Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung"

Transkript

1 Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk Bedgte Wahrschelchket ud stochastsche Uabhäggket Zu Aufgabe 1) Se X de zufällge Lebesdauer ees Bautels ud es gelte X > 200h) = 0,5 sowe X > 100 h) = 0,8. We groß st de Wahrschelchket dafür, dass e Bauelemet, welches berets 100 h überlebt hat auch 200 h überlebt? Lösug: Wr defere de Eregsse A = X>200h ud B=X>100h. Da sd gegebe: =0,5 ud =0,8 ud gesucht: A/ = X>200/X>100). Es glt ach Defto der bedgte Wahrschelchket: X 200 X 100) X 200) 0,5 5 X 200 / X 100) X 100) X 100) 0,8 8 Zu Aufgabe 2) E Bautel wrd 2 Tests T1 ud T2 getestet. De Wahrschelchket dafür T1 zu bestehe se 0,7. De Wahrschelchket T2 zu bestehe hägt vo T1 ab: st T1 bestade worde, so besteht das Bautel T2 mt der Wahrschelchket 0,8, sost st se 0,5. We groß st de Wahrschelchket dafür, bede Tests zu bestehe? Lösug: Se T1 = Bautel besteht Test T1 ud T2 = Bautel besteht Test T2. Da st: T1T 2) T 2 / T1) T1) 0,8 0,7 0,56 Zu Aufgabe 3) Se G e System, welches aus 2 htereadergeschaltete Bauehete E1 ud E2 besteht. Das System G arbetet ur da fehlerfre, we bede Bauehete fehlerfre arbete. Bereche Se für de Szeare a) ud b) de Wahrschelchket dafür, dass das Gesamtsystem G fehlerfre arbetet! a) De Fehlerrate vo E2 wrd durch de vo E1 beeflusst. De Wahrschelchket, dass E2 fehlerfre arbetet uter der Vorrausetzug, dass auch E1 fehlerfre arbetet, st 0,90. De Wahrschelchket, dass E1 fehlerfre arbetet se 0,85. 1

2 b) De Fehlerrate vo E2 wrd cht durch de vo E1 beeflusst, d.h., E1 ud E2 verhalte sch stochastsch uabhägg!. De Wahrschelchket, dass E1 fehlerhaft arbetet se 20 % ud de Wahrschelchket dafür, dass E2 fehlerhaft arbetet se 10 %. Lösug: Se G= Gerät arbetet fehlerfre, E1= E1 arbetet fehlerfre, E2= E2 arbetet fehlerfre. Zu a) G) E1 E2) E2 / E1) E1) 0,9 0,85 0, 765 Zu b) G) E1 E2) E2) E1) (1 0,1) (1 0,2) 0, 72 Zuverlässgketstheore mt stochastscher Uabhäggket Eregsse A1,...,A heße gegesetg stochastsch uabhägg, we für jede Auswahl A (1),..., A (k) vo k aus dese Eregsse glt, dass de Verbudwahrschelchket glech dem Produkt der Ezelwahrschelchkete st: A (1)... A (k) ) = A (1) ) *... * A (k) ). Zu Aufgabe 4) G se e Gerät mt parallele Rehe, de jewels 2 Bauelemete Rehe geschaltet ethalte. Das Gerät fällt aus, falls alle Rehe ausfalle. Ee Rehe fällt aus, falls ees der bede Bauelemete der Rehe ausfällt. De Bauelemete E j falle stochastsch uabhägg voeader mt der gleche Wahrschelchket E j = ot OK) = 0,1 für alle = 1,...,; j = 1, 2, aus. Wevele Rehe muß das Gerät habe, damt de Ausfallwahrschelchket p des Gerätes 0,1 % cht überschretet, d.h. damt glt p P G ot OK 0, 001? Lösug: Es st: p P G ot OK uabhäggket 1 Uabhäggket 1 1 Rehe (1 E1 OK E2 OK)) (1 0,81) Rehe1 otok Rehe2 otok Rehe otok) otok) 1 (1 E1 OK) E2 OK)) 0,19 (1 Rehe 1 OK)) (1 (1 0,1) 2 ) Wr löse jetzt de Uglechug G otok) 0,19 0,001 ach auf! 2

