Repetitorium Mathe 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Repetitorium Mathe 1"

Transkript

1 Übungsaufgaben Skript Repetitorium Mathe 1 WS 2014/15 25./ und / Inhaltsverzeichnis 1 Bruchrechnung 2 2 Zahlsysteme 2 3 Arithmetisches und geometrisches Mittel 2 4 Wachstum 2 5 Lineare Gleichungssysteme 2 6 Bisektion 3 7 Induktion 3 8 Mengen 3 9 Polynomdivision und Hornerschema 3 10 Folgen 4 11 Reihen 4 12 Abbildungen 4 13 Umkehrfunktion 4 14 Grenzwerte von Funktionen 5 15 Stetigkeit 5 16 Kurvendiskussion 5 17 Musterlösungen Bruchrechnung Zahlsysteme Mittel Wachstum Lineare Gleichungssysteme Bisektion Induktion Mengen Polynomdivision, Horner-Schema Folgen Reihen Abbildungen Umkehrfunktionen Grenzwert von Funktionen Stetigkeit Kurvendiskussion

2 1 Bruchrechnung ( ) ( ) Zahlsysteme Schreibe 121 im 2er-, 5er- und 7er-System. Rechne im jeweiligen Zahlsystem: ( ) 6 + (4 5 2) 6 ( ) 7 ( ) 7 (13) 4 (22) 4 (424) 5 : (3) 5 = (123) 5 3 Arithmetisches und geometrisches Mittel Bestimme das arithmetische und geometrische Mittel der folgenden Werte: I.Quartal II.Quartal III.Quartal IV.Quartal Wachstum (1) Berechne zu den folgenden Datensätzen das durchschnittliche additive Wachstum und stelle es als lineare Funktion f(x) = m x + n dar. (Bei a) z. B. mit f(0) = 100, f(4) = 1300) a) Jahr Menge b) c) Jahr Menge Jahr Menge (2) Berechne zu den folgenden Datensätzen den Wachstumsfaktor und die Wachstumsrate des exponentiellen Wachstums und stelle es als Exponentialfunktion g(x) = α q x dar. a) Jahr Menge b) c) Jahr Menge Jahr Menge (3) Entscheide, ob das folgende Wachstum ehr additiv oder exponentiell ist. Jahr Menge Lineare Gleichungssysteme (1) Bestimme die Lösung des Gleichungssystems 2x y = 5 5x + 3y = 3 2

3 (2) Bestimme die Lösung des Gleichungssystems x + 3y = 4 3x ay = 3 in Abhängigkeit von dem Parameter a R. 6 Bisektion Bestimme eine Nullstelle von f(x) = x 2 1,5625 im Intervall [0, 2] mittels Intervallhalbierungsverfahren. 7 Induktion Beweise mittels vollständiger Induktion, dass: a) b) 8 Mengen n k=1 1 ( 2 k 1 = ) 2 n 3 n 3 ist durch 6 teilbar (1) Gegeben seien die Mengen A = {z Z 1 z < 3}, B = {r Q 1 r 3}, C = [0; 4] Bestimme A B, A C, C \ B (2) Sind folgende Mengen Teilmenge von A = {x R x 5} a) B 1 = {x R 2x 3 5} b) B 2 = {r R x 4 = 16} c) B 3 = {y R y ist durch 5 teilbar} (3) Zeige für beliebige Mengen A, B, C, dass (A \ B) \ C = A \ (B C) einmal mit und einmal ohne Wahrheitswertetabelle. (4) Bestimme das Supremum(sup) und das Infimum(inf) von a) M = {x R x = 1 ( 1)n n, n N} b) M = {x R x 2 + 2x + 2 > 5; x > 0} 9 Polynomdivision und Hornerschema (1) Bestimme den Wert des folgenden Polynoms an den Stellen x = 3 bzw. x = 2 mittels Horner- Schema x 5 x 4 + 3x 3 x 3 (2) Bestimme mittels Horner-Schema die Nullstellen von (3) Führe eine Polynomdivision durch bei x 3 8x 2 3x + 90 a) (x 5 + x 4 8x x 2 29x + 21) : (x 2 2x + 3) b) (2x 3 3x 2 + 4x 2) : (x + 2) 3

