Ein Satz wird auch dunkel werden wo solch ein Begriff einfliest; Klar: Ist Erkenntnis wenn man die dargestellte Sache wieder erkennen kann.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Ein Satz wird auch dunkel werden wo solch ein Begriff einfliest; Klar: Ist Erkenntnis wenn man die dargestellte Sache wieder erkennen kann."

Transkript

1 Lebenslauf: Gottfried Wilhelm Leibniz: 1.Juli 1646(Leipzig) November 1716 (Hannover) mit 15 Besuchte er Uni Leipzig; mit 18 Mag; wegen seines geringen Alters (kaum 20) nicht zum Doktorat zugelassen; Fachgebiet: Philosophie und Rechtswissenschaft aber auch Mathematik, Logik und Physik, Technik, Geschichts-Sprachforschung; Anstellung bei Mainzer Kurfürsten Johann Philipp von Schönborn als Diplomat; bereiste Städte (Paris, London, auch in die Niederlande) Später: Hofrat und Bibliothekar 1676 bei hannoverschen Herzogs Johann Friedrich; L. wurde von der Prinzessin Sophie Charlotte gefördert; 1700 die Berliner Societät der Wissenschaften" gegründet; Dunkel: ein Begriff der zum wieder erkennen einer Sache nicht ausreicht; Bsp.) Blume / Tier die ich einst gesehen habe, erinnere, nicht genug um sie von anderen zu Unterscheiden Bsp.) Emu Ein Satz wird auch dunkel werden wo solch ein Begriff einfliest; Klar: Ist Erkenntnis wenn man die dargestellte Sache wieder erkennen kann. Verworren: Man kann nicht genügend Kennzeichen der Sache aufzählen um sie von anderen zu unterscheiden; d.h: die Erkenntnis ist nicht durch aufzählen der Eigenschaften gegeben; Sachen werden manchmal zwar klar erkannt jedoch nur auf Grund der Sinneswahrnehmung und nicht durch Aufzählung von Kennzeichen; Bsp.) Blinden erklären was rot ist; Bsp.)Maler kann anderen nicht anhand von Aussagen erklären was fehlt; noch anderen Derartiges verdeutlichen, wenn wir sie nicht vor die Sache führen und bewirken, dass sie das selbe sehen riechen oder schmecken wie wir oder wenigstens an eine ähnliche sinnliche Wahrnehmung erinnern Deutlich: Sache wird durch Merkmale und ausreichende Prüfungen von allen anderen ähnlichen Körpern unterscheiden Bsp.)Münzprüfer =>Gold

2 Bsp.) Zahl, Größe Gestalt Hoffnung Furcht alles wovon wir Nominaldef. besitzen die nichts anderes als die Aufzählung der zureichenden Kennzeichen ist. Einfach: Kennzeichen seiner selbst ist; kann nicht ausgelöst werden; nur durch sich selbst einsehbar ; braucht keine Merkmale Inadaequat: =nicht passend Zusammengesetzte Begriffe in einzelne zusammengesetzte Kennzeichen aufgeteilt werden; diese zwar klar aber doch verworren sind zb.schwere Farbe Scheidewasser etc. Wenn jene doch deutlich so sind sie inadeäquat Adäquat: Wenn alles was in den deutlichen Begriff eingeht wieder deutlich erkannt wird;oder eine Analyse bis zum Ende bekannt ist => Erkenntnis adäquat Bsp.)Wissen von Zahlen Symbolisch, blind: Wenn man nicht das ganze wesen einer Sache berücksichtigt; man bedient sich Abkürzungen; zb Natürlichen Zahlen ; man glaubt alle Hintergründe zu kennen;falls man sie braucht BSP.) Chilegon Erklärung nicht nötig Intuitiv: Wenn man alle in der Sache eingehenden Begriffe denkt bzw in einen Gewissen Maße denkt ist Erkenntnis Intuitiv

3 Beweisführung z.t. geben wir uns mit dem blinden Denken zufrieden, d.h. wir führen die Auflösung eines Begriffes nicht weit genug. Dies kann dazu führen, dass ein Widerspruch verborgen bleibt. Bei diesem Gedanken kam Leibniz zum Beweis für die Existenz Gottes von Descartes, welcher zur Erinnerung folgendermaßen lautet: Def: Was auch immer aus der Idee oder Definition irgendeiner Sache folgt, kann von dieser Sache ausgesagt werden. Vollkommenste Wesen, Vollkommenheit schließt auch Existenz ein. Problem: Wir können nicht mit Sicherheit Definitionen zum Schließen verwenden, bevor wir wissen, ob diese Definitionen auch nicht wirklich einen Widerspruch in sich verborgen haben. Bsp: Idee der schnellsten Bewegung: Auf den ersten Blick sieht es so aus, als ob wir eine Idee der schnellsten Bewegung haben, jedoch die Annahme wird widerlegt. Zurück zum Gottesbeweis: Dabei genügt es ebenfalls nicht, dass wir das vollkommenste Wesen denken. Deshalb muss das vollkommenste Wesen bewiesen oder vorausgesetzt werden, damit man richtig schließen kann. Beweis: Unterschied: Nominaldefinition: Erklärung eines Begriffes, die nur die Kennzeichen einer von anderen zu unterscheidenden Sache enthält. Realdefinition: eine Sacherklärung, aus der hervorgeht, dass die Sache möglich ist. Daraus folgt, welche Idee wahr welche falsch ist. Wahr: ihr Begriff ist möglich, da nicht beliebige Begriffe miteinander verbunden werden dürfen. Falsch: Widerspruch ist im Begriff enthalten. Möglichkeit einer Sache kann man unterteilen: Apriori: Möglichkeit eines Begriffs ist bekannt und wir können daher den Begriff in seine Merkmale oder in andere Begriffe auflösen. Dabei ist die Kausaldefinition nützlich.