3 Es st: l(0,001) 0,19 0,001 l(0,19) l(0,001) 4,159 l(0,19) D.h. dass Gerät muss mdestes =5 Rehe bestze! Satz vo Bayes ud totale Wahrschelchket Formel der totale Wahrschelchket : B B B Formel vo Bayes: A/ Zu Aufgabe 5) E praktsches Bespel für de Awedug des Satzes vo Bayes ud de Besoderhete be der Auswertug der Ergebsse st der sogeate Elsa-Test auf HIV. Der Elsa-Test hat zwe Kezeche: 1. De Sestvtät; das st de Wahrschelchket, mt der der Test korrekterwese e postves Ergebs lefert (Ads azegt), sofer de Perso fzert st. Dese Wahrschelchket beträgt 99.9%. 2. De Spezftät, das st de Wahrschelchket, dass der Test ebefalls korrekterwese ke postves Ergebs lefert, we de Perso cht fzert st. Bem Elsa-Test beträgt se 99.5%. Weterh se de Prävalez, das st de Häufgket der HIV-Ifekto eer bestmmte Bevölkerugsgruppe glech 0,1%. a) Bereche Se de Wahrschelchket dafür, dass ee Perso tatsächlch fzert st, we se e postves Testresultat hat. b) Utersuche Se, we sch bem Elsa-Test de Wahrschelchket für e falsch postves Resultat (d.h. ee als HIV-fzert dagostzerte Perso st gesud) ädert, we Se de Prävalez auf 0.01 ud 0.02 erhöhe (ud de Egeschafte des Tests, also Sestvtät ud Spezftät, sost uverädert lasse). Was stelle Se fest? c) Bereche Se für ee Prävalez vo 0,1% de Wahrschelchket dafür, dass ee Perso tatsächlch cht fzert st, we se e egatves Testresultat hat. Lösug: Um das formal zu fasse, übersetze wr de Agabe formale Schrebwese. Gegebe sd zwe Eregsse: 3

4 Für dese Eregsse sd folgede Wahrschelchkete bekat: = 0,001 Prävalez B/ = 0,999 B / = 0,995 Gesucht: Zu a) A/, Zu b) A /, Zu c) A / für verschedee (= 0,01 ud 0,02) Lösug zu a) Damt ergbt sch für de Wahrschelchket für das Vorlege eer Ifekto be postvem Testergebs: D.h., es kommt ee relatv gerge Wahrschelchket zustade, dass jemad tatsächlch fzert st, we er e postves Testresultat hat. Adersherum: Mt großer Wahrschelchket erhält er e falsch postves Ergebs A / 1 A/ 1 0,167 0,833 wrd also zu Urecht beuruhgt. Zu b) Wr erhöhe de Prävalez auf 0.01, also = 0,01 bzw. 0,02 ud lasse Sestvtät ud Spezftät uberückschtgt. Da ädert sch de Wahrschelchket für das Vorlege eer Ifekto be postvem Testergebs we folgt: Für = 0,01 Für = 0,02 4

5 Wr sehe, dass de Wahrschelchket für e falsch postves Ergebs stark vo der Prävalez (Häufgket des Auftretes der HIV-Krakhet der Bevölkerug) st. Je kleer dese Häufgket st, desto größer st de Wahrschelchket ees falsch postve Ergebsses. Ist gerg, = 0,1%, so st be eem postve Testergebs de Wahrschelchket ur ca. 16,7%, dass tatsächlch ee Ifekto vorlegt. Für = 1% erhöht sch dese Wahrschelchket berets auf ca. 67 % ud für = 80% Zu c) B ,999 0, A 1 1 (0,999 0,001 0,005 0,999) 0, D.h., mt ahezu 100 % Scherhet st ee Perso tatsächlch gesud, we se e egatves Testergebs hat. (Das Patetersko st glech 0). Satz vo Bayes ud totale Wahrschelchket für mehr als 2 Eregsse See A1,...,A Eregsse aus der Grudmege mt folgede Egeschafte: 1. A A j für j (kee 2 Eregsse trete glechzetg e) 2. A 1 A2... A (A blde ee vollstädge Zerlegug vo ) Da glt: Formel der totale Wahrschelchket : Formel vo Bayes: A / B A ) A ) 1 B / A ) A ) Zu Aufgabe 6) Ee Frma bezeht jewels 30 %, 20% bzw. 50% vo beötgte Tele vo 3 verschedee Zuleferer Z1, Z2 bzw. Z3. Über de Ausschussrate (Atel der defekte Tele uter de geleferte) se bekat, dass se be Z1 1%, be Z2 ud Z3 2% bzw. 0,5 % beträgt. a) We vel % Ausschuss (Eregs erhält de Frma sgesamt? b) Mt welcher Wahrschelchket stammt e defektes Tel vo Z1? c) Sd de bede Eregsse: Tel st Ausschuss ud Tel stammt vo Zuleferer Z1 stochastsch uabhägg voeader? (Begrüdug!) Lösug: Wr defere folgede Eregsse: Z = Tel kommt vo Zuleferer Z A = Tel st Ausschuss Da sd folgede Wahrschelchkete gegebe: A/Z1) = 0,01 Z1)=0,3 5

