6.4.8 Induktion von Helmholtzspulen ******

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "6.4.8 Induktion von Helmholtzspulen ******"

Transkript

1 V ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment bbildung : Helmholtzspule und Leiterschleife Eine Helmholtzspule (siehe bb. ) erzeugt in ihrem Inneren ein weitgehend homogenes Magnetfeld. Verschiedene Leiterschleifen bilden über ein ballistisches Galvanometer einen geschlossenen Leiterkreis (siehe bb. 2). Der usschlag des ballistischen Galvanometers ist proportional zur Gesamtladung Q, welche wärend der Dauer der Flussänderung durch die Leiterschleife fliesst: Q = = U I dt = dt R () Φ Φ dt = R R (2) Dabei bedeuten R den Widerstand der Stromschleife und Φ die Flussänderung.

2 V648 bbildung 2: Vier verschiedene Leiterkreise Man misst den Galvanometerausschlag für folgende experimentelle nordnungen: ) Bei ruhender Leiterschleife durch us- und Einschalten des Stromes in der Helmholtzspule, 2) bei stationärem Magnetfeld durch schnelles Himeinstossen und Herausziehen der Leiterschleife, 3) und durch Veränderung der Stromstärke in der Helmholtzspule. Bei jeder dieser nordnungen sind noch folgende Untersuchungen möglich: a) Leiterschleifenfläche senkrecht zum B-Feld ergebe eine ballistische Galvanometerausschlag a. b) Wird um den Winkel ϕ gegenüber B gedreht, so ergibt sich ein usschlag a cos ϕ. c) Wird die Leiterschleife ersetzt durch eine n-fach gewickelte Spule mit konstantem Querschnitt, ergibt dies eine usschlag na bzw. na cos ϕ. Weiterhin kann man einen usschlag durch Änderung der von der Leiterschleife eingeschlossenen Fläche erzeugen. 2

3 V648 3 Theorie 3. Das Induktionsgesetz Ein zeitlich veränderliches Magnetfeld erzeugt nach Maxwell ein elektrisches Wirbelfeld (siehe bb. 3): E = B (3) B B dr E Rechte-Hand-Regel E = B bbildung 3: Die Richtung der induzierten E-Feldes. Das Magnetfeld B zeigt nach oben und nimmt mit der Zeit zu. Wir integrieren Gl. (3) über die von der Kurve C umrandeten Fläche und formen das Oberflächenintegral auf der linken Seite mithilfe des Stokesschen Satzes in ein Linienintegral über C um; beim Integral auf der rechten Seite nehmen wir an, dass sich die Geometrie zeitlich nicht ändert, so dass wir das Flächenintegral mit der Zeitableitung vertauschen können: ( ) B ( E) d = d (4) C E dr = Damit erhalten wir für die induzierte Spannung U ind : B }{{ d} = Φ (5) dφ U ind = + Φ, (6) wobei Φ der magnetische Fluss durch die von C umschlossenen Kurve ist. 3

4 V648 q dr E(r) E dr q Ḃ U () = E dr < U () = E dr < bbildung 4: Elektrische Spannung U () des Punktes bezüglich des Punktes für ein Potential- und für ein Wirbelfeld. Die zeitliche Änderung Ḃ der magnetischen Flussdichte B zeigt in die Zeichenebene hinein. In beiden Fällen gilt dieselbe Definition der Spannung, die bei beiden Beispielen negativ ist, so dass die positive Ladung q beschleunigt wird und das Feld rbeit leistet. In den meisten Lehrbüchern erscheint fälschlicherweise ein negatives Vorzeichen in dieser Gleichung. Um dies aber zu erreichen, wird die Spannung U () eines Punktes () bezüglich eines Punktes () für elektrische Wirbelfelder entgegengesetzt zur Spannung in Potentialfeldern definiert: = E dr Potentialfeld U () U () = + E dr Wirbelfeld Falsch! (7) Zum Beweis für unsere Behauptung berechnen wir die elektrische Spannung U () des Punktes bezüglich des Punktes für ein Potential- und für ein Wirbelfeld (siehe bb. 4). Wir verwenden dazu jeweils eine positive Probeladung q, auf die ja die Kraft F in Richtung des elektrischen Feldes gemäss F = qe (8) wirkt, was einer negativen Spannung entspricht. 4