4 10 Folgen (1) Bestimme die Grenzwerte, falls sie existieren: (n 4 + 1) 2 a) lim n 6(2 + 3n 3 ) 2 4 n n b) lim n 2 2n 2 3 n c) lim n n2 (1 n 2 n )3 d) lim n e) lim n ( 1) n (3n + n 3 ) (n + 1) 3 n 2n n (2) Zeige mittels (ε, n 0 )-Abschätzung,dass die Folge für n konvergiert. a n = 3n2 + 2 n 2 + 7n 11 Reihen Sind die folgenden Reihen konvergent? Wenn ja, welche Werte nehmen sie an? 5 + e 17 1 n+1 1 n+1 a) ( 16 ( 1 )n b) 2 )2 ( 2) n 1 c) ( 2) n 1 12 Abbildungen Gebe eine Abbilung f : N N an, welche a) bijektiv ist b) injektiv, aber nicht surjektiv ist c) surjektiv, aber nicht injektiv ist d) weder injektiv, noch surjektiv ist. 13 Umkehrfunktion n=2 (1) Bestimme die Umkehrfunktion von f(x) = x 2 1 und gib ihren Definitionsbereich an. (2) Bestimme die Umkehrfunktion von f(x) = x 2 + 4x + 2 auf D f = [0, + ) und gib den Wertebereich von f 1 an. Warum kann man keine (eindeutige) Umkehrfunktion auf D f = R bestimmen? (3) Bestimme die Umkehrfunktion von f(x) = x 2 + 2x 1 auf D f = (, 1] und gib den Wertebereich von f 1 an. 4

5 14 Grenzwerte von Funktionen (1) Bestimme den Wert von 3x 2 + 2x + 4 lim x 5 ex 3 cos(x). (2) Bestimme das Verhalten im Unendlichen von f(x) = 3x2 + x 5 5x 2. 6 (3) Berechne den links- und rechtsseitigen Grenzwert im Punkt x 0 = 2 für die Funktion { 1 x, x 2 f(x) = x 2, x < 2. Ist die Funktion stetig? 15 Stetigkeit a) Ist f(x) = x 2 5 in x 0 = 0 stetig? b) Ist f(x) = 5x 3 + x 2 + 3x in x 0 = 1 stetig? c) Ist f(x) = x 2 + 4x 5 in x 0 = e stetig? 16 Kurvendiskussion (1) Um den Ertrag einer angebauten Weizensorte zu erhöhen, wird dem Weizen Dünger hinzugefügt. Wird allerdings zu viel Dünger eingebracht, nimmt der Ertrag wieder ab. Der Zusammenhang lässt sich durch die Funktion f(x) = 100x x x + 5 beschreiben, wobei x die Düngermenge in Tonnen pro Hektar und f(x) der Ertrag in Tonnen pro Hektar ist. a) Welcher Ertrag wird bei einer Düngermenge von 0,1 Tonnen pro Hektar erzielt? b) Bei welcher Düngermenge wird der größte Ertrag erzielt? c) Berechne die Wendestelle der Funktion und die Steigung an dieser Stelle. Welche Aussage kann hieraus gemacht werden? d) Skizziere f im Intervall [0; 1]. (2) Das Wachstum einer Blume (senkrechte Höhe in cm) kann durch die Funktion f(t) = t t t beschrieben werden, wobei t der Anzahl an Tagen entspricht. a) Bestimme die Pflanzenhöhe nach 20 Tagen. Hinweis: 20 3 = b) Bestimme die durchschnittliche Wachstumsgeschwindigkeit in den ersten 20 Tagen. c) Zu welchem Zeitpunkt ist die Wachstumsrate maximal? d) Zu welchem Zeitpunkt ist die Wachstumsrate genau so groß wie an Tag 5? e) Skizziere f im Intervall [0;35]. 5