6 A/Z2)= 0,005 A/Z3)=0,005 Z2)=0,2 Z3)=0,5 Zu a) = A/Z1)Z1)+A/Z2)Z2)+A/Z3)Z3) = 0,0065 Zu b) Z1/ = A/Z1)Z1) / = 0,003/0,0065 = 0,6415 Zu c) = 0,0065 A/Z1) = 0,01 Demzufolge sd A ud Z1 cht stochastsch uabhägg (A hägt vo Z1 ab)! 6

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Satz vo Bayes ud totale

Mehr

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes Lösuge zu Übugs-latt 7 Klasssche Wahrschelchet Glücsspele, edgte Wt, Uabhägget, Satz vo ayes Master M Höhere ud gewadte Mathemat rof. Dr.. Grabows De folgede ufgabe löse wr uter Verwedug der bede ombatorsche

Mehr

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: )

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: ) Höhere Mathemat KI Master rof. Dr..Grabows E-ost: grabows@htw-saarlad.de Satz vo ayes ud totale Wahrschelchet Zu ufgabe anachwes der Formel I ud II: eh.: I. Formel der totale Wahrschelchet: ewes: Es glt:...

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug

Mehr

Erzeugen und Testen von Zufallszahlen

Erzeugen und Testen von Zufallszahlen Erzeuge ud Teste vo Zufallszahle Jürge Zumdck Eletug Ee Lergruppe wrd aufgefordert 00 Zufallszahle (0 oder ) ach folgede Methode zu erzeuge: De Hälfte der Gruppe beutzt a) ee Müze oder b) de Zufallszahlefukto

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

Grundlagen der Entscheidungstheorie

Grundlagen der Entscheidungstheorie Kaptel 0 Grudlage der Etschedugstheore B. 0 (Gegestad) De Etschedugstheore befasst sch mt dem Etschedugsverhalte vo Idvdue ud Gruppe. Se besteht aus we Telgebete. Deskrptve Etschedugstheore De deskrptve

Mehr

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF Alteratve Darstellug des -Stchprobetests für Atele DCF CF Total 111 11 3 Respose 43 6 69 Resp. Rate 0,387 0,3 0,309 Beobachtete Respose No Respose Total absolut DCF 43 68 111 CF 6 86 11 69 154 3 Be Gültgket

Mehr

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert Physkalsche Messuge sd mmer fehlerbehaftet! Der wahre Wert st cht ermttelbar. Der wahre Wert st cht detsch mt dem Mttelwert Der Wert legt mt eer gewsse Wahrschelchket (Kofdezahl bzw. Vertrauesveau %) m

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

19. Amortisierte Analyse

19. Amortisierte Analyse 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe.

Mehr

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung 1 Mathe Formel Statstk ud Wahrschelchketsrechug Jör Horstma, 6.10.003. Alle Agabe ohe Gewähr. http://www.ba-stuttgart.de/ w017/ 1.1 Grudlage Ezelklasse [a ; b [ Klassewete Klassemtte Mttelwert b a = w

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP)

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP) Zu Aufgabe 1) Sd folgede Merkmale dskret oder stetg? a) De durch ee wahlberechtgte Perso der BRD gewählte Parte be der Budestagswahl. b) Kraftstoffverbrauch ees Persoekraftwages auf 100 km. c) Zahl der

Mehr

II. Wahrscheinlichkeitsrechnung

II. Wahrscheinlichkeitsrechnung II. Wahrschelchketsrechug Vorlesugsmtschrft - Kurzfassug Prof. Dr. rer. at. B. Grabowsk HTW des Saarlades 005 Ihalt II. Wahrschelchketsrechug INHALTSVERZEICHNIS GRUNDLAGEN / DEFINITION DER WAHRSCHEINLICHKEIT...3.