4 Aposteriori: Wir müssen die Möglichkeit erst erkennen, indem wir erfahren, dass die Sache existiert. Frage stellt sich: kann ein Mensch jemals eine vollkommene Analyse durchführen, welche auf die ersten Ursachen Gott hinausführt. Leibniz wagt dazu nicht zu bestimmen. Problem: meistens gibt man sich zufrieden, wenn man die Realität gewisser Begriffe durch Erfahrung zu kennen. Menschen missbrauchen folgendes Prinzip: Was auch immer ich von irgendeiner Sache klar und deutlich erkenne, das ist wahr oder von ihr aussagbar. Daraus folgt, dass man einen schlüssigen Beweis, d.h. von der Logik vorgeschriebenen Form entsprechend, durchführen muss. Eine formgerechte begriffene Beweisführung ist: Keine Prämisse (Voraussetzung) darf ausgelassen werden und alle Prämissen müssen bewiesen werden. Streitfrage: Schauen wir alles in Gott oder haben wir eigene Ideen? Auch wenn wir alles in Gott schauen würden, so wäre es trotzdem notwendig eigene Ideen in sich zu haben. Diese Ideen, welche in unserem Geiste sind, kommen jedoch erst zum Vorschein, wenn wir eine Modifikation (Veränderung) unseres Geistes vollziehen, jedoch diese Veränderung sollte in Miteinbezug von Gott sein. Bsp: die Gestalt des Herkules im rohen Marmor. Ins Detail schauen! bemerken nur oberflächiges. Bsp: grüne Farbe

5 Geben uns mit dem blinden Denken zufrieden => Widerspruch bleibt verborgen Beweis für die Existenz Gottes Descartes Idee der schnellsten Bewegung Problem : beweisen, damit man richtig schließen kann Beweis Nominaldefinition versus Realdefinition Idee: wahr falsch Begriff möglich Widerspruch Apriori Aposteriori Frage: Vollkommene Analyse?? Formgerechte begriffene Beweisführung Streitfrage: Schauen wir alles in Gott oder haben wir eigene Ideen?

6 BETRACHTUNGEN ÜBER DIE ERKENNTNIS DIE WAHRHEIT UND DIE IDEEN Gottfried Wilhelm Leibniz ( ) dunkel Erkenntnis verworren klar inadäquat adäquat deutlich vollkommenste Erkenntnis symbolisch intuitiv

Metaphysik und Erkenntnismethode bei Descartes. - Falsch sind also nicht die Vorstellungen, sondern die Urteile, die daraus abgeleitet werden.

Metaphysik und Erkenntnismethode bei Descartes. - Falsch sind also nicht die Vorstellungen, sondern die Urteile, die daraus abgeleitet werden. Metaphysik und Erkenntnismethode bei Descartes - Vorstellungen an sich können nicht falsch sein. Auch die Vorstellungen von Chimären (Lebewesen, die es nicht gibt) sind an sich nicht falsch - Falsch sind

Mehr

Entwicklung der modernen Naturwissenschaft (speziell der Physik/Mechanik) in Abgrenzung von der mittelalterlich-scholastischen Naturphilosophie

Entwicklung der modernen Naturwissenschaft (speziell der Physik/Mechanik) in Abgrenzung von der mittelalterlich-scholastischen Naturphilosophie René Descartes (1596-1650) Meditationen über die Grundlagen der Philosophie (1641) Geistes- bzw. wissenschaftsgeschichtlicher Hintergrund Entwicklung der modernen Naturwissenschaft (speziell der Physik/Mechanik)

Mehr

DIALOGE ÜBER NATÜRLICHE RELIGION

DIALOGE ÜBER NATÜRLICHE RELIGION DAVID HUME DIALOGE ÜBER NATÜRLICHE RELIGION NEUNTER TEIL, SEITEN 73-78 DER A PRIORI BEWEIS DER EXISTENZ GOTTES UND SEINER UNENDLICHEN ATTRIBUTE S. 73-74 Demea : Die Schwächen des a posteriori Beweises

Mehr

Descartes, Dritte Meditation

Descartes, Dritte Meditation Descartes, Dritte Meditation 1. Gewissheiten: Ich bin ein denkendes Wesen; ich habe gewisse Bewusstseinsinhalte (Empfindungen, Einbildungen); diesen Bewusstseinsinhalten muss nichts außerhalb meines Geistes