5 V648 ls Beispiel für ein Potentialfeld wählen wir das Feld eines Plattenkondensators: U () = E dr < (9) Das Wirbelfeld werde durch die zeitliche Änderung Ḃ der magnetischen Flussdichte B erzeugt, welche im Bild in die Zeichenebene hineinzeigt. Damit ist das induzierte E-Feld entgegengesetzt zum Uhrzeigersinn gerichtet. Beim Verschieben der Probeladung auf dem Kreisbogen vom Punkt zum Punkt gewinnt die Ladung Energie, so dass für die Spannung gilt: U () = E dr < () Wir müssen nun noch zeigen, dass für das Ringintegral Gln. (5) und (6) gelten. Die in Richtung des E-Feldes berechnete Spannung ist U ind = E dr < () Der zu dieser Orientierung gehörende Flächenvektor zeigt aus der Papierebene heraus, so dass für die zeitliche Änderung des magnetischen Flusses folgt: Φ = Ḃ = Ḃ < (2) us den identischen Vorzeichen von U ind und Φ folgt schliesslich die Gültigkeit der Gl. (6). Wenn wir nun die Integrationsrichtung in Gl. (9) umkehren, erhalten wir die positive Spannung U () = E dr > (3) U () = U () >, (4) so dass auch das Ringintegral in Gl. () das Vorzeichen wechselt und bei dieser Integrationsrichtung positiv wird. Nun hängt aber der Flächenvektor als xialvektor vom Drehsinn seiner Umrandung ab, das heisst, wechselt ebenfalls das Vorzeichen, so dass auch der Fluss des Magnetfeldes nun positiv ist. Damit gilt unabhängig von der Integrationsrichtung U ind = + Φ (5) 5

6 V648 E Ḃ B U B() = E dr bbildung 5: Die in der Schleife induzierte Spannung ist gleich dem Linienintegral des elektrischen Feldes über die Schleife. Das Innere der Leiterschleife ist feldfrei! 3.2 Offene Leiterschleife im veränderlichen Magnetfeld Wir betrachten eine Leiterschleife in einem Magnetfeld. Wir nehmen an, dass sich das Feld mit der Zeit ändert. Eine Spannung wird induziert. Siehe bb. 5. Da die Leitungselektronen im Metall beweglich sind, werden sie im Uhrzeigersinn so lange verschoben, bis das von ihnen erzeugte elektrische Feld das äussere, induzierte Feld kompensiert. us diesem Grund ist der Pol B negativ, der Pol dagegen positiv geladen. Weil das Ringintegral über den Kreis nicht verschwindet, gilt U B() = E dr (6) Demnach fällt die gesamte Spannung zwischen den beiden Polen ab, und die elektrische Feldstärke ist entsprechend dem Verhältnis von Polspalt zu Kreisumfang vergrössert! Da der Leiter nicht geschlossen ist, fliesst kein Strom. 3.3 Geschlossene Leiterschleife im veränderlichen Magnetfeld In einer geschlossenen Leiterschleife bewirkt das induzierte elektrische Feld einen Strom. Die Stromdichte j beträgt bei rein Ohmschem Widerstand wobei σ die elektrische Leitfähigkeit bedeutet. j = σe, (7) 6

was besagt das Induktionsgesetz? was besagt die Lenzsche Regel?

was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Induktion Einleitung Thema: Induktion Fragen: was ist Induktion? was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Frage: was, wenn sich zeitlich ändernde E- und -Felder sich gegenseitig

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

ELEKTRIZITÄT & MAGNETISMUS

ELEKTRIZITÄT & MAGNETISMUS ELEKTRIZITÄT & MAGNETISMUS Elektrische Ladung / Coulombkraft / Elektrisches Feld Gravitationsgesetz ( = Gewichtskraft) ist die Ursache von Gravitationskonstante Coulombgesetz ( = Coulombkraft) Elementarladung

