWL III Zuammefaug (WS 4/5, erell vo Igrd Sagl) Leraur: - Kruchwz, Luz: Fazmahemak - Kruchwz, Luz: Iveorechug - Wöhe, Güer ud Ble, Jürge: Grudzüge der Uerehmefazerug Dee Zuammefaug oll ee Überblck über

Mehr

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung De Bomalvertelg al Wahrchelchketvertelg für de Schadevercherg Für da Modell eer Schadevercherg e gegebe: = Schade ee Verchergehmer, we der Schadefall etrtt w = Wahrchelchket dafür, da der Schadefall etrtt

Mehr

Projekt Kochplatte. Ergänzen Sie die Schaltung zur Messung der elektrischen Energie und schließen Sie den Zähler an.

Projekt Kochplatte. Ergänzen Sie die Schaltung zur Messung der elektrischen Energie und schließen Sie den Zähler an. System- ud Gerätetecik Projekt Kocplatte Uterrictsleitug: Bucer Name: Datum: Seite C C C Sie abe u die Kocplatte repariert ud das Prüfprotokoll fertiggestellt Als der Kude die Kocplatte bei Ie abolt, will

Mehr

2. Arbeitsgemeinschaft (11.11.2002)

2. Arbeitsgemeinschaft (11.11.2002) Mat T. Kocbk G Fazeugs- & Ivesttostheoe Veastaltug m WS / Studet d. Wtschatswsseschat. betsgemeschat (..). Fshe-Sepaato Das Fshe-Sepaatostheoem sagt aus, daß ute bestmmte ahme heutge ud mogge Kosum substtueba

Mehr

Zum Problem unterjähriger Zinsen und Zahlungen in der Zinseszinsrechnung

Zum Problem unterjähriger Zinsen und Zahlungen in der Zinseszinsrechnung Zu Proble urjährger Zse ud Zahluge der Zsessrechug Gewöhlch geht a der Zsessrechug davo aus, dass de Zse ach ee Jahr de Kapl ugeschlage werde ud da weder Zse trage. Der Zssat, t de das Kapl ultplert wrd,

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quattatve BWL. el: Fazwtschaft Mag. oáš Sedlačk Lehstuhl fü Fazdestlestuge Uvestät We Quattatve BWL: Fazwtschaft Ogasatosches Isgesat wd es 6 ee gebe (5 Ehete + Klausu Klausu fdet a D 7. Jaua 009 statt

Mehr

F 6-2 π. Seitenumbruch

F 6-2 π. Seitenumbruch 6 trebsauslegug Für dese ckelprozess üsse de otore so ausgelegt werde, dass dese Fahrbetreb cht überlastet werde. Herfür üsse de ezele asseträghetsoete [7] der Bautele (otor, etrebe, ckler ud Ulekrolle)

Mehr

Klausur Betriebswirtschaftslehre PM/B

Klausur Betriebswirtschaftslehre PM/B Isttut für Fazwrtschaft, Bake ud Verscheruge, Karlsruher Isttut für Techologe Klausur Betrebswrtschaftslehre PM/B Achtug: Ihalte der Vorlesug köe Zukuft ggf. cht mehr kosstet mt de Ihalte deser Klausur

Mehr

2 Regression, Korrelation und Kontingenz

2 Regression, Korrelation und Kontingenz Regresso, Korrelato ud Kotgez I desem Kaptel lerst du de Zusammehag zwsche verschedee Merkmale durch Grafke zu beschrebe, Maßzahle ür de Stärke des Zusammehags zu bereche ud dese zu terpretere, das Wsse

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

Zur Datenqualität primärstatistischer Erhebungen

Zur Datenqualität primärstatistischer Erhebungen Zur Daenqualä prmärsasscer Erebungen Henrc Srecker Emer. o. Professor Dr. rer. na. Henrc Srecker, Unversä Tübngen und Honorarprofessor der Ludwg-Maxmlans-Unversä Müncen, Rosensr., D 839 Sarnberg be Müncen.