Mehr

Gottfried Wilhelm Leibniz

Gottfried Wilhelm Leibniz Gottfried Wilhelm Leibniz 1646 Leipzig ab 1661 Studium der Rechtswissenschaft in Leipzig ab 1663 in Jena 1667 Promotion in Altdorf; anschließend fürstlicher Berater im Dienst des Mainzer Kurfürsten Johann

Mehr

Vorkurs Beweisführung

Vorkurs Beweisführung Vorkurs Beweisführung Fachschaft Mathematik und Informatik 30.08.2013 Agenda 1 Einleitung 2 Direkter Beweis 3 Widerspruchsbeweis 4 Vollständige Induktion 5 Aussagen widerlegen 6 Gleichheit von Mengen 7

Mehr

Anselm von Canterbury

Anselm von Canterbury Anselm von Canterbury *1034 in Aosta/Piemont Ab 1060 Novize, dann Mönch der Benediktinerabtei Bec ab 1078: Abt des Klosters von Bec 1093: Erzbischof von Canterbury *1109 in Canterbury 1076 Monologion (

Mehr

Carl Friedrich von Weizsäcker Die Tragweite der Wissenschaft

Carl Friedrich von Weizsäcker Die Tragweite der Wissenschaft Lieferung 2 Hilfsfragen zur Lektüre von: Carl Friedrich von Weizsäcker Die Tragweite der Wissenschaft Schöpfung und Weltentstehung. Die Geschichte zweier Begriffe SIEBTE VORLESUNG: Descartes, Newton, Leibniz,

Mehr

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen 1. Grundlagen Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen Peter Buchholz 2016 MafI 2 Grundlagen 7 1.1 Was ist Analysis? Analysis ist

Mehr

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen . Grundlagen Gliederung. Was ist Analysis?.2 Aussagen und Mengen.3 Natürliche Zahlen.4 Ganze Zahlen, rationale Zahlen. Was ist Analysis? Analysis ist neben der linearen Algebra ein Grundpfeiler der Mathematik!

Mehr

Logik in der Schule. Bildungsplan 2004 (Zitat:) Begründen. Elementare Regeln und Gesetze der Logik kennen und anwenden

Logik in der Schule. Bildungsplan 2004 (Zitat:) Begründen. Elementare Regeln und Gesetze der Logik kennen und anwenden 1 Nr.2-21.04.2016 Logik in der Schule Bildungsplan 2004 (Zitat:) Begründen Elementare Regeln und Gesetze der Logik kennen und anwenden Begründungstypen und Beweismethoden der Mathematik kennen, gezielt

Mehr

Entwicklung der modernen Naturwissenschaft (speziell der Physik/Mechanik) in Abgrenzung von der mittelalterlich-scholastischen Naturphilosophie

Entwicklung der modernen Naturwissenschaft (speziell der Physik/Mechanik) in Abgrenzung von der mittelalterlich-scholastischen Naturphilosophie René Descartes (Rationalismus, Leib-Seele-Dualismus) *31. März 1596 (Le Haye) 1604-1612 Ausbildung im Jesuitenkolleg La Flêche 1616 Baccalaureat und Lizenziat der Rechte an der Fakultät zu Poitiers. Vielfältige

Mehr

Formale Logik - SoSe 2012

Formale Logik - SoSe 2012 2.44 % Formale Logik - SoSe 2012 Versuch einer Zusammenfassung Malvin Gattinger http://xkcd.com/435/ 4.88 % Gliederung Einleitung Was ist Logik? Begriffsklärungen Sätze und Wahrheit Argumente und Gültigkeit

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Die Anfänge der Logik

Die Anfänge der Logik Die Anfänge der Logik Die Entwicklung des logischen Denkens vor Aristoteles Holger Arnold Universität Potsdam, Institut für Informatik arnold@cs.uni-potsdam.de Grundfragen Was ist Logik? Logik untersucht

Mehr

Vorkurs Mathematik Logik und Beweise II

Vorkurs Mathematik Logik und Beweise II Vorkurs Mathematik Logik und Beweise II Mireille Soergel 5. Oktober 017 Diese Arbeit basiert in Teilen auf dem Beweis-Vortrag von Bärbel Jansen und Winnifred Wollner, in bearbeiteter Fassung von Casper

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Ist die Existenz eines theistischen Gottes beweisbar?

Ist die Existenz eines theistischen Gottes beweisbar? Geisteswissenschaft Jan Hoppe Ist die Existenz eines theistischen Gottes beweisbar? Essay Universität Bielefeld Essaytraining, Dr. C. Nimtz, WS 08/09 Jan Hoppe 03.01.2009 Essaythema 2: Gottesbeweise.

