Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Größe: px
Ab Seite anzeigen:

Download "Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)"

Transkript

1 WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München

2 Mathematische und notationelle Grundlagen Mengen Relationen und Abbildungen Aussagen- und Prädikatenlogik Beweismethoden Wachstum von Funktionen 2

3 Seien A 1, A 2,..., A n Mengen. Eine Relation R über A 1, A 2,..., A n ist eine Teilmenge n R A 1 A 2 A n i=1 Wenn n = 2 dann sprechen wir von einer binären Relation. Wir schreiben oft arb statt a, b R. Beispiel: Die Relation < über den natürlichen Zahlen: R = 1,2, 1,3, 1,4,, 2,3, 2,4, A i 3

4 Grafische Darstellung einer binären Relation R A B: Ein Punkt (Knoten) für jedes Element von A und für jedes Element von B; Ein Pfeil (Kante) von a nach b gdw. arb. Grafische Darstellung einer binären Relation R A A: Ein Knoten für jedes Element von A; Eine Kante von a nach b gdw. arb. 4

5 Eine binäre Relation R A A ist reflexiv, wenn für alle a A gilt: a, a R; symmetrisch, wenn für alle a, b A gilt: wenn a, b R, dann b, a R; asymmetrisch, wenn für alle a, b A gilt: wenn a, b R, dann b, a R; antisymmetrisch, wenn für alle a, b A gilt: wenn a, b R und b, a R, dann a = b; transitiv, wenn für alle a, b, c A gilt: wenn a, b R und b, c R, dann a, c R. 5

6 Beispiele von binären Relationen: < N N: nicht reflexiv, asymmetrisch, transitiv; N N: reflexiv, antisymmetrisch, transitiv; N N: nicht reflexiv, symmetrisch, nicht transitiv; = N N: reflexiv, symmetrisch, transitiv; 3 N N mit a 3 b gdw. a = b mod 3: reflexiv, symmetrisch,transitiv. 6

7 Äquivalenzrelationen: Ein Relation R M M, die reflexiv, transitiv und symmetrisch ist, wird Äquivalenzrelation genannt. Definiert die Ähnlichkeit gewisser Eigenschaften. Die Teilmenge [a] = {b M (a, b) R} der Menge M wird Äquivalenzklasse von a der Äquivalenzrelation genannt: Menge der Objekte, die äquivalent zu a sind. Die Äquivalenzklassen bilden eine Partition von M: Entweder a b = oder a = [b]; Für alle a M gibt es b M mit a [b]. 7

8 Äquivalenzrelationen: Beispiel: Die Relation hat dieselben Eltern wie auf M ist reflexiv (jeder Mensch hat dieselben Eltern wie er selbst), symmetrisch (wenn a dieselben Eltern hat wie b, dann hat auch b dieselben Eltern wie a) und transitiv (wenn a dieselben Eltern hat wie b und b dieselben Eltern hat wie c, dann hat auch a dieselben Eltern wie c). Die Äquivalenzklassen dieser Relation auf der Menge der Menschen sind die Geschwister. 8

9 Äquivalenzrelationen: Beispiel: Sei M die Menge der Studierenden in der Vorlesung Diskrete Strukturen. Die Relation gehen in dieselbe Übungsgruppe ist dann eine Äquivalenzrelation. Die Äquivalenzklasse eines Studierenden ist seine Übungsgruppe. 9

10 Ordnungen: Eine reflexive, antisymmetrische und transitive Relation heißt partielle Ordnung. Andere Namen für eine partielle Ordnung: Halbordnung, partially ordered set, poset. Eine partielle Ordnung heißt totale Ordnung, falls alle Elemente miteinander vergleichbar sind, d.h. für zwei Elemente a, b der Grundmenge ist arb oder bra erfüllt. 10

11 Ordnungen: Beispiele: Die Relation über den natürlichen Zahlen ist eine totale Ordnung. M sei eine beliebige Menge und 2 M ihre Potenzmenge. Dann ist die Relation auf 2 M eine partielle Ordnung. 11