Mehr

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien: Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet

Mehr

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß Ivesiiosud Fiazierugsplaug miels Kapialwermehode, Ierer Zisfuß Bearbeie vo Fraka Frid, Chrisi Klegel WI. Aufgabe: Eie geplae Ivesiio mi Aschaffugsausgabe vo.,- läss jeweils zum Jahresede die folgede Eiahme

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

b) Rentendauer Anzahl der Rentenzahlungen 1) endliche Renten 2) ewige Renten (z.b. Verpachtung an Verpächter bzw. seinen Rechtsnachfolgern)

b) Rentendauer Anzahl der Rentenzahlungen 1) endliche Renten 2) ewige Renten (z.b. Verpachtung an Verpächter bzw. seinen Rechtsnachfolgern) HTL Jebach. eeechug Maheak Sask.. Gudbegffe ee = egeläßg wedekehede Zahlug 4 weselche Mekale ee ee a) eehöhe ) glechblebede ee ) veädelche ee a) egeläßg (z.b. Idex-ageaß) ) egellos b) eedaue Azahl de eezahluge

Mehr

Grundzüge der Preistheorie

Grundzüge der Preistheorie - - Grudzüge der Prestheore Elemetare Gedake der uterehmersche Prespoltk Verso 3. Harr Zgel 999-3, EMal: HZgel@aol.com, Iteret: http://www.zgel.de Nur für Zwecke der Aus- ud Fortbldug Ihaltsüberscht. Grudgedake.....

Mehr

17. Kapitel: Die Investitionsplanung

17. Kapitel: Die Investitionsplanung ABWL 17. Kapiel: Die Ivesiiosplaug 1 17. Kapiel: Die Ivesiiosplaug Leifrage des Kapiels: Welche Type vo Ivesiiosobjeke gib es? Wie läss sich die Voreilhafigkei eies Ivesiiosobjeks fesselle? Wie ka aus

Mehr

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion AG Kstrut KONTRUKTION Plaetegetrebe (Umlaufgetrebe) rpt TU Berl, AG Kstrut Plaetegetrebe Vrtele Plaetegetrebe: e Achsversatz z.t. sehr grße Über-/Utersetzuge möglch grße Tragraft guter Wrugsgrad Rhlff

Mehr

Formelsammlung der Betriebswirtschaft

Formelsammlung der Betriebswirtschaft - - Formelsammlug der Betrebswrtschaft Ee Überscht über de wchtgste mathematsche ozepte ud Recheverfahre Rechugswese, Cotrollg ud Betrebswrtschaft Verso 8.9 Harry Zgel 99-4, EMal: HZgel@aol.com, Iteret:

Mehr

Ein Beitrag zur Identifikation von dynamischen Strukturmodellen mit Methoden der adaptiven KALMAN-Filterung

Ein Beitrag zur Identifikation von dynamischen Strukturmodellen mit Methoden der adaptiven KALMAN-Filterung E Berag zur Idefao vo damche Sruurmodelle m Mehode der adapve KAMAN-Flerug Vo der Faulä Bau- ud Umwelgeeurwechafe der Uverä Sugar zur Erlagug der Würde ee Door-Igeeur Dr.-Ig. geehmge Abhadlug Vorgeleg

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

Exkurs: Datenschutz in der Markt- und Sozialforschung - Gliederung

Exkurs: Datenschutz in der Markt- und Sozialforschung - Gliederung kurs: Datescutz der arkt- ud Sozalforscug - Glederug. Gesetzlce Grudlage. Relevate Orgasatoe der arkt- ud Sozalforscug 3. Selbstregulerug der arkt- ud Sozalforscug 4. Fallstude Raud Wlder, Fürt altug des

Mehr

Portfolioeffekte bei der Kreditrisikomodellierung

Portfolioeffekte bei der Kreditrisikomodellierung Porfoloeffeke be der Kredrskomodellerung 1 Porfoloeffeke be der Kredrskomodellerung Mark Wahrenburg 1 und Susanne Nehen Kurzfassung Für vele Fragesellungen m Rahmen der Bewerung kredrskobehafeer Fnanzel

Mehr

Formelsammlung Finanzmanagement

Formelsammlung Finanzmanagement UNIERSIÄ REGENSBURG Lehsuhl fü Beebswschafslehe, sbesodee Fazdeslesuge UNI.-PROF. R. LUS RÖER Uvesässaße 3, 9353 Regesbug, el. (94) 943-73 Fomelsammlug Fazmaageme e Symbol espch de de jewelge easalug vewedee