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

De Morgan sche Regeln

De Morgan sche Regeln De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,

Mehr

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

Also kann nur A ist roter Südler und B ist grüner Nordler gelten. Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf

Mehr

Hinweise zur Logik. Ergänzung zu den Übungen Mathematische Grundlagen der Ökonomie am 22. Oktober 2009

Hinweise zur Logik. Ergänzung zu den Übungen Mathematische Grundlagen der Ökonomie am 22. Oktober 2009 Hinweise zur Logik Ergänzung zu den Übungen Mathematische Grundlagen der Ökonomie am 22. Oktober 2009 Im folgenden soll an einige Grundsätze logisch korrekter Argumentation erinnert werden. Ihre Bedeutung

Mehr

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 1 Vorbemerkungen Mathematische Begriffe und Argumentationsweisen sind in vielen Fällen nötig, wo man über abstrakte Objekte sprechen und

Mehr

Methodologie der Sozialwissenschaften

Methodologie der Sozialwissenschaften Karl-Dieter Opp Methodologie der Sozialwissenschaften Einführung in Probleme ihrer Theorienbildung und praktischen Anwendung 6. Auflage VS VERLAG FÜR SOZIALWISSENSCHAFTEN Inhaltsverzeichnis Vorwort 10

Mehr

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2017

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2017 Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe17 Ronja Düffel 22. März 2017 Logik und Beweise > Motivation Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Logik und Beweise

Mehr

Methoden des Wissenschaftlichen Arbeitens Vorlesung im Sommersemester VL 2: Was ist Wissenschaft?

Methoden des Wissenschaftlichen Arbeitens Vorlesung im Sommersemester VL 2: Was ist Wissenschaft? Methoden des Wissenschaftlichen Arbeitens Vorlesung im Sommersemester 2017 04.05.17 VL 2: Was ist Wissenschaft? Prof. Dr. Riklef Rambow Fachgebiet Architekturkommunikation Institut Entwerfen, Kunst und

Mehr

sich die Schuhe zubinden können den Weg zum Bahnhof kennen die Quadratwurzel aus 169 kennen

sich die Schuhe zubinden können den Weg zum Bahnhof kennen die Quadratwurzel aus 169 kennen Programm Christian Nimtz www.nimtz.net // lehre@nimtz.net Grundfragen der Erkenntnistheorie Kapitel 2: Die klassische Analyse des Begriffs des Wissens 1 Varianten des Wissens 2 Was ist das Ziel der Analyse

Mehr

Physikalismus. Vorlesung: Was ist Naturalismus? FS 13 / Di / Markus Wild & Rebekka Hufendiek. Sitzung 7 ( )

Physikalismus. Vorlesung: Was ist Naturalismus? FS 13 / Di / Markus Wild & Rebekka Hufendiek. Sitzung 7 ( ) Physikalismus Vorlesung: Was ist Naturalismus? FS 13 / Di 10-12 / Markus Wild & Rebekka Hufendiek Sitzung 7 (26.3.13) Physikalismus? Allgemeine metaphysische These (Metaphysica generalis): Alles, was existiert,

Mehr

Ein Gottesbeweis. Die Voraussetzung des Seins ist das Nichts. 1. Die Verachtung des Immateriellen

Ein Gottesbeweis. Die Voraussetzung des Seins ist das Nichts. 1. Die Verachtung des Immateriellen Ein Gottesbeweis Die Voraussetzung des Seins ist das Nichts 1. Die Verachtung des Immateriellen Das einheitliche Weltbild des Westens ist der philosophische Materialismus. Fragen nach dem Immateriellen

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.7 200//29 :58:57 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Konvergenz einer reellen oder komplexen Folge gegen

Mehr

Kleine lateinische Buchstaben wie z. B. p, q, r, s t, usw.

Kleine lateinische Buchstaben wie z. B. p, q, r, s t, usw. 1.1 Aussagenlogik Grundlagen der Mathematik 1 1.1 Aussagenlogik Definition: Aussage Eine Aussage im Sinne der Logik ist ein formulierter Tatbestand, der sich bei objektiver Prüfung immer eindeutig als

Mehr

Anselms Gottesbeweis und die Logik. und überhaupt: Beweise

Anselms Gottesbeweis und die Logik. und überhaupt: Beweise Anselms Gottesbeweis und die Logik und überhaupt: Beweise Inhalt 1) Vorbemerkungen zur Logik (und Wissenschaft) 2) Vorbemerkungen zu Gottesbeweisen und zu Anselm von Canterbury 3) Anselms Ontologisches

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

Vorlesung. Beweise und Logisches Schließen

Vorlesung. Beweise und Logisches Schließen Vorlesung Beweise und Logisches Schließen Der folgende Abschnitt dient nur zur Wiederholung des Stoffes der ersten Vorlesung und sollten nur genannt bzw. Teilweise schon vor der Vorlesung angeschrieben

Mehr

Schließt die Wissenschaft die Existenz Gottes aus?

Schließt die Wissenschaft die Existenz Gottes aus? Schließt die Wissenschaft die Existenz Gottes aus? Raphael E. Bexten Gespräch mit Jugendlichen herausgeber@xyz.de (ersetze XYZ durch aemaet ) urn:nbn:de:0288-20130928923 19.03.2015 Raphael E. Bexten (http://aemaet.de)

Mehr

DIE LOGIK ODER DIE KUNST DES DENKENS

DIE LOGIK ODER DIE KUNST DES DENKENS ANTOINE ARNAULD DIE LOGIK ODER DIE KUNST DES DENKENS 1972 WISSENSCHAFTLICHE BUCHGESELLSCHAFT DARMSTADT INHALT Hinweis 1 Erste Abhandlung, in welcher der Plan dieser neuen Logik aufgezeigt wird 2 Zweite

Mehr

Rhetorik und Argumentationstheorie.