12 Ordnungen: Beispiele: Sei R = a, b N N b teilt a}. Die Relation R ist eine partielle Ordnung. M sei eine Menge von Schülern, die eine Reihe von Aufgaben zu lösen haben. Für zwei Schüler x, y sei x y definiert durch y hat alle Aufgaben, die x gelöst hat, auch gelöst. Diese Relation ist noch keine partielle Ordnung (man nennt sie eine Quasiordnung sie ist reflexiv und transitiv). 12

13 Ordnungen: Die graphische Darstellung ohne reflexive Kanten (von einem Knoten zu sich selbst) und ohne transitive Kanten (Kanten von a nach b für die es ein c gibt mit Kanten von a nach c und c nach b) heißt Hasse-Diagramm von R. 13

14 Urbild und Bild einer Relation: Definition: Sei R A B eine binäre Relation. Dann heißt a A es gibt b B mit a, b R} das Urbild von R und b B es gibt a A mit a, b R} das Bild der Relation R. 14

15 Inverse einer Relation: Definition: Sei R A B eine binäre Relation. Dann heißt R 1 : = b, a B A a, b R} die inverse Relation zu R. 15

16 Relationenprodukt: Definition: Seien R A B und T B C binäre Relationen. Dann heißt R T = a, c A C es gibt b B mit a, b R und b, c T} das Produkt oder Join der Relationen R und T. Es wird oft auch als RT bezeichnet. 16

17 Relationenprodukt: Das Relationenprodukt ist assoziativ und distributiv über. Das Relationenprodukt ist jedoch nicht distributiv über : Sei R = a, b, S = a, c, T = {(b, d), (c, d)}. R S T = T = R T S T = a, d {(a, d)} = {(a, d)} 17

18 Komposition von Relationen: Definition: Sei R A A eine binäre Relation. Dann heißt R 0 : = a, a a A} (=: Id A Identität ) R n+1 : = R n R für n N 0. Beispiel: Sei Kind die Relation {(k, v) k ist Kind von v} Dann bezeichnet Kind 2 die Enkel-Relation. 18

19 Abschluss von Relationen: Definition: Sei R A A eine binäre Relation. Der reflexive (symmetrische, transitive) Abschluss (auch als reflexive, symmetrische bzw. transitive Hülle bezeichnet) von R ist die kleinste (im mengentheoretischen Sinn) Relation, die R enthält und reflexiv (symmetrisch, transitiv) ist. 19

20 Abschluss von Relationen: Die transitive Hülle von R wird gewöhnlich mit R + bezeichnet. Die reflexive transitive Hülle von R wird gewöhnlich mit R bezeichnet. 20

21 Reflexive Hülle von R A A: Es gilt: R refl = R Id A. Beispiele: Die reflexive Hülle von < ist. Die reflexive Hülle von ist selbst. Allgemein: die reflexive Hülle einer reflexiven Relation ist die Relation selbst. 21

22 Transitive Hülle von R A A: Es gilt R + = i=1 R i und wenn A = n, dann sogar R + = i=1 n 1 R i. Transitive und reflexive Hülle von R A A: Es gilt: R = R + Id A = i=0 R i und wenn A = n, dann sogar R = i=0 n 1 R i. Wir werden diese Aussagen später in der Vorlesung sorgfältig beweisen. 22

23 Transitive Hülle: Beispiele: Sei R = x, y y = x + 1 und x, y N} die Nachfolgerelation auf den natürlichen Zahlen. Dann gilt R + = < und R =. Die transitive Hülle der Relation x kennt y verbindet (vermutlich) alle Menschen auf der Welt direkt. Die transitive Hülle von x ist mit y durch eine Straße verbunden verbindet praktisch alle Orte eines Kontinents oder einer Insel miteinander. 23

24 Definition: Eine Relation R A B ist eine Funktion von A nach B, wenn es für alle a A genau ein Element b B mit arb gibt. f: A B bezeichnet, dass f eine Funktion von A nach B ist. Für jedes a A bezeichnet f(a) das einzige Element von B mit a, f a f. 24

25 Graphische Darstellung von Funktionen: f a b = f(a) A B 25

26 Definition: Eine n-stellige Operation über der Menge A ist eine Funktion von der Menge der geordneten n-tupel von Elementen von A auf A. Mengenvereinigung und Durchschnitt ( und ) sind binäre Operationen auf der Potenzmenge einer Menge. 26