6 17 Musterlösungen 17.1 Bruchrechnung ( 8 7 2) 1 ( ) = = Zahlsysteme ( ) 10 = = = = = ( ) 2 ( ) 5 ( ) 7 ( ) ( ) 6 ( ) Mittel ( ) 7 ( ) 7 ( ) 7 (1 3) 4 (2 2) ( ) 4 (4 2 4) 5 : (3) 5 = (123) arithmetisches Mittel: = 90 4 = 22,5 geometrisches Mittel: = = = = 2 10 = Wachstum (1) a) Es sind nur die Anfangs- und Endwerte relevant, die Datensätze von 2009, 2010 und 2011 können vernachlässigt werden. m = ( )/( ) = 300, f(x) = 300x b) m = 600, f(x) = 600x c) m = 2930, f(x) = 2930x (2) a) q = 4 160/10 = 2, r = q 1 100% = 100%, g(x) = 10 2 x b) q = 3600/400 = 9 = 3, r = 200%, g(x) = x c) q = 1250/1000 = 1, 25, r = 25%, g(x) = 1000 (1,25) x (3) Jahr Daten additiv exponentiell Lineare Gleichungssysteme (1) L = {(18; 31)} (2) Wenn a 9: L = 17.6 Bisektion x L f(x L ) x M f(x M ) x R f(x R ) 0-1, , , ,5625 1,5 0, , ,5625 1,25 0 1,5 0,6875 { (4a + 9 a + 9, 9 ) }. Wenn a = 9: L =. a + 9 6

7 17.7 Induktion a) Induktionsschritt: n+1 1 n ( 2 k 1 ) = 1 ( 2 k 1 ) + 1 IV 1 = 2(1 2 n n ) n = n n = n = 2(1 1 2 n+1 ) k=1 k=1 b) Induktionsschritt 17.8 Mengen 3 n+1 3 = 3 3 n 3 = (2 + 1)3 n 3 = 2 3 n + 3 n 3 = } 2 3 {{ 3 n 1 } + } 3 n {{ 3 } =6 3 n 1 (1) a) A B = {x Z 1 x < 3} = {1; 2} b) A C = {x R x = 1 oder x [0; 4]} = [0; 4] { 1} c) C \ B = [0; 1) (3, 4] {x [1; 3] x / Q} (2) a) B 1 = {x R x 4} also ja b) das sind die Zahlen 2,-2 also ja c) nein Bsp x = 10 (3) a) DIREKT mittels Teilmengenbeziehung, : x (A \ B) \ C x (A \ B), x / C x A, x / B, x / C x A, x / (B C) x A \ (B C) durch 6 teilbar nach IV b) mit Wahrheitswertetabellen Betrachte dazu x A, x B, x C, x A\B, x (A\B)\C, x (B C), x A\(B C) 1= Element ist enthalten, 0= Element ist nicht enthalten (4) a) sup(m) = 2, inf(m) = 0,5 b) sup(m) = 3, inf(m) =, Nullstellen von x 2 + 2x 3 sind 1 und 3 und x < Polynomdivision, Horner-Schema (1) für x = 3 ist p(x) = 237. Für x = 2 ist p(x) = 73 (2) Nullstellen sind 3; 5; 6 (3) a) = x 3 + 3x 2 5x + 7 b) = 2x 2 7x x Folgen (1) a) höchste Potenz ausklammern. Grenzwert ist b) = lim n 4 n (4 + ( 3 4 )n ) 4 n (1 2( 3 4 )n ) = 4 c) = lim n2( 2 ) 3 8 = lim n n n n 3 = 0 d) hat keinen Grenzwert, da zwischen -1, 1 hin und her springt e) erweitern mit 2n+ n 2n+ n, Grenzwert ist (2) Vermuteter Grenzwert ist 3 4 Sei n 0 := min{ ε ; 42 ε } 3n n 2 + 7n 3 = 2 21n n 2 + 7n 2 n 2 + 7n + 21n n 2 + 7n 2 }{{} n ε }{{} n ε ε 2 2 7

8 17.11 Reihen a) Die Reihe ist divergent gegen, denn es handelt sich um eine geometrische Reihe und es gilt 5 + e ( 1 2 )2 = 5 + e 17 > 1. b) Es gilt Da 1 2 = n+1 ( 2) n 1 = π 1 n ( 2) 1 ( 2) n = 2 ( 1 n 2) < 1 ist, konvergiert die Reihe absolut. Als Wert ergibt sich 2 ( 1 ) n 1 = ( 1 2 ) = = 4 3. c) Es gilt n=2 1 n+1 ( 2) n 1 = 1 n+1 ( 2) n n+1 ( 2) n 1 = ( 2) = Abbildungen a) b) c) d) z.b. f(n) = Damit gibt es kein Urbild für die 1. Damit gilt f(1) = f(3) = 1. z.b. f(n) = n { n, n ist gerade n + 2, n ist ungerade 1, n = 1 z.b. f(n) = n, n ist gerade n 2, n ist ungerade und n > 1 1, n = 1 z.b. f(n) = n + 2, n ist gerade n 2, n ist ungerade und n > 1 Damit gilt f(1) = f(3) = 1 und es gibt kein Urbild für die Umkehrfunktionen (1) Dazu lösen wir einfach y = x 2 1 nach x auf: y = x 2 1 2(y + 1) = x Damit ergibt sich also f 1 (x) = 2(x + 1). D f 1 = R 8