Rhetorik und Argumentationstheorie. Rhetorik und Argumentationstheorie 2 [frederik.gierlinger@univie.ac.at] Teil 2 Was ist ein Beweis? 2 Wichtige Grundlagen Tautologie nennt man eine zusammengesetzte Aussage, die wahr ist, unabhängig vom

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 91

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 91 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : R R systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

Aphorismen, Gedanken und Sinnsprüche

Aphorismen, Gedanken und Sinnsprüche Aphorismen, Gedanken und Sinnsprüche Es gibt keinen wirklichen Grund über ein scheinbares Leiden laut zu klagen. Das Schicksal und Leben sind selbst bestimmt. Zetern und Klagen bedeutet über sich selbst

Mehr

"Die Wissenschaft des Reichwerdens"

Die Wissenschaft des Reichwerdens "Die Wissenschaft des Reichwerdens" von Wallace D. Wattles Interpretation und Zusammenfassung von Wolfram Andes [1] "Die Wissenschaft des Reichwerdens" Interpretation und Zusammenfassung von Wolfram Andes

Mehr

typische Beweismuster Allgemeine Hilfe Beweistechniken WS2014/ Januar 2015 R. Düffel Beweistechniken

typische Beweismuster Allgemeine Hilfe Beweistechniken WS2014/ Januar 2015 R. Düffel Beweistechniken Beweistechniken Ronja Düffel WS2014/15 13. Januar 2015 Warum ist Beweisen so schwierig? unsere natürliche Sprache ist oft mehrdeutig wir sind in unserem Alltag von logischen Fehlschlüssen umgeben Logik

Mehr

Kapitel 1 Grundbegriffe der Mengenlehre und der Logik

Kapitel 1 Grundbegriffe der Mengenlehre und der Logik Wolter/Dahn: Analysis Individuell 3 Kapitel 1 Grundbegriffe der Mengenlehre und der Logik In diesem Abschnitt werden einige Grundbegriffe der Mengenlehre und grundlegende 1/0/0 Prinzipien der mathematischen

Mehr

Wie können wir entscheiden ob eine Person oder ein Wesen einen Geist hat?

Wie können wir entscheiden ob eine Person oder ein Wesen einen Geist hat? Einleitung Dr. M. Vogel Vorlesung Grundprobleme der Philosophie des Geistes Wie können wir entscheiden ob eine Person oder ein Wesen einen Geist hat? Malvin Gattinger Vor einem Antwortversuch will ich

Mehr

1.2 Mengenlehre I-Einführung in die reellen Zahlen

1.2 Mengenlehre I-Einführung in die reellen Zahlen .2 Mengenlehre I-Einführung in die reellen Zahlen Inhaltsverzeichnis Checkliste 2 2 Repetition 2 3 Dezimalzahlen 3 4 Die Darstellung von Brüchen als Dezimalzahlen 3 5 irrationale Zahlen 4 6 Beispiele von

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung?

Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung? 8 Grundsätzliches zu Beweisen Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung? ˆ Mathematik besteht nicht (nur) aus dem Anwenden auswendig gelernter Schemata. Stattdessen

Mehr

Zweifeln und Wissen. Grundprobleme der Erkenntnistheorie

Zweifeln und Wissen. Grundprobleme der Erkenntnistheorie Universität Dortmund, WS 2005/06 Institut für Philosophie C. Beisbart Zweifeln und Wissen. Grundprobleme der Erkenntnistheorie Das Gettier-Problem (anhand von E Gettier, Is Justified True Belief Knowledge?

Mehr

Gibt es Gott? Die fünf Wege des hl. Thomas von Aquin

Gibt es Gott? Die fünf Wege des hl. Thomas von Aquin Gibt es Gott? Die fünf Wege des hl. Thomas von Aquin Thomas von Aquin geb. 1225 in Roccasecca als Graf von Aquino gegen der Willen der Eltern wird er Dominikaner Schüler Alberts des Großen (Paris und Köln)

Mehr

Kapitel 3. Natürliche Zahlen und vollständige Induktion

Kapitel 3. Natürliche Zahlen und vollständige Induktion Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine

Mehr

Wenn ich pro Sekunde eine natürliche Zahl aufzählen kann, kann ich in 2000 Sekunden alle natürlichen Zahlen aufsagen.

Wenn ich pro Sekunde eine natürliche Zahl aufzählen kann, kann ich in 2000 Sekunden alle natürlichen Zahlen aufsagen. Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Unendliche Mengen Immer eins mehr als du 1 Was ist unendlich? Michi sagt zu Anna: Wenn ich pro Sekunde eine natürliche Zahl aufzählen

Mehr

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2015

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2015 Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe15 Ronja Düffel 23. März 2015 Logik und Beweise > Motivation Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Logik und Beweise

Mehr

Die Frage nach der Existenz Gottes

Die Frage nach der Existenz Gottes Lieferung 12 Hilfsgerüst zum Thema: Die Frage nach der Existenz Gottes Die letzte Vorlesung des Semesters findet am 19. Juli 2013 statt. 1. Vorbemerkungen An sich ist die Existenz Gottes selbstevident