Mehr

Magnetfeld in Leitern

Magnetfeld in Leitern 08-1 Magnetfeld in Leitern Vorbereitung: Maxwell-Gleichungen, magnetischer Fluss, Induktion, Stromdichte, Drehmoment, Helmholtz- Spule. Potentiometer für Leiterschleifenstrom max 5 A Stufentrafo für Leiterschleife

Mehr

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,

Mehr

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr

Feldlinienbilder: nur die halbe Wahrheit! H. Hauptmann, F. Herrmann Abteilung für Didaktik der Physik, Universität, Karlsruhe

Feldlinienbilder: nur die halbe Wahrheit! H. Hauptmann, F. Herrmann Abteilung für Didaktik der Physik, Universität, Karlsruhe Feldlinienbilder: nur die halbe Wahrheit! H. Hauptmann, F. Herrmann Abteilung für Didaktik der Physik, Universität, 76128 Karlsruhe Einleitung Ein Feldlinienbild ist wohl die am häufigsten benutzte Methode

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

4.10 Induktion. [23] Michael Faraday. Gedankenexperiment:

4.10 Induktion. [23] Michael Faraday. Gedankenexperiment: 4.10 Induktion Die elektromagnetische Induktion wurde im Jahre 1831 vom englischen Physiker Michael Faraday entdeckt, bei dem Bemühen die Funktions-weise eines Elektromagneten ( Strom erzeugt Magnetfeld

Mehr

PS II - Verständnistest

PS II - Verständnistest Grundlagen der Elektrotechnik PS II - Verständnistest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 4 2 2 5 3 4 4 erreicht Aufgabe 8 9 10 11 Summe Punkte 3 3 3 2 35 erreicht Hinweise:

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

Vorlesung 5: Magnetische Induktion

Vorlesung 5: Magnetische Induktion Vorlesung 5: Magnetische Induktion, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2016/17 Magnetische Induktion Bisher:

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

Ladungsfluss durch geschlossene Fläche = zeitliche Änderung der Ladung im Volumen 4.2 Elektrischer Widerstand

Ladungsfluss durch geschlossene Fläche = zeitliche Änderung der Ladung im Volumen 4.2 Elektrischer Widerstand E-Dynamik Teil II IV Der elektrische Strom 4.1 Stromstärke, Stromdichte, Kontinuitätsgleichung Definition der Stromstärke: ist die durch eine Querschnittsfläche pro Zeitintervall fließende Ladungsmenge

Mehr

5.1 Statische und zeitlich veränderliche

5.1 Statische und zeitlich veränderliche 5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum Fachbereich El Gruppe : Namen, Matrikel Nr.: Versuchstag: Vorgelegt: Hochschule Düsseldorf Testat : V 401 : Induktion Zusammenfassung: 01.04.16 Versuch: Induktion Seite 1 von 6 Gruppe : Korrigiert am:

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld 37 3 Transformatoren 3. Magnetfeldgleichungen 3.. Das Durchflutungsgesetz Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: H I Abb. 3..- Verknüpfung von elektrischem Strom und Magnetfeld

Mehr

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen) Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls

Mehr

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Stephan Huber 19. August 2009 1 Nachtrag zum Drehmoment 1.1 Magnetischer Dipol Ein magnetischer Dipol erfährt

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Aufgaben 13 Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #23 am 06.06.2007 Vladimir Dyakonov (Klausur-)Frage des Tages Zeigen Sie mithilfe des Ampere

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 1 Thema: Elektrostatik Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Ladungen und Coulomb-Gesetz...................

Mehr

(1) (4) Integralform. Differentialform ρ. Hier fehlt noch. etwas!

(1) (4) Integralform. Differentialform ρ. Hier fehlt noch. etwas! Zeitlich veränderliche Felder: Elektrodynamik Die Maxwell-Gleichungen im statischen Fall (1) 1 E d = ρdv E = V( ) (2) B d = B = etwas! (3) E dr = E = (4) Integralform ε Hier fehlt noch Differentialform

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 09. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 09. 06.