27 Konstruktion von Funktionsoperatoren: Eine beliebige Operation ( dot ) über B kann auf Funktionen f: A B erweitert werden. Sei :B B B eine beliebige binäre Operation. Seien f, g: A B Funktionen. Wir definieren f g : A B a f a g a 27

28 Konstruktion von Funktionsoperatoren: Beispiel: Die Addition + und Multiplikation über R werden auf Funktionen f, g: R R erweitert: f + g : R R mit f + g x = f x + g(x), f g : R R mit f g x = f x g(x). 28

29 Komposition von Funktionen: Die Operation ( ) setzt aus zwei Funktionen g: A B und f: B C eine neue Funktion zusammen, indem f auf das Resultat von g angewendet wird. Wir schreiben: f g : A C definiert durch f g a = f(g a ). Da g a B, ist f(g a ) definiert und Element von C. Der Operator ist nicht kommutativ; im Allgemeinen gilt: f g g f. 29

30 Graphische Darstellung der Komposition: f g a a g g g(a) f f f(g(a)) A B C 30

31 Bilder und Urbilder von Funktionen: f(a) wird als Bild von a unter f bezeichnet. Sei f: A B und A A. Dann ist das Bild von A unter f die Menge aller Bilder (unter f) der Elemente von A : f A = {f a a A }. 31

32 Bilder und Urbilder von Funktionen: Das Urbild f 1 (b) eines Elements b B ist definiert als f 1 (b) = {a A f(a) = b}. Für eine Menge B B gilt: f 1 (B ) = b B f 1 (b). 32

33 Graphische Darstellung von Funktionen: f 1 a = f 1 (b) f b = f(a) A B 33

34 Eine Funktion f: A B heißt injektiv, wenn alle Elemente aus A unterschiedliche Bilder haben, wenn also für alle b B gilt: f 1 (b) 1. surjektiv, wenn jedes Element aus B ein Bild von mindestens einem Element aus A ist, wenn also für alle b B gilt: f 1 b 1. 34

35 Grafische Darstellung der Injektivität/Surjektivität: a 1 a 1 a 1 b 2 b 2 b 2 c 3 c 3 c 3 d a b c d 4 d 5 e e e 4 5 a b c d d 1: injektiv, surjektiv 2: surjektiv, injektiv 3. injektiv, surjektiv 4. Keine Funktion 5. injektiv, surjektiv

36 Bijektivität: Eine Funktion f: A B ist bijektiv, oder reversibel, oder invertierbar, genau dann, wenn sie injektiv und surjektiv ist, wenn also für alle b B gilt: f 1 (b) = 1. Eine Bijektion f: A B hat eine eindeutige inverse Funktion f 1 : B A definiert durch f 1 f = Id A, wobei Id A die Identitäts- Funktion bezeichnet. 36

37 Einige spezielle Funktionen: In der diskreten Mathematik haben wir es häufig mit den folgenden Funktionen über den reellen Zahlen zu tun. Die floor Funktion ( untere Gaußklammer ) : R Z, wobei x ( floor of x ) die größte ganze Zahl x bezeichnet, also x = max( i Z i x ). Die ceiling Funktion ( obere Gaußklammer ) : R Z, wobei x ( ceiling of x ) die kleinste ganze Zahl x bezeichnet, also x = min( i Z i x ). 37

38 Einige spezielle Funktionen: Reelle Zahlen fall to their floor oder rise to their ceiling. Wenn x Z: x x und x x. Wenn x Z: x = x = x = x = x. 38

39 Unendliche Kardinalität: Unter Verwendung dessen, was wir im letzten Kapitel über Funktionen gelernt haben, können wir nun den Begriff der Kardinalität (sogar für unendliche Mengen) formalisieren. Wir können zeigen, dass unendliche Mengen in unterschiedlichen Größen der Unendlichkeit erscheinen. 39

40 Definition: Zwei (möglicherweise unendliche) Mengen A und B, haben die gleiche Kardinalität ( A = B ) genau dann, wenn eine Bijektion (bijektive Funktion) von A nach B existiert. Man sagt auch, dass A die gleiche Mächtigkeit wie B hat. Bemerkung: Sind A und B endlich, dann existiert eine solche Funktion genau dann, wenn A und B dieselbe Anzahl von Elementen haben. 40