Mehr

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient Ablehugsberech:!Sgfkazveau abhägge Gruppe: Gruppe vo Versuchspersoe, dee jede ezele Versuchsperso aus Gruppe A eer äquvalete Versuchsperso aus Gruppe B etsprcht (oder tatsächlch de gleche Versuchsperso

Mehr

Formelblatt Finanzmanagement

Formelblatt Finanzmanagement www.bwl-olie.ch hema Dokumear heorie im uch "Iegrale eriebswirschafslehre" Formel Fiazmaageme Checklise eil: D Fiazmaageme Kapiel: verschiedee Formelbla Fiazmaageme ilazsrukur Eigekapial E igefiazierugsgrad(equiy

Mehr

Formelsammlung der Betriebswirtschaft

Formelsammlung der Betriebswirtschaft - - Formelsammlug der Betrebswrtschaft Ee Überscht über de wchtgste mathematsche Kozepte ud Recheverfahre Rechugswese, Cotrollg ud Betrebswrtschaft Verso 0.00 Harry Zgel 99-006, EMal: HZgel@aol.com, Iteret:

Mehr

Stoffwerte von Flüssigkeiten. Oberflächenspannung (PHYWE)

Stoffwerte von Flüssigkeiten. Oberflächenspannung (PHYWE) Stoffwerte vo Flüssgkete Oberflächespaug (PHYWE) Zel des Versuches st, de Platzbedarf ees Ethaol-Moleküls der Grezfläche zwsche Dapfphase ud Lösug aus der Kozetratosabhäggket der Oberflächespaug be wässrge

Mehr

Herbstworkshop Flexible Regressionsmodelle Magdeburg, 22./23. November 2007. der LMS-Methode

Herbstworkshop Flexible Regressionsmodelle Magdeburg, 22./23. November 2007. der LMS-Methode Herbsworkshop Flexble Regressonsmodelle Magdebrg./3. November 007 Schäzng von en- nd zwedmensonalen Perzenlkrven m der LMS-Mehode Segfred Kropf 1 Brge Peers 1 Karl-Oo Dbowy 1 Ins f. Bomere. Medznsche Informak

Mehr

Energieeffizienz-Betrachtung einer Anlage durch Energiemessung

Energieeffizienz-Betrachtung einer Anlage durch Energiemessung Applcaon Noe DK9221-1109-0007 Messechnk Keywords Energemessung Lesungsfakor Energeanalyse EherCAT-Klemme Busklemme KL3403 EL3403 Energeeffzenz-Berachung ener Anlage durch Energemessung Deses Applcaon Example

Mehr

Vorlesung: "Grundlagen ingenieurwissenschaftlichen Arbeitens (GIA)"

Vorlesung: Grundlagen ingenieurwissenschaftlichen Arbeitens (GIA) 6 Zuverlägke und Produklebenzyklu 6. Genaugke und Fehlerverhalen 6.2 Technche Zuverlägke 6.2. Klafkaon von Aufällen 6.2.2 Aufall- und Überlebenwahrchenlchke 6.2.3 Fehlerrae 6.3 Zuverlägke von Hardware-Funkonen

Mehr

Formelblatt Finanzmanagement

Formelblatt Finanzmanagement www.bwl-olie.ch Thema Dokumear Theorie im Buch "Iegrale Beriebswirschafslehre" Formel Fiazmaageme Checklise Teil: D Fiazmaageme Kapiel: verschiedee Formelbla Fiazmaageme Bilazsrukur Eigekapial Eigefia

Mehr

BANK ONLINE Zentraler Bankdaten-Transfer

BANK ONLINE Zentraler Bankdaten-Transfer BANK ONLINE Zetraler Bakdate-Trasfer Ihaltsverzechs 1 Lestugsbeschrebug... 3 2 Itegrato das Ageda-System... 4 3 Hghlghts... 5 3.1 Efachste Aktverug... 5 3.2 Abruf vo Kotoauszüge... 6 3.3 Bakeübergrefede