Mehr

Mathe <> Deutsch. Die 7 verwirrendsten Mathe-Floskeln einfach erklärt! Math-Intuition.de

Mathe <> Deutsch. Die 7 verwirrendsten Mathe-Floskeln einfach erklärt! Math-Intuition.de Mathe Deutsch Die 7 verwirrendsten Mathe-Floskeln einfach erklärt! Inhalt hinreichend & notwendig kanonisch wohldefiniert beliebig paarweise trivial o.b.d.a & o.e. hinreichend & notwendig Bei jeder

Mehr

2 Der Beweis. Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises

2 Der Beweis. Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises 2 Der Beweis Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises Satz und Beweis Ein mathematischer Satz besteht aus einer Voraussetzung und einer Behauptung. Satz und Beweis Ein mathematischer

Mehr

Vorlesung Teil III. Kants transzendentalphilosophische Philosophie

Vorlesung Teil III. Kants transzendentalphilosophische Philosophie Vorlesung Teil III Kants transzendentalphilosophische Philosophie Aufklärung: Säkularisierung III. Kant l âge de la raison Zeitalter der Vernunft le siécles des lumières Age of Enlightenment Aufklärung:

Mehr

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv ChrNelius: Zahlentheorie (WS 2006/07) 8 3 ggt und kgv Wir erinnern uns hoffentlich an die folgenden Definitionen des ggt s und des kgv s zweier ganzer Zahlen (31) DEF: Eine ganze Zahl g heißt größter gemeinsamer

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 1. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Institut für Analysis Dr. A. Müller-Rettkowski Dr. T. Gauss WS 2010/11 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Lineare Algebra Analytische Geometrie I* Übungsaufgaben, Blatt Musterlösungen Aufgabe. Es seien A, B, C Teilmengen einer Menge X. Zeige: i A B C =

Mehr

4 Das Vollständigkeitsaxiom und irrationale Zahlen

4 Das Vollständigkeitsaxiom und irrationale Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen 4.2 R ist archimedisch geordnet 4.5 Q liegt dicht in R 4.7 Existenz von Wurzeln nicht-negativer reeller Zahlen In diesem Paragraphen werden wir zum ersten

Mehr

Erkenntnistheorie I. Der klassische Wissensbegriff: Wissen ist wahre, gerechtfertigte Überzeugung

Erkenntnistheorie I. Der klassische Wissensbegriff: Wissen ist wahre, gerechtfertigte Überzeugung Erkenntnistheorie I Platon II: Das Höhlengleichnis Die Ideenlehre Wiederholung Der klassische Wissensbegriff: Wissen ist wahre, gerechtfertigte Überzeugung Was kann man ( sicher ) wissen? Wahrheiten über

Mehr

Wer ist der Schöpfer? من هو اخلالق

Wer ist der Schöpfer? من هو اخلالق Wer ist der Schöpfer? من هو اخلالق [أملاين - German [Deutsch - Dr. Jaafar Sheikh Idris د. جعفر شيخ إدريس Übersetzer: Eine Gruppe von Übersetzern ترمجة: جمموعة من املرتمجني 1432-2011 Beschreibung: Eine

Mehr

Predigt zu Johannes 14, 12-31

Predigt zu Johannes 14, 12-31 Predigt zu Johannes 14, 12-31 Liebe Gemeinde, das Motto der heute beginnenden Allianzgebetswoche lautet Zeugen sein! Weltweit kommen Christen zusammen, um zu beten und um damit ja auch zu bezeugen, dass

Mehr

Rationalismus nach Descartes. Tobias Giese Masterstudiengang Informatik HS-Harz

Rationalismus nach Descartes. Tobias Giese Masterstudiengang Informatik HS-Harz Rationalismus nach Descartes Tobias Giese Masterstudiengang Informatik HS-Harz Seminar: Wissenschaftliches Arbeiten SS2005 Agenda Biographie Rene Descartes Einordnung des Rationalismus (Erkenntnisvermögen)

Mehr

4 Reelle und komplexe Zahlenfolgen

4 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.2 203//29 2:06:38 hk Exp hk $ 4 Reelle und komplexe Zahlenfolgen 4. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Folgenkonvergenz und die Grenzwerte von Folgen eingeführt.

Mehr

Motivation und Geschichte. Geschichte der Logik Logik und Informatik

Motivation und Geschichte. Geschichte der Logik Logik und Informatik Motivation und Geschichte Geschichte der Logik Logik und Informatik Logik für Informatiker, M. Lange, IFI/LMU: Motivation und Geschichte Geschichte der Logik 12 Aufgaben der Logik Logik (aus Griechischem)

Mehr

Sicherer, nicht sinnvoll bezweifelbarer Ausgangspunkt des Denkens: Ich existiere.