9 (2) y = x 2 + 4x + 2 y = (x + 2) 2 2 y + 2 = x + 2 (da x 0) y = x Somit ist f 1 (x) = x und D f 1 = [ 2, + ). (3) y = x 2 + 2x 1 y = (x + 1) 2 2 y + 2 = x + 1 (da x 0) y = x Somit ist f 1 (x) = y und D f 1 = [ 2, + ) und W f 1 = ( ; 1] Grenzwert von Funktionen 3x 2 + 2x (1) lim x 5 ex 3 = cos(x) e 125 cos(5) = e cos(5) 3x 2 + x 5 x 2 (3 + 1 x (2) lim x 5x 2 = lim 5 ) x 2 6 x x 2 (5 6 = 3 ) 5 x 2 3x 2 + x 5 x 2 (3 + 1 x lim x 5x 2 = lim 5 ) x 2 6 x x 2 (5 6 = 3 ) 5 x 2 (3) lim x 1 = 1 2 = 1 x 2 + lim x 2 = 2 2 = 4 Die Funktion ist im Punkt x 0 = 2 nicht stetig und somit auch insgesamt x 2 nicht stetig Stetigkeit a) Sei ε > 0. Wir wollen zeigen, dass wir für jedes beliebige ε > 0 ein δ > 0 finden können, sodass aus x x 0 δ auch f(x) f(x 0 ) ε folgen muss. Dabei darf δ nicht mehr von x abhängen. f(x) f(0) = (x 2 5) (0 2 5) = x 2 = x 2! ε Damit dies gilt, wählt man δ = ε. b) Sei ε > 0. Dazu soll gelten f(x) f(0) = 5x 3 + x 2 + 3x 5 x 3 + x x! ε 5 x 3 ε 3 x 3 ε 15 x 2 ε 3 x ε 3 Wähle also δ = min{ 3 ε 15, ε 3, ε 9 }. 3 x ε 3 x ε 9 9

10 c) Sei ε > 0. Zur Vereinfachung führen wir zunächst folgende Substituierung durch: x = ˆx e. Dazu soll gelten f(ˆx e) f(e) = (ˆx e) 2 + 4(ˆx e) 5 (e 2 4e 5) = ˆx 2 + ( 2e + 4)ˆx ˆx 2 + ( 2e + 4) ˆx! ε Wähle also δ = min{ ε 2, ε 4e+8 } Kurvendiskussion (1) a) f( 1 10 ) = pro Hektar erzielt. ˆx 2 ε ε 2 ˆx 2 ( 2e + 4)ˆx ε ε ˆx 2 ( 2e + 4) = b) f (x) = 300x x + 60 und f (x) = 600x + 30 = 11,05. Es wird also ein Ertrag von 11,05 Tonnen 300x x + 60! = 0 x x 1 5 = 0 x 1 = 0,5 und x 2 = 0,4 x 2 entfällt als Lösung. Es gilt f (x 1 ) < 0 es handelt sich also um ein Maximum. c) f (x) = 600x + 30 =! 0 = x = 1 20 Außerdem gilt f (x) = 600, also auch f ( 1 20 ) 0. Es handelt sich also um eine Wendestelle. Da f ( 1 20 ) < 0 ist die Steigung der Kurve an diesem Punkt maximal. Die maximale Steigung beträgt f ( 1 20 ) = (2) a) f(20) = = 70 b) f(20) f(0) 20 0 = 7 2 (cm/tag). c) f (x) = t t + 1 2, f (x) = t und f (x) = Zweite Ableitung Null setzen ergibt f (t) = t = 0 t = 2 3 Da f ( 50 3 ) < 0 handelt es sich um eine Maximalstelle der 1. Ableitung, somit ist hier das Wachstum am größten. d) f (5) = Löse also f (t) = 21 8 nach t auf: t 1 = ,3... und t 2 = 5. Sie hat also erst am im Laufe des 29. Tages wieder eine Wachstumsrate, die so hoch ist, wie die vom 5. 10