Mehr

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004 Stattk fü Igeeue (IAM) Veo 74 Vaazaalye Mt de efache Vaazaalye (ANOVA Aaly of Vaace) wd de Hypothee gepüft, ob de Mttelwete zwee ode mehee Stchpobe detch d, de au omaletelte Gudgeamthete gezoge wede, de

Mehr

Berechnung der Kriech- und Schwindwerte

Berechnung der Kriech- und Schwindwerte Berehnung der Kreh- und Shwndwere Grundlagen Beon zeg bere uner üblhen Gebrauhbedngungen en augepräge zeabhängge Verhalen wodurh Dehnungen aufreen können de en Mehrfahe der elahen Dehnung beragen: laabhängge

Mehr

Wie gelingt es den Buchmachern (oder FdJ 1 ) IMMER zu gewinnen

Wie gelingt es den Buchmachern (oder FdJ 1 ) IMMER zu gewinnen We gelgt es de Buchacher (oder FdJ IMMER zu gewe Eletug Schrebwese ud Varable Erwarteter Gew des Buchachers 4 4 De Stratege der Buchacher 5 4 Der ehrlche Buchacher 6 4 "real lfe" Buchacher6 4 La FdJ 9

Mehr

D. Rentenrechnungen 4 Progressive Renten 4.1 Geometrisch fortschreitende Renten. Formel: D. Rentenrechnung 3. Progressive Renten.

D. Rentenrechnungen 4 Progressive Renten 4.1 Geometrisch fortschreitende Renten. Formel: D. Rentenrechnung 3. Progressive Renten. Fazmathematk Thema: Reterechuge Dr. Alfred Brk Fazmathematk A Eführug B Fazmathematsche Grudlage C Zsrechuge D Reterechuge Systematserug vo Retevorgäge 2 Edlche Rete 3 Ewge Rete 4 Progressve Rete 5 Aufgabe

Mehr

PREISE** P. P. IN EURO ZZGL. SERVICEENTGELT*

PREISE** P. P. IN EURO ZZGL. SERVICEENTGELT* g g g j [ q.- v rße rezr de ere se erege rbse re Ide gr e gg d der ge v b g Ü 50 be g bs 0.0.05 eres ge I ee b 0.0. I erege rbse re 0.0. I erege rbse re 00 0. 0.0. 05.0. I I Ide 0.0. I rg ee 00 0.0. I

Mehr

Das FSB Geldkonto. Einfache Abwicklung und attraktive Verzinsung. +++ Verzinsung aktuell bis zu 3,7% p.a. +++

Das FSB Geldkonto. Einfache Abwicklung und attraktive Verzinsung. +++ Verzinsung aktuell bis zu 3,7% p.a. +++ Das FSB Geldkoto Eifache Abwicklug ud attraktive Verzisug +++ Verzisug aktuell bis zu 3,7% p.a. +++ zuverlässig servicestark bequem Kompeteter Parter für Ihr Wertpapiergeschäft Die FodsServiceBak zählt

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

mit der Anfangsbedingung y(a) = y0

mit der Anfangsbedingung y(a) = y0 Numersce Lösung von Dfferentalglecungen De n den naturwssenscaftlc-tecnscen Anwendungen auftretenden Dfferentalglecungen snd n den wengsten Fällen eplzt lösbar. Man st desalb auf Näerungsverfaren angewesen.

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Formelsammlug rtschaftsmathemat / Statst Formelsammlug für de Lehrverastaltug rtschaftsmathemat / Statst zugelasse für de Klausure zur rtschaftsmathemat ud Statst de Studegäge der Techsche Betrebswrtschaft

Mehr

Dichteprognose autoregressiver Zeitreihen

Dichteprognose autoregressiver Zeitreihen Dcherogose aoregressver erehe Jürge Jacobs Falä - Umwel d Tech ehaa Uversä üebrg halsverzechs Eleg d Themeabgrezg Uvarae aoregressve erehemodelle 3 3 Veor-aoregressve erehemodelle 7 4 Progose 3 5 Awedgsbesel

Mehr

Quantitative Geochemie mit Excel

Quantitative Geochemie mit Excel Kompaktkurs Quattatve Geocheme mt Excel Vom Meßwert zur petrogeetsche Modellerug geochemscher Date. ag: DAENAUFBEEIUNG Dateegabe ud Normerug Statstsche Kegröße Auswertug ees ICP-MS Datesatzes (Stöchometrsche