Sicherer, nicht sinnvoll bezweifelbarer Ausgangspunkt des Denkens: Ich existiere. Descartes, Zweite Meditation Sicherer, nicht sinnvoll bezweifelbarer Ausgangspunkt des Denkens: Ich existiere. Das ist selbst dann nicht bezweifelbar, wenn ich in Betracht ziehe, dass es einen allmächtigen

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 1. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Motivation und Geschichte. Geschichte der Logik Logik und Informatik

Motivation und Geschichte. Geschichte der Logik Logik und Informatik Motivation und Geschichte Geschichte der Logik Logik und Informatik Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 2.1 Motivation und Geschichte Geschichte der Logik 13 Aufgaben der Logik

Mehr

Grundlegendes: Mengen und Aussagen

Grundlegendes: Mengen und Aussagen Kapitel 1 Grundlegendes: Mengen und Aussagen Wie jedes Fachgebiet hat auch die Mathematik eine eigene Fachsprache Ohne ihre Kenntnis wird man ein mathematisches Buch, selbst wenn es für Anwender geschrieben

Mehr

Versuch einer Annäherung an den Begriff der Monade und an die Beziehung zwischen Seele und Körper in der Monadologie von Leibniz

Versuch einer Annäherung an den Begriff der Monade und an die Beziehung zwischen Seele und Körper in der Monadologie von Leibniz Versuch einer Annäherung an den Begriff der Monade und an die Beziehung zwischen Seele und Körper in der Monadologie von Leibniz Der Lernende versucht im ersten Teil zu verstehen, wie Leibniz die Monade

Mehr

Musterlösung Grundbegriffe der Mathematik Frühlingssemester 2016, Aufgabenblatt 1

Musterlösung Grundbegriffe der Mathematik Frühlingssemester 2016, Aufgabenblatt 1 Musterlösung Grundbegriffe der Mathematik Frühlingssemester 01, Aufgabenblatt 1 Aufgabenblatt 1 0 Punkte Aufgabe 1 Welche der folgenden Ausdrücke sind Aussagen, welche sind Aussageformen und welche sind

Mehr

Übungsblatt 1. D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. 1. a) Stellen Sie die Wahrheitstafel zu folgender Aussage auf:

Übungsblatt 1. D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. 1. a) Stellen Sie die Wahrheitstafel zu folgender Aussage auf: D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler Übungsblatt 1 1. a) Stellen Sie die Wahrheitstafel zu folgender Aussage auf: ((A = B) A) = B. Handelt es sich um eine Tautologie? Wie

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2013/14 Inhalt Übungserklärung* Beweis durch Vollständige Induktion 2

Mehr

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7 Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum

Mehr

Gottesbeweise Universum Warum sind nicht alle Menschen von der Existenz Gottes überzeugt?

Gottesbeweise Universum Warum sind nicht alle Menschen von der Existenz Gottes überzeugt? Gottesbeweise Warum sind nicht alle Menschen von der Existenz Gottes überzeugt? Ich begegne Menschen, die von der Existenz Gottes überzeugt sind. Andere können keinen Gott erkennen. Wer hat Recht? Es müsste

Mehr

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 5. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 5. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11 Mathematik für Informatiker I Christoph Eisinger Wintersemester 2010/11 Musterlösungen zum Hausübungsblatt 5 Aufgabe 1 (a) Additionstafel in Z 7 : + [0] [1] [2] [3] [4] [5] [6] [0] [0] [1] [2] [3] [4]

Mehr

1. [Aufgabe] Welche der folgenden Aussagen sind gültige Einwände gegen das Sprichwort Alles verstehen heisst alles verzeihen?

1. [Aufgabe] Welche der folgenden Aussagen sind gültige Einwände gegen das Sprichwort Alles verstehen heisst alles verzeihen? Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung 1 1. [Aufgabe] Welche der folgenden Aussagen sind gültige Einwände gegen das Sprichwort Alles verstehen heisst alles verzeihen? a Niemand versteht

Mehr

Wilhelm von Ockham. Lieferung 15 (1288/ ) [Das Ersterkannte ist das Einzelne, nicht das Allgemeine]

Wilhelm von Ockham. Lieferung 15 (1288/ ) [Das Ersterkannte ist das Einzelne, nicht das Allgemeine] Lieferung Wilhelm von Ockham (1288/ 1349) [Das Ersterkannte ist das Einzelne, nicht das Allgemeine] 2 Meine Antwort auf die Frage [ob das Ersterkannte der Vernunft, bezüglich der Erstheit des Entstehens,

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016 Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe16 Ronja Düffel 21. März 2016 Logik und Beweise Wozu Beweise in der Informatik?... um Aussagen wie 1 Das Programm erfüllt die gewünschte Aufgabe.

Mehr

Biologische Evolution Eine islamische Perspektive

Biologische Evolution Eine islamische Perspektive Biologische Evolution Eine islamische Perspektive اتلطور ابليولويج - آفاق إسالمية [ألماني - German [Deutsch - IslamToday.com موقع اإلسالم ايلوم Übersetzer: Eine Gruppe von Übersetzern املرتجم: جمموعة من

Mehr

Einführung in die moderne Logik

Einführung in die moderne Logik Sitzung 1 1 Einführung in die moderne Logik Einführungskurs Mainz Wintersemester 2011/12 Ralf Busse Sitzung 1 1.1 Beginn: Was heißt Einführung in die moderne Logik? Titel der Veranstaltung: Einführung

Mehr

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit

Mehr

Der begriffliche Aufbau der theoretischen Physik

Der begriffliche Aufbau der theoretischen Physik Carl Friedrich von Weizsäcker Der begriffliche Aufbau der theoretischen Physik Vorlesung gehalten in Göttingen im Sommer 1948 Herausgegeben von Holger Lyre S. Hirzel Verlag Stuttgart Leipzig VORWORT von

Mehr

"WAS ES ALLES GIBT":

WAS ES ALLES GIBT: "WAS ES ALLES GIBT": Innerhalb der verfassten spirituellen Literatur, gibt es sehr umfassende Bestrebungen unterschiedlicher Richtungen und Autoren, -"was die spirituelle Realität ausmacht, und was nicht".