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

Konzentrationsanalyse

Konzentrationsanalyse Kaptel V Kozetratosaalyse B. 5.. Im Allgemee wrd aus statstscher Scht zwsche - absoluter ud - relatver Kozetrato uterschede Der absolute ud relatve Aspekt wrd och emal utertelt - statscher ud - dyamscher

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

Verteilungen und Schätzungen

Verteilungen und Schätzungen Verteluge ud Schätzuge Zufallseperet Grudbegrffe Vorgag ach eer bestte Vorschrft ausgeführt ( Przp) belebg oft wederholbar se Ergebs st zufallsabhägg be ehralge Durchführug des Eperets beeflusse de Ergebsse

Mehr

Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ).

Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ). - rudlage der Elektrotechk - 60 22..04 4 Der komplzertere elektrsche lechstromkres 4. Kombato vo Verbraucher 4.. Sere- oder eheschaltug vo Wderstäde We ma mehrere Verbraucher ehe schaltet, so werde alle

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

2.2 Rangkorrelation nach Spearman

2.2 Rangkorrelation nach Spearman . Ragkorrelato ach Spearma Wr wolle desem Kaptel de Ragkorrelatoskoeffzete ach Spearma bereche. De erste Daterehe besteht aus Realseruge x, x,..., x der uabhägg ud detsch stetg vertelte Zufallsvarable

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

Einführung in die Stochastik 3. Übungsblatt

Einführung in die Stochastik 3. Übungsblatt Eführug de Stochastk 3. Übugsblatt Fachberech Mathematk SS 0 M. Kohler 06.05.0 A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 9 (4 Pukte) Der Mkrozesus st ee statstsche Erhebug. Herbe werde ach bestmmte

Mehr

Prinzip "Proportional Reduction of Error" (PRE)

Prinzip Proportional Reduction of Error (PRE) Dr. Reate Prust: Eführug quattatve Forschugsmethode Bvarate Maße: Przp "Proportoal Reducto of Error" (PRE) E 1 - E Fehler be Regel 1 - Fehler be Regel = E 1 Fehler be Regel 1 Regel 1: Vorhersageregel ur

Mehr

Übung Statistik II SS 2006 Musterlösung Arbeitsblatt 6

Übung Statistik II SS 2006 Musterlösung Arbeitsblatt 6 Ihalt: Efaktorelle Varazaalyse Bortz: Bortz Kap. 7.0-7. Übug Statstk II SS 006 Musterlösug rbetsblatt 6 ufgabe 1: Nee Se de Verfahre für Mttelwertsvergleche, de Se bsher für tervallskalerte Date kee gelert

Mehr

Eigenwerteinschließungen I

Eigenwerteinschließungen I auptsemar: Numersche Lösuge für Egewertaufgabe Egewerteschleßuge I Referet: Wolfgag Wesselsky Glederug Eletug Kodto vo Egewerte 3 Eschleßugssätze Bauer-Fke, Gershgor, Wlkso, Bedxo 4 Zusatz: Courat / Weyl

Mehr

Der Approximationssatz von Weierstraß

Der Approximationssatz von Weierstraß Der Approxmatossatz vo Weerstraß Ja Köster 22. Oktober 2007 1 Eführug Aus der Aalyss wsse wr, dass sch aalytsche Fuktoe durch Potezrehe der Form f(x = a 0 + a 1 x + a 2 x 2 +... darstelle lasse. Dabe kovergert

Mehr

II. Wahrscheinlichkeitsrechnung

II. Wahrscheinlichkeitsrechnung II. Wahrschelchketsrechug Vorlesugsmtschrft - Kurzfassug Prof. Dr. rer. at. B. Grabowsk HTW des Saarlades 00 II. Wahrschelchketsrechug INHALTSVERZEICHNIS GRUNDLAGEN / DEFINITION DER WAHRSCHEINLICHKEIT...3.