Klausur zur Analysis I WS 01/02

Klausur zur Analysis I WS 01/02 Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A) Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, 10.1.009 (Version A) Kennwort: Übungsgruppe: (Sie können ein beliebiges Kennwort wählen, um Ihre Anonymität zu wahren! Da die Probeklausur

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge

Mehr

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung ) Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Klausur Analysis für Informatiker Musterlösung

Klausur Analysis für Informatiker Musterlösung Prof. Dr. Torsten Wedhorn WS 9/ Dr. Ralf Kasprowitz Elena Fink Klausur Analysis für Informatiker Musterlösung 9.2.2 Name, Vorname Studienfach Matrikelnummer Semester Übungsgruppe Zugelassene Hilfsmittel:

Mehr

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C)

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C) Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, 14..009 (Version C Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen aus der Vorlesung

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung LMU MÜNCHEN Mathematik für Studierende der Biologie Wintersemester 2016/17 GRUNDLAGENTUTORIUM 5 - Lösungen Anmerkung Es handelt sich hierbei um eine Musterlösung so wie es von Ihnen in einer Klausur erwartet

Mehr

Quiz Analysis 1. Lösungen zu den Aufgaben M1 bis M7 der Probeklausur. Mathematisches Institut, WWU Münster. Karin Halupczok.

Quiz Analysis 1. Lösungen zu den Aufgaben M1 bis M7 der Probeklausur. Mathematisches Institut, WWU Münster. Karin Halupczok. Quiz Analysis 1 Mathematisches Institut, WWU Münster Karin Halupczok WiSe 2011/2012 Lösungen zu den Aufgaben M1 bis M7 der Probeklausur 1 Aufgabe M1: Fragen zu Folgen, Reihen und ihre Konvergenz 2 Aufgabe

Mehr

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ).

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ). Monotone Funktionen Definition 4.36 Es sei D R. Eine Funktion f : D R heißt (i) monoton wachsend, wenn für alle x, x D gilt x < x f (x) f (x ). Wenn sogar die strikte Ungleichung f (x) < f (x ) folgt,

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 3. Reelle Funktionen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Lösungen zu Aufgabenblatt 7P

Lösungen zu Aufgabenblatt 7P Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 205 9. Mai 205 Lösungen zu Aufgabenblatt 7P Aufgabe (Stetigkeit) (a) Für welche a, b R sind die folgenden Funktionen stetig in x 0

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen 1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010 Bericht zur Mathematischen Zulassungsprüfung im Mai 2 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am 5. Mai 2 fand die Mathematische Zulassungsprüfung statt. Die Prüfung bestand aus einer 9-minütigen

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Übungen Analysis I WS 03/04

Übungen Analysis I WS 03/04 Blatt Abgabe: Mittwoch, 29.0.03 Aufgabe : Beweisen Sie, daß für jede natürliche Zahl n gilt: n ( ) n (x + y) n = x i y n i, i (b) n ν 2 = ν= i=0 n(n + )(2n + ), 6 (c) 2 3n ist durch 7 teilbar. Aufgabe

Mehr

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1 Musterlösung zum Weihnahchtsübungsblatt Teil von Martin Fabricius Aufgabe a) Diese Aufgabe kann z. B. durch ausmultiplizieren gelöst werden: (433) 7 = 4 7 3 +3 7 + 7 +3 7 0 = 4 343+3 49+ 7+3 = 37+47+4+3

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 2

Technische Universität München Zentrum Mathematik. Übungsblatt 2 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 2 Hausaufgaben Aufgabe 2.1 Sei [a, b] R ein Intervall und ( ) n N [a,

Mehr

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit Kapitel 6 Grenzwerte von Funktionen und Stetigkeit 225 Relle Funktionen Im Folgenden betrachten wir reelle Funktionen f : D R, mit D R. Wir suchen eine formale Definition für den folgenden Sachverhalt.