Mehr

IE3. Modul Elektrizitätslehre. Induktion

IE3. Modul Elektrizitätslehre. Induktion IE3 Modul Elektrizitätslehre Induktion In diesem Experiment wird das Phänomen der Induktion untersucht. Bei der Induktion handelt es sich um einen der faszinierendsten Effekte der Elektrizitätslehre. Die

Mehr

Lösung für Blatt 7,,Elektrodynamik

Lösung für Blatt 7,,Elektrodynamik Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert

Mehr

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Ferienkurs Sommersemester 009 Martina Stadlmeier 09.09.009 Inhaltsverzeichnis 1 Zeitlich veränderliche Felder 1.1 Faradaysches Induktionsgesetz.....................

Mehr

Einführung. in die. Der elektrische Strom Wesen und Wirkungen

Einführung. in die. Der elektrische Strom Wesen und Wirkungen Einführung in die Theoretische Physik Der elektrische Strom Wesen und Wirkungen Teil II: Elektrische Wirkungen magnetischer Felder Siegfried Petry Fassung vom 19 Januar 13 I n h a l t : 1 Kraft auf einen

Mehr

Induktion. Bewegte Leiter

Induktion. Bewegte Leiter Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 29. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 29. 05.

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 06.

Mehr

Übungsblatt 06 Grundkurs IIIb für Physiker

Übungsblatt 06 Grundkurs IIIb für Physiker Übungsblatt 06 Grundkurs IIIb für Physiker Othmar Marti, (othmar.marti@physik.uni-ulm.de) 20. 1. 2003 oder 27. 1. 2003 1 Aufgaben für die Übungsstunden Quellenfreiheit 1, Hall-Effekt 2, Lorentztransformation

Mehr

Magnetisches Induktionsgesetz

Magnetisches Induktionsgesetz Magnetisches Induktionsgesetz Michael Faraday entdeckte, dass ein sich zeitlich veränderndes Magnetfeld eine elektrische Spannung in einer Schleife oder Spule aus leitendem Material erzeugt: die Induktionsspannung

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

III Elektrizität und Magnetismus

III Elektrizität und Magnetismus 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion Versuche: Diamagnetismus, Supraleiter Induktion Leiterschleife, bewegter Magnet Induktion mit Änderung der Fläche

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Aufgaben

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Aufgaben Physik-Department Ferienkurs zur Experimentalphysik 2 - Aufgaben Daniel Jost 26/08/13 Technische Universität München Aufgabe 1 Gegeben seien drei Ladungen q 1 = q, q 2 = q und q 3 = q, die sich an den

Mehr

Die Maxwell-Gleichungen

Die Maxwell-Gleichungen Die Maxwell-Gleichungen 1 Mathematische Grundlagen Wenn man erstmals mit der Elektrodynamik konfrontiert wird, hat man vermutlich mit der ektoranalysis und dem damit verbundenen Auftreten von partiellen

Mehr

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2015-1 1 Aufgabe 1 ( 5 Punkte) Ein Elektronenstrahl ist entlang der z-achse gerichtet. Bei z = 0 und bei z = L befindet sich jeweils eine Lochblende, welche

Mehr

4 Induktion. Worum geht es? Ein veränderliches Magnetfeld (allgemein Änderung von Φ B ) in der Spule,

4 Induktion. Worum geht es? Ein veränderliches Magnetfeld (allgemein Änderung von Φ B ) in der Spule, 4 Induktion Worum geht es? Ein veränderliches Magnetfeld (allgemein Änderung von Φ B ) in der Spule, induziert eine Spannung ( Stromfluss U=RI) in der Spule. Caren Hagner / PHYSIK 2 / Sommersemester 2015

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 26. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 06.