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation Thea 5: Reduzerte Dateaforderuge II: Nave Dversfkato roble: Klealeger verfüge oft cht eal über hrechede Iforatoe zur Awedug des Sgle-Idex-Modells. I wetere: Herletug eer Hadlugsepfehlug für de Fall fehleder

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

Erinnerung: Funktionslernen. 5.6 Support Vector Maschines (SVM) Beispiel: Funktionenlernen. Reale Beispiele

Erinnerung: Funktionslernen. 5.6 Support Vector Maschines (SVM) Beispiel: Funktionenlernen. Reale Beispiele Ererug: Fuktoslere 5.6 Support Vector Masches (SVM) überomme vo Stefa Rüpg, Kathara Mork Uverstät Dortmud Vorlesug Maschelles Lere ud Data Mg WS 2002/03 Gegebe: Bespele X LE de ahad eer Wahrschelchketsvertelug

Mehr

Korrelations- und Assoziationsmaße

Korrelations- und Assoziationsmaße k m χ : j l r +. Zusammehagsmaße ( o e ) jl jl e jl Korrelatos- ud Assozatosmaße e jl 5 Merkmal Y Summe X b b m a H (a,b) H (a,b). a H (a,b) H (a,b). Summe.. Zusammehagsmaße Eführug Sche- ud Noses-Korrelato

Mehr

Definitionen und Aussagen zu Potenzreihen

Definitionen und Aussagen zu Potenzreihen Deftoe ud Aussage zu Potezrehe User bsherges Repertore a stetge Abblduge basert auf ratoale Fuktoe, also Ausdrücke, dee Addto, Subtrakto, Multplkato ud Dvso vorkomme. Auf dese Wese sd aber Epoetalfukto,

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Eplzte Defto Reursve Defto 4. Gleder eer vorher deferte Folge bereche E Gled Mehrere Gleder 6 4 5 4.3 Ee Folge defere ud ege hrer

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,

Mehr

Einen Spieler interessiert nicht, wie er gewinnt, sondern ob und wie viel er gewinnt.

Einen Spieler interessiert nicht, wie er gewinnt, sondern ob und wie viel er gewinnt. III Zufallsgröße Bespel ud Defto Bespel: Dremal Müzwurf Spel: Esatz, we cht zwe gleche htereader 3 Auszahlug. Ω = {(x x x3) x,x,x3 {Z,K}} Retert sch deses Spel? Dabe geht es ur um de Gew! Also: Defto Gew:

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statstk für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse m Gruppe

Mehr

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage

Mehr

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien: Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet

Mehr

Mehrdimensionale Häufigkeitsverteilungen (1)

Mehrdimensionale Häufigkeitsverteilungen (1) Mehrdmesoale Häufgketsverteluge () - De Begrffe uvarat ud bvarat - Vo uvarate (edmesoale) statstsche Aalyse sprcht ma, we pro Perso ur e Merkmal tabellarsche oder grafsche Häufgketsverteluge oder be der

Mehr

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen .. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt

Mehr

Finanzmathe. -Zinsrechnung November 2004 Anne Grund & Mathias Jahn Zinsrechnung 2

Finanzmathe. -Zinsrechnung November 2004 Anne Grund & Mathias Jahn Zinsrechnung 2 Fazmathe -Zsrechug -. November 00 Ae Grud & Mathas Jah Zsrechug. Das Bruttoladsrodukt ( Prese vo 980 der Budesreublk betrug 970. Mrd.DM ud 980.8, Mrd. DM Bereche Se de durchschttlche Wachstumsrate ro Jahr

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr

v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr 5. De Stze vo Sylow Im gaze Abschtt st G ee edlche Grue, 4 #( G). 5.. Problem: Gbt es zu jedem Teler t vo ( tj ) ee Utergrue H mt #( H) = t? We ja, wevele? Gegebesel: 9 Utergrue H vo G = A 5 mt #( H) =

Mehr

Z Z, kurz. Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz. Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombator Problemstellug Ausgagsput be ombatorsche Fragestelluge st mmer ee edlche Mege M, aus dere Elemete ma edlche Zusammestelluge vo Elemete aus M bldet Formal gesproche bedeutet das: Ist M a,, a ee