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

1. Teil Repetitionen zum Thema (bisherige) Funktionen

1. Teil Repetitionen zum Thema (bisherige) Funktionen Analysis-Aufgaben: Rationale Funktionen 2 1. Teil Repetitionen zum Thema (bisherige) Funktionen 1. Die folgenden Funktionen sind gegeben: f(x) = x 3 x 2, g(x) = x 4 + 4 (a) Bestimme die folgenden Funktionswerte/-

Mehr

Vorlesungen Analysis von B. Bank

Vorlesungen Analysis von B. Bank Vorlesungen Analysis von B. Bank vom 23.4.2002 und 26.4.2002 Zunächst noch zur Stetigkeit von Funktionen f : D(f) C, wobei D(f) C. (Der Text schliesst unmittelbar an die Vorlesung vom 19.4.2002 an.) Auf

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

Kapitel 4 Folgen, Reihen & Funktionen

Kapitel 4 Folgen, Reihen & Funktionen Kapitel 4 Folgen, Reihen & Funktionen Inhaltsverzeichnis FOLGEN REELLER ZAHLEN... 3 DEFINITION... 3 GRENZWERT... 3 HÄUFUNGSPUNKT... 4 MONOTONIE... 4 BESCHRÄNKTHEIT... 4 SÄTZE... 4 RECHNEN MIT GRENZWERTEN...

Mehr

Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker

Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker REELLE FUNKTIONEN 1 Was muss aufgeführt werden, wenn man eine reelle Funktion angibt? a) Ihre Funktionsvorschrift und ihren Wertebereich. Ihre Funktionsvorschrift und ihren Definitionsbereich. c) Den Wertebereich

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Vorkurs Mathematik Einführung in das mathematische Denken. Übungsaufgaben

Vorkurs Mathematik Einführung in das mathematische Denken. Übungsaufgaben Justus-Liebig-Universität Gießen Fachbereich 07 Mathematisches Institut Vorkurs Mathematik Einführung in das mathematische Denken Übungsaufgaben PD Dr. Elena Berdysheva Aufgabe 1. Schreiben Sie folgende

Mehr

Funktionen. D. Horstmann: Oktober

Funktionen. D. Horstmann: Oktober Funktionen D. Horstmann: Oktober 2016 128 Funktionen Definition 9. Eine Funktion f ist eine Rechenvorschrift, die jedem Element einer Menge D genau ein Element einer Zielmenge Z zuweist. Die Menge D heißt

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt.

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt. Aufgabe Zeigen Sie mittels vollständiger Induktion, dass für alle n N j 2 j n(n + )(2n + ) gilt. Der Beweis wird mit Hilfe vollständiger Induktion geführt. Wir verifizieren daher zunächst den Induktionsanfang,

Mehr

10 Differenzierbare Funktionen

10 Differenzierbare Funktionen 10 Differenzierbare Funktionen 10.1 Definition: Es sei S R, x 0 S Häufungspunkt von S. Eine Funktion f : S R heißt im Punkt x 0 differenzierbar, wenn der Grenzwert f (x 0 ) := f(x 0 + h) f(x 0 ) lim h

Mehr

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet.

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. 1 Der Funktionsbegriff Funktionen Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. Dabei nennt man die Menge A Definitionsmenge

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengang Bauingenieurwesen Dresden 2005 . Mengen Kenntnisse

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufgabe 45. Polynome sind stets stetig. Höhere Mathematik für Informatiker II (Sommersemester

Mehr

von Intervallen, wie sie als Definitionsmengen von Funktionen auftreten können. 1 x Q f : R R ; x

von Intervallen, wie sie als Definitionsmengen von Funktionen auftreten können. 1 x Q f : R R ; x 18 Stetigkeit Den Begriff der Funktion oder Abbildung haben wir bereits im ersten Semester kennengelernt und er hat uns stets begleitet. In der Analysis untersucht man reelle Funktionen f : D R mit Definitionsbereich

Mehr

Dezimalzahlen. Analysis 1

Dezimalzahlen. Analysis 1 Dezimalzahlen Definition. Eine endliche Dezimalzahl besteht aus - einem Vorzeichen +,, oder 0 - einer natürlichen Zahl d 0 - einer endlichen Folge von Ziffern d 1,...,d l von 0 bis 9. Die Länge l kann

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

Mengen, Relationen, Abbildungen A B = A B. Schreiben Sie die unten dargestellte Relation als Teilmenge von A B.