Mehr

Elektrizität und Magnetismus - Einführung

Elektrizität und Magnetismus - Einführung Elektrizität und Magnetismus - Einführung Elektrostatik - elektrische Ladung - Coulomb Kraft - elektrisches Feld - elektrostatisches Potential - Bewegte Ladung -Strom - Magnetismus - Magnetfelder - Induktionsgesetz

Mehr

Magnetische Induktion Φ = Der magnetische Fluss Φ durch eine Fläche A ist definiert als

Magnetische Induktion Φ = Der magnetische Fluss Φ durch eine Fläche A ist definiert als E8 Magnetische Induktion Die Induktionsspannung wird in Abhängigkeit von Magnetfeldgrößen und Induktionsspulenarten untersucht und die Messergebnisse mit den theoretischen Voraussagen verglichen.. heoretische

Mehr

Vorlesung Physik für Pharmazeuten PPh - 09 b

Vorlesung Physik für Pharmazeuten PPh - 09 b Vorlesung Physik für Pharmazeuten PPh - 09 b Elektrizitätslehre (II) 29.01.2007 IONENLEITUNG 2 Elektrolytische Leitfähigkeit Kationen und Anionen tragen zum Gesamtstrom bei. Die Ionenleitfähigkeit ist

Mehr

Potential und Spannung

Potential und Spannung Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0

Mehr

Übungen: Kraftwirkung in magnetischen Feldern

Übungen: Kraftwirkung in magnetischen Feldern Übungen: Kraftwirkung in magnetischen Feldern Aufgabe 1: Zwei metallische Leiter werden durch einen runden, beweglichen Kohlestift verbunden. Welche Beobachtung macht ein(e) Schüler(in), wenn der Stromkreis

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte)

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III (Theorie Elektrodynamik) WS 1-13 Prof. Dr. Alexander Mirlin Musterlösung:

Mehr

Elektrisches Potenzial Kapitel 25

Elektrisches Potenzial Kapitel 25 Elektrisches Potenzial Kapitel 25 Zusammenfassung Coulomb (22) gleiche Ladungen stoßen sich ab ungleiche Ladungen ziehen sich an Das elektrische Feld (23) Ein geladener Körper beeinflusst einen anderen

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

Teil VI. Das elektromagnetische Feld in Materie. 13. Makroskopische Felder. f( x, t) = d 3 ξ dτ f( x + ξ, t + τ) (13.1) E + B t = 0 (13.

Teil VI. Das elektromagnetische Feld in Materie. 13. Makroskopische Felder. f( x, t) = d 3 ξ dτ f( x + ξ, t + τ) (13.1) E + B t = 0 (13. 13. Makroskopische Felder Teil VI Das elektromagnetische Feld in Materie Im Prinzip erlauben die Maxwell-Gleichungen von Teil III das elektromagnetische Feld beliebiger Materieanordnungen zu berechnen,

Mehr

Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie

Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie Aufgaben 12 Magnetisches Feld Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

Elektromagnetische Induktion

Elektromagnetische Induktion Elektromagnetische M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis im bewegten und im ruhenden Leiter Magnetischer Fluss und sgesetz Erzeugung sinusförmiger Wechselspannung In diesem Abschnitt

Mehr

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. "Ausfluss pro Volumenelement"

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. Ausfluss pro Volumenelement Zusammenfassung: Satz v. Gauß Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche Volumen Rand des Volumens = Oberfläche Symbolisch: suggestive Notation Geometrische Definition der

Mehr

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 0/00 7 Magnetismus 7. Grundlagen magnetischer Kreise Im folgenden wird die Vorgehensweise bei der Untersuchung eines magnetischen Kreises

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde VL # 14,

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde VL # 14, Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde VL # 14, 20.05.2009 Vladimir Dyakonov Experimentelle Physik VI dyakonov@physik.uni-wuerzburg.de Professor Dr. Vladimir

Mehr

5 Zeitabhängige Felder

5 Zeitabhängige Felder Carl Hanser Verlag München 5 Zeitabhängige Felder Aufgabe 5.13 Die spannungsabhängige Kapazität eines Kondensators kann für den Bereich 0... 60 V durch folgende Gleichung angenähert werden: Geben Sie allgemein