Mehr

STOCHASTIK. Wahrscheinlichkeitstheorie und mathematische Statistik. Prof. Dr. Barbara Grabowski. Hochschule für Technik und Wirtschaft des Saarlandes

STOCHASTIK. Wahrscheinlichkeitstheorie und mathematische Statistik. Prof. Dr. Barbara Grabowski. Hochschule für Technik und Wirtschaft des Saarlandes STOCHASTIK Wahrschelchketstheore ud mathematsche Statstk Prof. Dr. Barbara Grabowsk Hochschule für Techk ud Wrtschaft des Saarlades Lehrehet zur Kursehet Mathematk für Iformatker m Ferstudegag Allgemee

Mehr

STOCHASTIK. Wahrscheinlichkeitstheorie und mathematische Statistik. Prof. Dr. Barbara Grabowski. Hochschule für Technik und Wirtschaft des Saarlandes

STOCHASTIK. Wahrscheinlichkeitstheorie und mathematische Statistik. Prof. Dr. Barbara Grabowski. Hochschule für Technik und Wirtschaft des Saarlandes STOCHASTIK Wahrschelchketstheore ud mathematsche Statstk Prof. Dr. Barbara Grabowsk Hochschule für Techk ud Wrtschaft des Saarlades Eletug - I - Eletug Dese Kursehet det der Vermttlug vo Grudketsse auf

Mehr

Induktion am Beispiel des Pascalschen Dreiecks

Induktion am Beispiel des Pascalschen Dreiecks Iduto am Bespel des Pascalsche Dreecs Alexader Rehold Coldtz 0.02.2005 Eletug vollstädge Iduto De vollstädge Iduto st ebe dem drete ud drete Bewesverfahre ees der wchtgste der Mathemat. Eher bespelhaft

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK Mathematk: Mag. Schmd Wolfgag & LehrerIeteam Arbetsblatt 7-7 7. Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK STATISTISCHE GRUNDBEGRIFFE Statstk gledert sch zwe Telbereche De Beschrebede

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statst für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Mermal wurde 3 Gruppe beobachtet ud Form der folgede Häufgetstabelle berchtet: Klasse m Gruppe

Mehr

Grundbegriffe. Verknüpfungen. Verknüpfungen. Rechenregeln für Mengenverknüpfungen

Grundbegriffe. Verknüpfungen. Verknüpfungen. Rechenregeln für Mengenverknüpfungen Grudbegrffe Verüpfuge Zufallsexpermet Grudraum/ Eregsraum Ω Elemetareregs ω Eregs uter gleche Bedguge zumdest gedalch belebg oft wederholbarer Vorgag Mege der möglche Versuchsausgäge st beat oreter Ausgag

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quattatve BWL. el: Fazwtschaft Mag. oáš Sedlačk Lehstuhl fü Fazdestlestuge Uvestät We Quattatve BWL: Fazwtschaft Ogasatosches Isgesat wd es 6 ee gebe (5 Ehete + Klausu Klausu fdet a D 7. Jaua 009 statt

Mehr

Investmentfonds Kennzahlen- berechnung

Investmentfonds Kennzahlen- berechnung Ivestmetfods Kezahle- berechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 0.0.2007 Ivestmetfods - Kezahleberechug 2 Ivestmetfods - Kezahleberechug Ihalt erformace 4. Berechug der erformace

Mehr

FH D WS 2007/08 Prof. Dr. Horst Peters Dezember 2007

FH D WS 2007/08 Prof. Dr. Horst Peters Dezember 2007 FH D WS 007/08 Prof. Dr. Horst Peters Dezember 007 Formelsammlug Wahrschelchetsrechug ud dutve Statst m Bachelor-Studegag Busess Admstrato (Modul BWL B) Sete / 6 Formelsammlug Wahrschelchetsrechug ud Idutve

Mehr

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n mthphys-ole Alyss. Klsse Techk Itegrlrechug Vertefug des Itegrlegrffs De Itegrlrechug ht ds Zel, de Flächehlt krummlg egrezter Flächestücke zu ereche. Be der äherugswese Berechug der Fläche uter Polyomfuktoe

Mehr

Abschnitt III: Gleichungen, Ungleichungen, lineare Gleichungssysteme, Summen. x 2x