Mengen, Relationen, Abbildungen A B = A B. Schreiben Sie die unten dargestellte Relation als Teilmenge von A B. Aufgabensammlung zum Vorkurs in Mathematik Thomas Püttmann Mengen, Relationen, Abbildungen Aufgabe : Verdeutlichen Sie das Distributivgesetz und das Gesetz von De Morgan durch Mengendiagramme. A (B C)

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

Analysis 1 für Informatiker (An1I)

Analysis 1 für Informatiker (An1I) Hochschule für Technik Rapperswil Analysis 1 für Informatiker (An1I) Stand: 2012-11-13 Inhaltsverzeichnis 1 Funktionen 3 1.1 Gerade, ungerade und periodische Funktionen..................... 3 1.2 Injektive,

Mehr

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4)

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4) FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5 Aufgabe 18 (siehe Musterlösung Zettel 4) Aufgabe 20 In der Menge R der reellen Zahlen sei die Relation 2 R 2 definiert durch: x 2 y :

Mehr

Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015

Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015 Dr. Jörg Horst WS 04/05 Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften Übungsblatt Mengen Aufgabe : Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 0 < x

Mehr

Technische Universität Berlin. Klausur Analysis I

Technische Universität Berlin. Klausur Analysis I SS 2008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis I 4.07.2008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

15 Hauptsätze über stetige Funktionen

15 Hauptsätze über stetige Funktionen 15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen

Mehr

Komplexe Zahlen. z = a + i b

Komplexe Zahlen. z = a + i b Komplexe Zahlen Definition 7. Da keine reelle Zahl existiert, deren Quadrat -1 ist, definieren wir die imaginäre Einheit i durch die Gleichung i 2 = 1. Als die Menge aller komplexen Zahlen C definieren

Mehr

Stetigkeit vs Gleichmäßige Stetigkeit.

Stetigkeit vs Gleichmäßige Stetigkeit. Stetigkeit vs Gleichmäßige Stetigkeit. Beispiel: Betrachte ie Funktion f(x) = 1/x auf em Intervall D = (0, 1]. f ist in jeem Punkt p (0, 1] stetig. Denn: Sei p (0, 1] un ε > 0 gegeben. Setze δ = min (

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. Michael Hinze Dr. Hanna Peywand Kiani Analysis I für Studiere der Ingenieurwissenschaften Blatt 6 Aufgabe 1) Bitte lösen Sie die angegebenen

Mehr

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester Analysis und nichtlineare Modelle Sommersemester 9 5 Univariate Analysis C. Berechnen Sie ohne Taschenrechner(!). Runden Sie die Ergebnisse auf ganze Zahlen. (a) 7 :, (b) 795 :.. Berechnen Sie ohne Taschenrechner(!):

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Funktionen, Stetigkeit Dierentialrechnung Funktionen mit mehreren Variablen Integralrechnung Dierentialgleichungen Teil 2: Wahrscheinlichkeitsrechnung

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

13 Stetige Funktionen

13 Stetige Funktionen $Id: stetig.tex,v.4 2009/02/06 3:47:42 hk Exp $ 3 Stetige Funktionen 3.2 Stetige Funktionen In anderen Worten bedeutet die Stetigkeit einer Funktion f : I R also f(x n) = f( x n ) n n für jede in I konvergente

Mehr

Analysis I. 2. Beispielklausur mit Lösungen

Analysis I. 2. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Die Produktmenge aus zwei Mengen L und M.

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

V.1 Konvergenz, Grenzwert und Häufungspunkte

V.1 Konvergenz, Grenzwert und Häufungspunkte V.1 Konvergenz, Grenzwert und Häufungspunkte S. 108 110 A. Bereits bekannt: Folge Extrem wichtig: Grenzwert bzw. Konvergenz: a n a oder lim n a n = a : ε R, ε > 0 n 0 N : a n a < ε n n 0 Begriffe: Fast

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

1. Proseminar Höhere Mathematik I

1. Proseminar Höhere Mathematik I 1. Proseminar Höhere Mathematik I 5.10.2010 1. Operationen auf Mengen: Gegeben seien folgende Teilmengen der natürlichen Zahlen N: A = {n N : n ungerade}, B = {n N : n 21 und n Primzahl}, C = {1, 2, 8}.