41 Definition: Eine Menge B ist mindestens so mächtig wie A, wenn es eine injektive Abbildung von A in B gibt. B ist mächtiger als A, wenn es eine injektive Abbildung von A in B, aber keine injektive Abbildung von B in A gibt. Es gilt (Satz von Schröder-Bernstein): Wenn A mindestens so mächtig wie B ist und B mindestens so mächtig wie A, dann haben A und B die gleiche Mächtigkeit. 41

42 Abzählbarkeit vs. Überabzählbarkeit: Eine beliebige Menge S ist abzählbar, wenn S endlich ist oder S = N. Andernfalls ist S überabzählbar. Intuitiv: eine Menge ist abzählbar, wenn ihre Elemente aufgelistet werden können. Dagegen kann keine unendliche Liste alle Elemente einer überabzählbaren Menge enthalten. 42

43 Beispiele von abzählbaren Mengen: Theorem: Die Menge Z ist abzählbar. Beweis: Definiere f: Z N durch f(i) = 2i + 1 falls i 0, 2i falls i < 0. Da f bijektiv ist, ist Z abzählbar. 43

44 Beispiele von abzählbaren Mengen: Theorem: Sei A eine endliche Menge. Die Menge A = i=1 A i ist abzählbar. Beweisidee: A ist die Menge aller endlichen Tupel von Elementen aus A. Um sie aufzulisten, liste zuerst die Elementen von A auf, dann die von A 2, A 3 etc. 44

45 Beispiel überabzählbarer Mengen: Das Intervall 0,1 {r R 0 r 1} ist überabzählbar. Beweis durch Diagonalisierung. Allgemeiner gilt für jede beliebige Menge M: die Potenzmenge P(M) von M ist mächtiger als M. Georg Cantor

46 Praktische Anwendungen in der Informatik: Beschreibung von Graphen (siehe Kapitel 4) Formale Beschreibung des Web Jeder Knoten entspricht einer Website Eine Kante entspricht einem Link Darstellung von Datenabhängigkeiten (z.b. Parallelisierung, verteilte Systeme) Formale Beschreibung von Priorisierung (z.b. bei Abstimmungen) Modellierung von Beziehungen Terminierungsbeweise von Algorithmen 46

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Dozentin: Wiebke Petersen 2. Foliensatz Wiebke Petersen math. Grundlagen 25 n-tupel und Cartesisches Produkt Mengen sind ungeordnet,

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Vorlesung. Funktionen/Abbildungen

Vorlesung. Funktionen/Abbildungen Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Topologische Räume und stetige Abbildungen Teil 2

Topologische Räume und stetige Abbildungen Teil 2 TU Dortmund Mathematik Fakultät Proseminar zur Linearen Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Teil 2 Anna Kwasniok Dozent: Prof. Dr. L. Schwachhöfer Vorstellung des

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Mathematik 1 für Informatik Inhalt Grundbegrie

Mathematik 1 für Informatik Inhalt Grundbegrie Mathematik 1 für Informatik Inhalt Grundbegrie Mengen, speziell Zahlenmengen Aussagenlogik, Beweistechniken Funktionen, Relationen Kombinatorik Abzählverfahren Binomialkoezienten Komplexität von Algorithmen

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Ordnungsrelationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Ordnungsrelationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Ordnungsrelationen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Geordnete Mengen Eine Relation R A A heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv,

Mehr

Mengenlehre gibt es seit den achtziger Jahren des 19. Jahrhunderts. Sie wurde von

Mengenlehre gibt es seit den achtziger Jahren des 19. Jahrhunderts. Sie wurde von Grundbegriffe der Mengenlehre 2 Mengenlehre gibt es seit den achtziger Jahren des 19. Jahrhunderts. Sie wurde von Georg Cantor begründet. Der Begriffsapparat der Mengenlehre hat sich als so nützlich für

Mehr

6. Induktives Beweisen - Themenübersicht

6. Induktives Beweisen - Themenübersicht 6. Induktives Beweisen - Themenübersicht Ordnungsrelationen Partielle Ordnungen Quasiordnungen Totale Ordnungen Striktordnungen Ordnungen und Teilstrukturen Noethersche Induktion Anwendung: Terminierungsbeweise