Abschnitt III: Gleichungen, Ungleichungen, lineare Gleichungssysteme, Summen. x 2x Thema: Glechuge 4 4 a) 3 ; b) 3 6 4 1 1 Swatje hat zwe Sparbücher mt glech hohe Beträge. Ihr Bruder Horst Kev hat ur e Sparbuch, auf dem dremal so vel Geld st we auf eem Sparbuch vo Swatje. Horst Kevs

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik Wahrschelchketsrechug ud Statstk ) Grudbegrffe der Statstk. Eletug Statstsche Methode dee zur Beurtelug vo Messuge oder Zähluge, kurz Beobachtuge geat, we se us m täglche Lebe velfach begege. Aufgabe der

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

7/7/06. Formulierung mittels Dynamischer Programmierung. Berechnungsbeispiel. Gewinnung der optimalen Reihenfolge

7/7/06. Formulierung mittels Dynamischer Programmierung. Berechnungsbeispiel. Gewinnung der optimalen Reihenfolge Formulerug mttels Dyamscher Programmerug Berechugsbespel Beobachtug: de Azahl der Telprobleme A j mt j st ur Folgerug: der aïve rekursve Algo berechet vele Telprobleme mehrfach! Idee: Bottom-up-Berechug

Mehr

Grundbegriffe. Verknüpfungen. Verknüpfungen. Rechenregeln für Mengenverknüpfungen

Grundbegriffe. Verknüpfungen. Verknüpfungen. Rechenregeln für Mengenverknüpfungen Grudbegrffe Verüpfuge Zufallsexpermet Grudraum/ Eregsraum Ω Elemetareregs ω Eregs uter gleche Bedguge (zumdest gedalch) belebg oft wederholbarer Vorgag Mege der möglche Versuchsausgäge st beat oreter Ausgag

Mehr

Ralf Korn. Elementare Finanzmathematik

Ralf Korn. Elementare Finanzmathematik Ralf Kor Elemetare Fazmathematk Ihaltsverzechs. Eletug Exkurs : Akte Begrffe, Grudlage ud Geschchte. We modellert ma Aktekurse? 4. Edlche E-Perode-Modelle 6. Edlche Mehr-Perode-Modelle 3.3 Das Black-Scholes-Modell

Mehr

Vorlesung Reaktionskinetik

Vorlesung Reaktionskinetik Karlsruher Isttut für Techologe Isttut für Physkalsche Cheme Vorlesug Reaktosketk Sommersemester 3 Prof Dr M Olzma Texterfassug: Isabelle Weber Grudbegrffe Gegestad der Reaktosketk Physkalsche Cheme reaktver

Mehr

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Erwartugswert eer Summe vo Zufallsvarable mt jewels de Erwartugswert x (Y Y Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Varaz eer Summe

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

F 6-2 π. Seitenumbruch

F 6-2 π. Seitenumbruch 6 trebsauslegug Für dese ckelprozess üsse de otore so ausgelegt werde, dass dese Fahrbetreb cht überlastet werde. Herfür üsse de ezele asseträghetsoete [7] der Bautele (otor, etrebe, ckler ud Ulekrolle)

Mehr

Deskriptive Statistik behaftet.

Deskriptive Statistik behaftet. De Statstk beschäftgt sch mt Masseerscheuge, be dee de dahterstehede Ezeleregsse mest zufällg sd. Statstk beutzt de Methode der Wahrschelchketsrechug. Fudametalregel: Statstsche Aussage bezehe sch e auf

Mehr

Es ist dann nämlich 2 2 2

Es ist dann nämlich 2 2 2 Ege Bemerkuge zum Sklrprodukt See U,V,W Vektorräume üer eem Körper K. Ee Aldug ϕ :U V W heßt ler, we λ, λ, µ, µ K, u, u U, v, v V : ϕ( λ u + λ u, µ v + µ v ) = λ µ ϕ( u, v ) + λ µ ϕ( u, v ) + λ µ ϕ( u,

Mehr

Grundbegriffe. Verknüpfungen. Verknüpfungen. Rechenregeln für Mengenverknüpfungen