Mehr

Die Dreiecks Ungleichung: I x + y I I x I + I y I

Die Dreiecks Ungleichung: I x + y I I x I + I y I Die Dreiecks Ungleichung: I x + y I I x I + I y I In dieser Proseminar-Arbeit geht es um die sog. Dreiecks-Ungleichung (Δ-Ungl.). Wir werden unter anderen sehen, wie man die Δ-Ungl. beweisen kann, welche

Mehr

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 2 Prof. Dr. Markus Schweighofer 11.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 2.1: Behauptung:

Mehr

Was es gibt und wie es ist

Was es gibt und wie es ist Was es gibt und wie es ist Dritte Sitzung Existenzfragen 0. Zur Erinnerung Benjamin Schnieder Philosophisches Seminar der Universität Hamburg 0 1 Was ist die Ontologie? Platons Bart Eine Standard-Antwort

Mehr

SICHT AUF NATURWISSENSCHAFTEN VON MARIAN RATH

SICHT AUF NATURWISSENSCHAFTEN VON MARIAN RATH Frage nach Gott SICHT AUF NATURWISSENSCHAFTEN VON MARIAN RATH Student und Professor über die Frage nach Gott. Inhalt: Ein atheistischer Professor der Philosophie unterrichtet seine Klasse über die Probleme

Mehr

Wahrheit individuell wahr, doch die Art, wie wir das, was wir wahrnehmen, rechtfertigen und erklären, ist nicht die Wahrheit es ist eine Geschichte.

Wahrheit individuell wahr, doch die Art, wie wir das, was wir wahrnehmen, rechtfertigen und erklären, ist nicht die Wahrheit es ist eine Geschichte. Was ist Wahrheit Jeder Mensch ist ein Künstler, und unsere größte Kunst ist das Leben. Wir Menschen erfahren das Leben und versuchen, den Sinn des Lebens zu verstehen, indem wir unsere Wahrnehmung durch

Mehr

Handout zu Beweistechniken

Handout zu Beweistechniken Handout zu Beweistechniken erstellt vom Lernzentrum Informatik auf Basis von [Kre13],[Bün] Inhaltsverzeichnis 1 Was ist ein Beweis? 2 2 Was ist Vorraussetzung, was ist Behauptung? 2 3 Beweisarten 3 3.1

Mehr

Kapitel 1.5 und 1.6. Ein adäquater Kalkül der Aussagenlogik

Kapitel 1.5 und 1.6. Ein adäquater Kalkül der Aussagenlogik Kapitel 1.5 und 1.6 Ein adäquater Kalkül der Aussagenlogik Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Mathematische Logik (WS 2010/11) Kapitel 1.5 und 1.6: Kalküle 1 /

Mehr

Michalski DLD80 Ästhetik

Michalski DLD80 Ästhetik Michalski DLD80 Ästhetik 1565 2008 00104 23-04-2010 WIEDERHOLUNG Baumgartens Ästhetik hat nicht nur eine theoretische, sondern auch eine praktische Absicht. Definition der Ästhetik (im Unterschied zur

Mehr

Logik auf Abwegen: Gödels Gottesbeweis

Logik auf Abwegen: Gödels Gottesbeweis Logik auf Abwegen: Gödels Gottesbeweis Fabian Graf 06.August 2004 Überblick Einführung Geschichte der Gottesbeweise Verschiedene Gottesbeweise Gödels Gottesbeweis Zusammenfassung Fabian Graf Logik auf

Mehr

Tilman Bauer. 4. September 2007

Tilman Bauer. 4. September 2007 Universität Münster 4. September 2007 und Sätze nlogik von Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus)

Mehr

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN 24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN x 2 = 0+x 2 = ( a+a)+x 2 = a+(a+x 2 ) = a+(a+x 1 ) = ( a+a)+x 1 = x 1. Daraus folgt dann, wegen x 1 = x 2 die Eindeutigkeit. Im zweiten Fall kann man für a 0 schreiben

Mehr

Arbeits- und Präsentationstechniken 1

Arbeits- und Präsentationstechniken 1 Arbeits- und Präsentationstechniken 1 Teil A: Wissenschaftstheoretische Grundlagen SS 2014 APT 1 Prof. Dr. Richard Roth 1 Inhaltsverzeichnis A. Wissenschaftstheoretische Grundlagen 1 Wissenschaft was ist

Mehr

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Zeigen Sie mit vollständiger Induktion:

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Grundlagen der Mathematik Lösungsskizzen 2 Präsenzaufgaben (P2) Wir betrachten drei Teilmengen der natürlichen Zahlen: - A = {n

Mehr