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung

Mehr

Mengen (siehe Teschl/Teschl 1.2)

Mengen (siehe Teschl/Teschl 1.2) Mengen (siehe Teschl/Teschl 1.2) Denition nach Georg Cantor (1895): Eine Menge ist eine Zusammenfassung von bestimmten und wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens zu einem

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Susanna Pohl Vorkurs Mathematik TU Dortmund 10.03.2015 Mengen und Relationen Mengen Motivation Beschreibung von Mengen Mengenoperationen

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige

Mehr

Kapitel 3. Natürliche Zahlen und vollständige Induktion

Kapitel 3. Natürliche Zahlen und vollständige Induktion Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX Graphentheorie 1 Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Graphentheorie 1 Slide 1/19 Agenda Hausaufgaben Graph-Äquivalenz SetlX Diskrete Strukturen Graphentheorie

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

3 ist eine Primzahl zugeordnet, während der Zahl 4 die Eigenschaft

3 ist eine Primzahl zugeordnet, während der Zahl 4 die Eigenschaft Kapitel 7 Relationen Ω bezeichne die Menge aller Aussagen. 7.1 Grundbegriffe 7.1.1 Definition. Sei n: N, und X 1,...,X n Datentypen. Dann heißt jede Konstruktion P vom Typ ein n-stelliges Prädikat. P :

Mehr

Was bisher geschah. Darstellung von Sprachen Ausführen von Berechnungen

Was bisher geschah. Darstellung von Sprachen Ausführen von Berechnungen Was bisher geschah Alphabet, Wort, Sprache Operationen auf Wörtern: Spiegelung R, Verkettung Palindrome Relationen zwischen Wörtern: Präfix, Infix, Postfix Wortersetzungssystem S: Regeln (l r), Ersetzungsschritt

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

2. Grundlegende Strukturen 2.1 Wertebereiche beschrieben durch Mengen

2. Grundlegende Strukturen 2.1 Wertebereiche beschrieben durch Mengen 2. Grundlegende Strukturen 2.1 Wertebereiche beschrieben durch Mengen In der Modellierung von Systemen, Aufgaben, Lösungen kommen Objekte unterschiedlicher Art und Zusammensetzung vor. Für Teile des Modells

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

Naive Mengenlehre. ABER: Was ist eine Menge?

Naive Mengenlehre. ABER: Was ist eine Menge? Naive Mengenlehre Im Wörterbuch kann man unter dem Begriff Menge etwa die folgenden Bestimmungen finden : Ansammlung, Konglomerat, Haufen, Klasse, Quantität, Bündel,... usf. Die Mengenlehre ist der (gegenwärtig)

Mehr

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper 4 Einige Grundstrukturen Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper Abbildungen Seien X und Y Mengen. Eine (einstellige) Abbildung f : X Y ordnet jedem x X genau ein Element

Mehr

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich Kapitel 3: Abbildungen Seite 32 Kap 3: Abbildungen Kap. 3.1: Abbildungen (Funktion), Bild und Urbild Der Begriff der Abbildung ist wie auch der Begriff der Menge von fundamentaler Bedeutung für die Mathematik.

Mehr

Abbildungseigenschaften

Abbildungseigenschaften Abbildungseigenschaften.5. Injektivität Injektivität (injektiv, linkseindeutig) ist eine Eigenschaft einer mathematischen Funktion. Sie bedeutet, dass jedes Element der Zielmenge höchstens einmal als Funktionswert

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK 1. ALPHABETE, WÖRTER, SPRACHEN. Prof. Dr. Klaus Ambos-Spies. Sommersemester 2011

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK 1. ALPHABETE, WÖRTER, SPRACHEN. Prof. Dr. Klaus Ambos-Spies. Sommersemester 2011 EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 1. ALPHABETE, WÖRTER, SPRACHEN Theoretische Informatik (SoSe 2011) 1. Alphabete, Wörter, Sprachen 1 / 25 Vorbemerkung:

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

4. Relationen. Beschreibung einer binären Relation

4. Relationen. Beschreibung einer binären Relation 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mathematische Sprache und naive Mengenlehre Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johann-von-Neumann-Haus Fachschaft Menge aller Studenten eines Institutes

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

Mathematik für Informatiker 1 Tutorium

Mathematik für Informatiker 1 Tutorium Mathematik für Informatiker 1 Tutorium Malte Isberner 9.1.2014 M. Isberner MafI1-Tutorium 9.1.2014 1 / 12 Thema heute Thema heute: Verbände M. Isberner MafI1-Tutorium 9.1.2014 2 / 12 Verbände Was ist ein

Mehr

Vorkurs für. Studierende in Mathematik und Physik. Einführung in Kryptographie Kurzskript 2015

Vorkurs für. Studierende in Mathematik und Physik. Einführung in Kryptographie Kurzskript 2015 Vorkurs für Studierende in Mathematik und Physik Einführung in Kryptographie Kurzskript 2015 Felix Fontein Institut für Mathematik Universität Zürich Winterthurerstrasse 190 8057 Zürich 11. September 2015

Mehr

Diskrete Mathematik. Marcel Erné Fakultät für Mathematik und Physik

Diskrete Mathematik. Marcel Erné Fakultät für Mathematik und Physik Diskrete Mathematik Marcel Erné Fakultät für Mathematik und Physik Vorlesung für Studierende des Bachelor- und Master-Studienganges Mathematik Sommersemester 2011 0. Natürliche Zahlen und endliche Mengen

Mehr

4 Elementare Mengentheorie

4 Elementare Mengentheorie 4 Elementare Mengentheorie 4 Elementare Mengentheorie 4.1 Mengen [ Partee 3-11, McCawley 135-140, Chierchia 529-531 ] Die Mengentheorie ist entwickelt worden, um eine asis für den ufbau der gesamten Mathematik

Mehr

Relationen und Partitionen

Relationen und Partitionen Relationen und Partitionen Ein Vortrag im Rahmen des mathematischen Vorkurses der Fachschaft MathPhys von Fabian Grünig Fragen, Anmerkungen und Korrekturen an fabian@mathphys.fsk.uni-heidelberg.de Inhaltsverzeichnis

Mehr

Logik, Mengen und Abbildungen

Logik, Mengen und Abbildungen Kapitel 1 Logik, Mengen und bbildungen Josef Leydold Mathematik für VW WS 2016/17 1 Logik, Mengen und bbildungen 1 / 26 ussage Um Mathematik betreiben zu können, sind ein paar Grundkenntnisse der mathematischen

Mehr

Einführung in Sprache und Grundbegriffe der Mathematik

Einführung in Sprache und Grundbegriffe der Mathematik Einführung in Sprache und Grundbegriffe der Mathematik Markus Junker Mathematisches Institut Albert Ludwigs Universität Freiburg Wintersemester 2010/11, Version vom 22. Dezember 2010 Vorbemerkung Wozu

Mehr

Übungen zu Logik und Künstliche Intelligenz Blatt 8

Übungen zu Logik und Künstliche Intelligenz Blatt 8 Heilbronn, den 14.5.2010 Prof. Dr. V. Stahl WS 10/11 Übungen zu Logik und Künstliche Intelligenz Blatt 8 Aufgabe 1. Überlegen Sie, wie man folgende Relationen R grafisch darstellen könnte und entscheiden

Mehr

Wir starten mit der Entwicklung einer algebraischen Struktur, welche u.a. gut zur Kennzeichnung von Geometrien geeignet ist.

Wir starten mit der Entwicklung einer algebraischen Struktur, welche u.a. gut zur Kennzeichnung von Geometrien geeignet ist. 2 Verbände Wir starten mit der Entwicklung einer algebraischen Struktur, welche u.a. gut zur Kennzeichnung von Geometrien geeignet ist. 2.1 Verbandsdefinition. Beispiele 2.1.1 Definition (Verband): Sei

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Centrum für Informations- und Sprachverarbeitung (CIS) 10. Juni 2014 Table of Contents 1 2 Äquivalenz Der Begriff der Äquivalenz verallgemeinert den Begriff der Gleichheit. Er beinhaltet in einem zu präzisierenden