Mehr

V4.3 Rotation, Satz von Stokes. Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck:

V4.3 Rotation, Satz von Stokes. Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck: V4.3 Rotation, Satz von Stokes Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck: Erinnerung: Gradiententelder sind 'wirbelfrei': Für ein beliebiges (zweifach

Mehr

Elektrische und magnetische Felder

Elektrische und magnetische Felder Marlene Marinescu Elektrische und magnetische Felder Eine praxisorientierte Einführung Mit 260 Abbildungen @Nj) Springer Inhaltsverzeichnis I Elektrostatische Felder 1 Wesen des elektrostatischen Feldes

Mehr

Hanser Fachbuchverlag, 1999, ISBN 3-446-21066-0

Hanser Fachbuchverlag, 1999, ISBN 3-446-21066-0 *UXQGODJHQGHU3K\VLN Vorlesung im Fachbereich VI der Universität Trier Fach: Geowissenschaften Sommersemester 2001 'R]HQW 'U.DUO0ROWHU 'LSORP3K\VLNHU )DFKKRFKVFKXOH7ULHU 7HO )D[ (0DLOPROWHU#IKWULHUGH,QIRV]XU9RUOHVXQJXQWHUKWWSZZZIKWULHUGHaPROWHUJGS

Mehr

Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld

Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld (2013-06-07) P3.4.3.1 Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld

Mehr

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H ET 6 Elektromagnetisches Feld Magnetische Feldstärke (magnetische Erregung) In der Umgebung stromdurchflossener Leiter entsteht ein magnetisches Feld, H = H e s... quellenfreies Vektorfeld der Feldstärke

Mehr

Bewegter Leiter im Magnetfeld

Bewegter Leiter im Magnetfeld Bewegter Leiter im Magnetfeld Die Leiterschaukel mal umgedreht: Bewegt man die Leiterschaukel im Magnetfeld, so wird an ihren Enden eine Spannung induziert. 18.12.2012 Aufgaben: Lies S. 56 Abschnitt 1

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft Inhalt 10. Elektrodynamik 10.3 Das elektrische Potential 10.4 Elektrisches Feld und Potential ti 10.5 Magnetische Kraft und Felder 1051M 10.5.1 Magnetische Kraft 10.3 Das elektrische Potential ti Wir hatten

Mehr

Zusammenfassung EPII. Elektromagnetismus

Zusammenfassung EPII. Elektromagnetismus Zusammenfassung EPII Elektromagnetismus Elektrodynamik: Überblick Dynamik (Newton): Elektromagnetische Kräfte zw. Ladungen: Definition EFeld: Kraft auf ruhende Testladung Q: BFeld: Kraft auf bewegte Testladung:

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Übung 2 - Angabe Technische Universität München 1 Fakultät für Physik 1 Draht Strom fließt durch einen unendlich langen Draht mit Radius a. Dabei ist die elektrische

Mehr

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Name:...Vorname:... Seite 1 von 8 Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A

Mehr

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern.

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16. Kapazität Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16.1 Plattenkondensator Das einfachste Beispiel für einen Kondensator ist der

Mehr

= Dimension: = (Farad)

= Dimension: = (Farad) Kapazität / Kondensator Ein Kondensator dient zur Speicherung elektrischer Ladung Die Speicherkapazität eines Kondensators wird mit der Größe 'Kapazität' bezeichnet Die Kapazität C ist definiert als: Dimension:

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker 12. Elektrodynamik 12.11 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

8.1 Faradaysches Induktionsgesetz

8.1 Faradaysches Induktionsgesetz Kapitel 8 ZEITLICH VERÄNDERLICHE FELDER Hier geht es um Effekte, die durch die zeitliche Änderung der Feldgrößen E und B hervorgerufen werden. Aus der zweiten Gleichung folgt, dass ein sich zeitlich änderndes

Mehr

Klausur Grundlagen der Elektrotechnik II

Klausur Grundlagen der Elektrotechnik II Klausur Grundlagen der Elektrotechnik II am 29. Juli 2008 Note: Name, Vorname Matrikelnummer 1. Die Prüfung umfasst 5 Aufgaben auf 14 Blättern sowie eine Formelsammlung. 2. Die maximal erreichbare Punktzahl

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

Ein Feld ist ein energetischer Zustand eines Raumes, bei dem die physikalische Feldgröße in jedem Raumpunkt einen Betrag und eine Richtung hat.