Mehr

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Lineare Algebra Analytische Geometrie I* Übungsaufgaben, Blatt Musterlösungen Aufgabe. Es seien A, B, C Teilmengen einer Menge X. Zeige: i A B C =

Mehr

4.2 Grenzwerte und Stetigkeit reeller Funktionen

4.2 Grenzwerte und Stetigkeit reeller Funktionen 4. Grenzwerte und Stetigkeit reeller Funktionen 73 4. Grenzwerte und Stetigkeit reeller Funktionen Definition 4.. Gegeben sei eine Funktion y = mit D(f). (i) Sei D(f). heißt stetig in, falls es für alle

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

Prüfungsfragen Mathematik I für Wirtschaftswissenschaftler

Prüfungsfragen Mathematik I für Wirtschaftswissenschaftler Prüfungsfragen Mathematik I für Wirtschaftswissenschaftler Die nachfolgende Zusammenstellung enthält vor allem Klausuraufgaben aus den Jahren 2 bis 211. Hierbei wurden die Aufgaben thematisch geordnet,

Mehr

Viele Statistiken werden durch endliche Folgen beschrieben. (z.b. Anzahl der Studierenden an der TU München in den Jahren 1962 bis 1976)

Viele Statistiken werden durch endliche Folgen beschrieben. (z.b. Anzahl der Studierenden an der TU München in den Jahren 1962 bis 1976) Kapitel 9 Folgen und Reihen 9.1 Folgen 9.1.1 Was ist eine Folge? Abbildungen, die auf N definiert sind (mit Werten z.b. in R), heißen (unendliche) Folgen. Abb., die auf einer endlichen Menge aufeinander

Mehr

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also Festlegung Definitionsbereich 11.1 Festlegung Definitionsbereich Festlegung: Wir betrachten Funktionen f : D Ñ R, deren Definitionsbereich eine endliche Vereinigung von Intervallen ist, also z.b. D ra,

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Übungsaufgaben zur Kurvendiskussion

Übungsaufgaben zur Kurvendiskussion SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen

Mehr

1. Mathematikklausur NAME:

1. Mathematikklausur NAME: Themen: Ganzrationale Funktionen: Skizzieren, untersuchen bestimmen. 1. Mathematikklausur NAME: Schreiben Sie die Lösung mit dem Lösungsweg auf ein kariertes Doppelblatt. Lassen Sie auf jeder Seite einen

Mehr

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1.

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1. Lösungen Klausur Aufgabe (3 Punkte) Zeigen Sie, dass n k k (n + ) n k für alle n N. IA: Für n ist k kk 2 2. IV: Es gilt n k kk (n + ) n für ein n N. IS: Wir haben n+ k k k n k k + (n + ) n+ k IV (n + )

Mehr

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant)

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant) Modul Grundbildung Analysis WiSe 10/11 Im Folgenden bedeutet A: Wurde in diesem Kapitel behandelt B: Interessante Aufgaben C: Weitere Fragen (Nicht nur für die Klausur interessant) V1 Konvergenz, Grenzwert

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10 Mathematik für Wirtschaftswissenschaften I Wintersemester 05/6 Universität Leipzig Lösungvorschläge Präsenzaufgaben Serien -0 Inhaltsverzeichnis Serie Serie 5 3 Serie 8 4 Serie 9 5 Serie 3 6 Serie 6 7

Mehr

5.4 Uneigentliche Integrale

5.4 Uneigentliche Integrale 89 Wir dividieren die Potenzreihe von sin(t) gliedweise durch t und erhalten sint t = t (t t3 3! + t5 5! + ) = t2 3! + t4 5! +. Diese Reihe ist konvergent für alle t R. Nun integrieren wir gliedweise.

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Klausurvorbereitung Höhere Mathematik Lösungen

Klausurvorbereitung Höhere Mathematik Lösungen Klausurvorbereitung Höhere Mathematik Lösungen Yannick Schrör Christian Mielers. Februar 06 Ungleichungen Bestimme die Lösungen für folgende Ungleichungen. x+ > x + x + Fall : x, x + > x + 6 Lösung im

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Spickzettel Mathe C1

Spickzettel Mathe C1 Spickzettel Mathe C1 1 Mengenlehre 1.1 Potenzmenge Die Potenzmenge P (Ω) einer Menge Ω ist die Menge aller Teilmengen von Ω. Dabei gilt: P (Ω) := {A A Ω} card P (Ω) = 2 card Ω P (Ω) 1.2 Mengenalgebra Eine

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007 Workshops zur VO Einführung in das mathematische Arbeiten im SS 007 Inhaltsverzeichnis Funktionen Evelina Erlacher 7. März 007 Der Funktionsbegriff Darstellungsmöglichkeiten von Funktionen 3 Einige Typen

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0) 09.0.0. Kommissar K hat 3 Tatverdächtige P, Q und R. Er weiß: (a) Wenn sich Q oder R als Täter herausstellen, dann ist P unschuldig.

Mehr