Mehr

5. Gruppen, Ringe, Körper

5. Gruppen, Ringe, Körper 5. Gruppen, Ringe, Körper 5.1. Gruppen Die Gruppentheorie, als mathematische Disziplin im 19. Jahrhundert entstanden, ist ein Wegbereiter der modernen Mathematik. Beispielsweise folgt die Gruppe, die aus

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 1: Organisatorisches, Inhalte der Vorlesung und Nutzentheorie

Vorlesung: Nicht-kooperative Spieltheorie. Teil 1: Organisatorisches, Inhalte der Vorlesung und Nutzentheorie Vorlesung: Nicht-kooperative Spieltheorie Teil 1: Organisatorisches, Inhalte der Vorlesung Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 / 15 Organisatorisches

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

2. Vorlesung. Die Theorie der schwarz-weissen Ketten.

2. Vorlesung. Die Theorie der schwarz-weissen Ketten. 2. Vorlesung. Die Theorie der schwarz-weissen Ketten. Die Theorie der schwarzen Steinchen haben wir jetzt halbwegs vertanden. Statt mit schwarzen Steinen wie die Griechen, wollen wir jetzt mit schwarzen

Mehr

Reelle Zahlen, Gleichungen und Ungleichungen

Reelle Zahlen, Gleichungen und Ungleichungen 9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen

Mehr

2.2 der Größenbegriff

2.2 der Größenbegriff (mit Äquivalenzrelationen) Maximilian Geier Institut für Mathematik, Landau Universität Koblenz-Landau Zu Größen gelangt man ausgehend von realen Gegenständen durch einen Abstraktionsvorgang. Man geht

Mehr

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch 1.2 Mengenlehre Grundlagen der Mathematik 1 1.2 Mengenlehre Definition: Menge, Element, Variablenraum Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert

Mehr

Beispiele für Relationen

Beispiele für Relationen Text Relationen 2 Beispiele für Relationen eine Person X ist Mutter von einer Person Y eine Person X ist verheiratet mit einer Person Y eine Person X wohnt am gleichen Ort wie eine Person Y eine Person

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN. Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra

TECHNISCHE UNIVERSITÄT DRESDEN. Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra Halbgruppen binärer Relationen auf einer 3-elementigen Menge Arbeit im Rahmen des

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 01/13 Hochschule Augsburg Mathematik : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift Theoretische Informatik Mitschrift 2. Grammatiken und die Chomsky-Hierarchie Beispiel: Syntaxdefinition in BNF :=

Mehr

5 Relationen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti

5 Relationen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Allgemeine Definition einer Relation Eine n-stellige Relation

Mehr

Analysis 1. Delio Mugnolo. delio.mugnolo@uni-ulm.de. (Version von 18. Dezember 2012)

Analysis 1. Delio Mugnolo. delio.mugnolo@uni-ulm.de. (Version von 18. Dezember 2012) Analysis 1 Delio Mugnolo delio.mugnolo@uni-ulm.de (Version von 18. Dezember 2012) 2 Dies ist das Skript zur Vorlesung Analysis 1, welche ich im Sommersemester 2012 an der Universität Ulm gehalten habe.

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Diskrete Mathematik. Anusch Taraz

Diskrete Mathematik. Anusch Taraz Diskrete Mathematik Anusch Taraz 15. Januar 2009 2 Inhaltsverzeichnis I Grundlagen 5 1 Mengen und Mengenoperationen................... 5 2 Vollständige Induktion......................... 7 3 Relationen

Mehr

Eigenschaften von Funktionen. Definition der Umkehrfunktion. WS 2013 Torsten Schreiber

Eigenschaften von Funktionen. Definition der Umkehrfunktion. WS 2013 Torsten Schreiber Eigenschaten von Funktionen Deinition der Umkehrunktion WS 013 Torsten Schreiber Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Eine basiert au einem Produkt und stellt die vorhandenen Komponenten

Mehr

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Aufgabe 1: Es sei D die Menge aller rationalen Dedekind-Mengen, also D := { M 2 Q M is Dedekind-Menge }. Auf der Menge D definieren wir