Ein Feld ist ein energetischer Zustand eines Raumes, bei dem die physikalische Feldgröße in jedem Raumpunkt einen Betrag und eine Richtung hat. 139 4. Elektromagnetische Felder 4.1. Grundlagen 4.1.1. Feldbegriff Der Lernende kann - die Begriffe Vektorfeld und Skalarfeld einer physikalischen Größe definieren und Beispiele angeben - die Begriffe

Mehr

Wir wollen zunächst die fundamentalen Feldgleichungen der Elektrostatik. roth = j

Wir wollen zunächst die fundamentalen Feldgleichungen der Elektrostatik. roth = j 208 4. Elektrodynamik 4 Elektrodynamik Die Kapitel 2 und 3 haben gezeigt, dass sich elektrostatische und magnetostatische Probleme völlig unabhängig voneinander behandeln lassen. Gewisse formale Analogien

Mehr

Induktion 1. Induktion Phänomenologie 2. Induktion in einem zeitlich veränderlichen Magnetfeld:

Induktion 1. Induktion Phänomenologie 2. Induktion in einem zeitlich veränderlichen Magnetfeld: Induktion. Induktion Phänomenologie. Induktion in einem zeitlich veränderlichen Magnetfeld: i. Induktionsgesetz ii. enzsche Regel iii. Wirbelströme 3. Induktivität einer eiteranordnung: i. Gegeninduktivität

Mehr

Versuch 14 Magnetfeld von Spulen

Versuch 14 Magnetfeld von Spulen Physikalisches Praktikum Versuch 14 Magnetfeld von Spulen Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 5..7 Katharina Rabe Assistent: Tobias Liese kathinka1984@yahoo.de

Mehr

Korrekturen 1 zur Elektrodynamik, 5. Auflage, 2008

Korrekturen 1 zur Elektrodynamik, 5. Auflage, 2008 Korrekturen 1 zur Elektrodynamik, 5 Auflage, 2008 Seite 91: Gleichung (1011) wird korrigiert zu q Φ(r, θ) = r r 0 = q r 2 + r0 2 2 rr 0 cos θ (1011) Seite 92: Die Zeile nach (1014) muss lauten: Der Vergleich

Mehr

Elektrische und ^magnetische Felder

Elektrische und ^magnetische Felder Marlene Marinescu Elektrische und ^magnetische Felder Eine praxisorientierte Einführung Zweite, vollständig neu bearbeitete Auflage * j Springer I nhaltsverzeichnis 1 Elektrostatische Felder 1 1.1 Wesen

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen 1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die

Mehr

df B = d Φ(F), F = C. (7.1)

df B = d Φ(F), F = C. (7.1) Kapitel 7 Maxwell-Gleichungen 7.1 Induktionsgesetz araday beobachtete 1831, dass in einer Leiterschleife C ein elektrischer Strom entsteht, wenn ein in der Nähe befindlicher Magnet bewegt oder die Leiterschleife

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2 IK Induktion Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfelder....................... 2 2.2 Spule............................ 2

Mehr

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 )

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) Induktionsbeispiele Rotierende eiterschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) A φ B ω Induktionsspannung: U ind = dφ m = AB [ ω sin(ωt + φ 0 )] = ABω sin(ωt + φ 0 ) (Wechselspannung)

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2011-1 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

PS III - Rechentest

PS III - Rechentest Grundlagen der Elektrotechnik PS III - Rechentest 31.03.2010 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 Summe Punkte 12 15 9 9 15 60 erreicht Hinweise: Schreiben Sie auf das Deckblatt Ihren Namen und Matr.

Mehr