Grundbegriffe. Verknüpfungen. Verknüpfungen. Rechenregeln für Mengenverknüpfungen Grudbegrffe Verüpfuge Zufallsexpermet Grudraum/ Eregsraum Ω Elemetareregs ω Eregs uter gleche Bedguge (zumdest gedalch) belebg oft wederholbarer Vorgag Mege der möglche Versuchsausgäge st beat oreter Ausgag

Mehr

Statistik. (Inferenzstatistik)

Statistik. (Inferenzstatistik) Statstk Mathematsche Hlfswsseschaft mt der Aufgabe, Methode für de Sammlug, Aufberetug, Aalyse ud Iterpretato vo umersche Date beretzustelle, um de Struktur vo Masseerscheuge zu erkee. Deskrptve (beschrebede)

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 3. Entwicklungssatz der Schaltalgebra

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 3. Entwicklungssatz der Schaltalgebra Grudlage der Iormatk Grudlage der Dgtaltechk 3. Etwcklugssatz der Schaltalgebra Pro. Dr.-Ig. Jürge Tech Dr.-Ig. Chrsta Haubelt Lehrstuhl ür Hardware-Sotware Sotware-Co-Desg Grudlage der Dgtaltechk Etwcklugssatz

Mehr

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski Tel.:

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski   Tel.: MST Übug Mthemtk Prof.Dr.B.Grbowsk e-ml: grbowsk@htw-srld.de Tel.: 87- Iverse Mtrze ufgbe : Bereche Se de Iverse Mtr zu folgede Mtrze. Prüfe Se Ihr Ergebs, dem Se - bereche! b dg-,,-,,-, c 7 d ufgbe :

Mehr

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion AG Kstrut KONTRUKTION Plaetegetrebe (Umlaufgetrebe) rpt TU Berl, AG Kstrut Plaetegetrebe Vrtele Plaetegetrebe: e Achsversatz z.t. sehr grße Über-/Utersetzuge möglch grße Tragraft guter Wrugsgrad Rhlff

Mehr

Aufgaben zur Festigkeitslehre - ausführlich gelöst

Aufgaben zur Festigkeitslehre - ausführlich gelöst ufge ur Festgketslere - usfürlc gelöst Mt Grudegrffe, Formel, Frge, tworte vo Gerrd Kppste üerretet ufge ur Festgketslere - usfürlc gelöst Kppste scell ud portofre erältlc e eck-sop.de DE FCHBUCHHNDLUNG

Mehr

Statistische Kennzahlen für die Streuung

Statistische Kennzahlen für die Streuung Statstsche Kezahle für de Streuug Ordale Date,..., W X,,..., WX {(j) j,..., J} () < () < < (J) {(),...,(J)} (3) () 3 () Geordete Lste k X (k) () () 3 () Smpso s D ud H() sd awedbar, allerdgs wrd Iformato

Mehr

1 Elementare Finanzmathematik

1 Elementare Finanzmathematik Elemetare Fazmathemat 4 Elemetare Fazmathemat Zel: Bewertug ud Verglech atueller ud zuüftger Geldströme. Determstsche Zahlugsströme Defto: E determstscher Zahlugsstrom st ee Futo Z: N R, de jedem Zetput

Mehr

KOMBINATORIK. Doina Logofătu Hochschule München, FK und 15 April 2008

KOMBINATORIK. Doina Logofătu Hochschule München, FK und 15 April 2008 KOMINORIK Doa Logofătu Hochschule Müche, FK 7 4 ud prl 8 Was st Kombator? espele für Frage ud ufgabe aus der Kombator. Was mache wr heute? (Dsusso). Przp der Iluso ud Eluso. Schubfachprzp. Permutatoe 4.

Mehr

Verdichtete Informationen

Verdichtete Informationen Verdchtete Iormatoe Maßzahle Statstke be Stchprobe Parameter be Grudgesamthete Maßzahle zur Beschrebug uvarater Verteluge Maßzahle der zetrale Tedez (Mttelwerte) Maßzahle der Varabltät (Streuugswerte)

Mehr

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen?

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen? Aufgabe 1 (60 Pukte) De Gesellschaft XYZ betet als prvate Reteverscherug ee Idepolce gege Emalbetrag a mt eer Aufschubfrst vo zwe Jahre. Ivestert wrd e so geates IdeZertfkat, das be Retebeg das folgede

Mehr