Mehr

Die Sprache der Mathematik

Die Sprache der Mathematik Die Sprache der Mathematik Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Diese Lehrveranstaltung...... ist Pflicht für alle Studenten der Informatik und

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Mathematik an der Universität

Mathematik an der Universität Mathematik an der Universität Mathematik an der Universität ist anfänglich mit einigen Frustrationen verbunden, besonders dann, wenn der Übergang unvorbereitet erfolgt. Ein LK in Mathematik reicht als

Mehr

1 Elemente der Wahrscheinlichkeitstheorie

1 Elemente der Wahrscheinlichkeitstheorie H.-J. Starkloff Unendlichdimensionale Stochastik Kap. 01 11. Oktober 2010 1 1 Elemente der Wahrscheinlichkeitstheorie 1.1 Messbare Räume Gegeben seien eine nichtleere Menge Ω und eine Menge A von Teilmengen

Mehr

1 Algebraische Strukturen

1 Algebraische Strukturen Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen

Mehr

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Strukturelle Rekursion und Induktion

Strukturelle Rekursion und Induktion Kapitel 2 Strukturelle Rekursion und Induktion Rekursion ist eine konstruktive Technik für die Beschreibung unendlicher Mengen (und damit insbesondere für die Beschreibung unendliche Funktionen). Induktion

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen

1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen 1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen Einleitung 1 Wie der Name schon sagt sind Äquivalenzrelationen besondere Relationen. Deswegen erkläre ich hier ganz allgemein, was Relationen

Mehr

Über die algebraische Struktur physikalischer Größen

Über die algebraische Struktur physikalischer Größen Über die algebraische Struktur physikalischer Größen Alois Temmel Juni 2001 c 2001, A. Temmel Inhaltsverzeichnis 1 Physikalische Größen 3 1.1 Das internationale Einheitensystem............... 3 1.2 Die

Mehr

Modellbildung Modelle

Modellbildung Modelle Kapitel 2 Mengenlehre Informatiker bauen Systeme, die Dienste zur Verfügung stellen, die von Einzelpersonen, Firmen oder Institutionen gewünscht oder benötigt werden. Die Analyse der gewünschten Dienste

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Analysis 1. Andreas Kriegl , WS 03/04, Mo-Do , Gr.Hs.Experimentalphysik

Analysis 1. Andreas Kriegl , WS 03/04, Mo-Do , Gr.Hs.Experimentalphysik Analysis Andreas Kriegl 80377, WS 03/04, Mo-Do. 7 55-8 50, Gr.Hs.Experimentalphysik f x 0 Ε f x 0 f B f f x 0 Ε x 0 x 0 B x 0 Dieses Skriptum deckt den Inhalt der gleichnamigen Vorlesung, welche ich im

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen

6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen 6. Zahlen 6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen 6. Zahlen GM 6-1 6.1 Natürliche Zahlen Vom lieben Gott gemacht Menschenwerk:

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt.

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt. 1 1 Funktionen 1.1 Grundlegende Zahlenmengen Georg Cantor (1845-1918) hat den Begriff der Menge eingeführt. Man versteht darunter die Zusammenfassung einzelner Dinge, welche Elemente genannt werden, zu

Mehr

Euler-Venn-Diagramme

Euler-Venn-Diagramme Euler-Venn-Diagramme Mengendiagramme dienen der graphischen Veranschaulichung der Mengenlehre. 1-E1 1-E2 Mathematische Symbole c leere Menge Folge-Pfeil Äquivalenz-Pfeil Existenzquantor, x für (mindestens)

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Grundlagen der Mengenlehre

Grundlagen der Mengenlehre mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Definition 4.2. Die Menge Q der rationalen Zahlen ist definiert durch. Wir führen jetzt auf Z eine Addition und eine Multiplikation ein durch

Definition 4.2. Die Menge Q der rationalen Zahlen ist definiert durch. Wir führen jetzt auf Z eine Addition und eine Multiplikation ein durch Kapitel 4 Die rationalen Zahlen Wir haben gesehen, dass eine Gleichung a x = b mit a, b Z genau dann eine Lösung x Z besitzt, wenn a b. Zum Beispiel hat 2 x = 1 keine Lösung x Z. Wir wollen nun den Zahlbereich

Mehr