Mehr

IV. VERSICHERUNGSUNTERNEHMUNG

IV. VERSICHERUNGSUNTERNEHMUNG IV. VERSICHERUNGSUNTERNEHMUNG Vers.-Oek.Tel-I-Ka-IV--5 Dr. Rurecht Wtzel; HS 09.0.009 IV. VERSICHERUNGSUNTERNEHMUNG IV. VERSICHERUNGSUNTERNEHMUNG. Überblck ) I desem Katel wede wr us der Aalyse der Verscherugsuterehmug

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,

Mehr

n 4 Dr. A. Brink Dr. A. Brink 1

n 4 Dr. A. Brink Dr. A. Brink 1 E. Tlgugsechuge Aufgabe E/3 E Ked ee chuldsue vo. s übe Jahe ach de Mehode de quaalswese-achschüssge Auäelgug zuückzuzahle. Eel e de Jahesauä sowe de Rückzahlugsae ud eselle e ee Fazpla fü ee Jaheszssaz

Mehr

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Lorez' sche Kozetratoskurve ud Dspartätsdex ach G Übuge Aufgabe Lösuge www.f-lere.de Begrff Lorez'

Mehr

1 Klassische Finanzmathematik

1 Klassische Finanzmathematik Klasssche Fazahea. Efache Verzsug Aufzse (auf K ) Abzse (auf K ) ( Dsoere) K K ( ) + K K + epu; a auch gebrochee ahl se Ewer oalche vorschüssge Ree ach Jahr Ewer oalche achschüssge Ree ach Jahr ( + 6,

Mehr

Kapitel 5: Koordination der Personalführung im Führungssystem

Kapitel 5: Koordination der Personalführung im Führungssystem Kapel 5: Koordnaon der Personalführung m Führungssysem 5.1 Bezehungen zwschen Conrollng und Personalführung Kapel 5 5.2 Koordnaon der Personalführung m dem Informaonssysem 5.3 Koordnaon der Personalführung

Mehr

Gliederung: A. Vermögensverwaltung I. Gegenstand II. Ablauf III. Kosten. Jan Lenkeit

Gliederung: A. Vermögensverwaltung I. Gegenstand II. Ablauf III. Kosten. Jan Lenkeit Glederug: A. Vermögesverwaltug I. Gegestad II. Ablauf III. Koste B. Grudzüge der Kaptalmarkttheore I. Portefeulletheore 1. Darstellug. Krtk II. Captal Asset Prcg Model (CAPM) 1. Darstellug. Krtk III. Arbtrage

Mehr

Skript zur Vorlesung. Steuerplanung I

Skript zur Vorlesung. Steuerplanung I Skrp zur Vorleug Seuerplug I WS 03/04 homepge.u-uebge.de/ude/eb.chz rgeklog Seuerplug I - Weremeer 03/04 Ihlverzech rgebl 5 Echedugbezogee Begrüdug euerlcher Plug 5 rgebl 2: 3 hlugoreere Beeuerug 3 rgebl

Mehr

3 Leistungsbarwerte und Prämien

3 Leistungsbarwerte und Prämien Leisugsbarwere ud Prmie 23 3 Leisugsbarwere ud Prmie Zie: Rechemehode zur Ermiug der Barwere ud Prmie bei übiche Produe der Lebesversicherug. 3. Eemeare Barwere ud Kommuaioszahe Barwer eier Erebesfaeisug

Mehr

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7 Strtte Auffassue zu Aforderusrofl ud Betrebsart be der Neufassu der IEC 6508-3 ud -7 Vortra a der TU Brauschwe m November 205 vo Wolfa Ehreberer, Hochschule Fulda 7..205 Ehreberer, IEC 6508, Strtte Auffassue...

Mehr

wissenschaftliche Einrichtung elektronik

wissenschaftliche Einrichtung elektronik wssenscaftlce Enrctung elektronk Oberscwngungen, Begrffe und Defntonen Prof.. Burgolte Labor Elektromagnetsce Verträglcket Facberec ngeneurwssenscaften Begrff Störgröße (dsturbance) Störfestgket (mmunty)

Mehr