Fragen und Aufgaben zum Grundwissen Mathematik

Größe: px
Ab Seite anzeigen:

Download "Fragen und Aufgaben zum Grundwissen Mathematik"

Transkript

1 Natürliche Zahlen Kapitel I ZÄHLEN UND ORDNEN GROßE ZAHLEN UND ZEHNERPOTENZEN Acht Schwimmer bestreiten einen Wettkampf. Miriam gewinnt die Bronzemedaille. Franz wird Vorletzter. Welche Platzierung haben die beiden erreicht? Miriam belegt den dritten, Franz den siebten Platz. Ordne der Größe nach: 104; 35; 47; 16; 58 16<35<47<58<104 Bestimme den Vorgänger und den Nachfolger: 52 und 1099 Vorgänger Zahl Nachfolger Lies drei Millionen dreiundsiebzigtausendachtzig Schreibe mit Hilfe einer Zehnerpotenz: = Schreibe ohne Zehnerpotenz: Schreibe mit Ziffern: dreiundzwanzig Millionen achthundertfünfundsiebzigtausend einundzwanzig DEZIMALSYSTEM Wie lautet die größte sechsstellige Zahl, die genau drei verschiedene Ziffern enthält? Wie lautet die kleinste sechsstellige Zahl, die genau drei verschiedene Ziffern enthält?

2 Natürliche Zahlen Kapitel I ZAHLENSTRAHL Gib bei jeder Teilaufgabe an, auf welche Zahlen die Pfeile zeigen. Finde zuerst den Maßstab heraus. Welchem Abstand entspricht ein Kästchen (K)? a) 1K ˆ 1; A=1; B=4; C=13; D=19; E=22 b) 1K ˆ 10; A=10; B=40; C=130; D=190; E=220 c) 1K ˆ 30:15 2 ; A=2; B=4 2=8; C=30-2 2=26; D=30+4 2=38; E=30+7 2=44 d) 1K ˆ 24: 8 3 ; A=3; B=4 3=12; C=24+5 3=39; D= =57; E= =66

3 Natürliche Zahlen Kapitel I DIAGRAMM Runde die Höhenangaben auf Hunderter und stelle die gerundeten Werte in einem passenden Diagramm dar. Runde sinnvoll! Überlege dir einen geeigneten Maßstab! Zugspitze 2964 m 3000 m Beispiel Säulendiagramm Mont Blanc 4884 m 4900 m Großer Arber 1456 m 1500 m Ochsenkopf 1023 m 1000 m Mädelegabel 2645 m 2600 m Kampenwand 1668 m 1700 m Höhe in m Zugsp. Mont B. Gr. Arber O.Kopf Mädeleg. K.wand Hinweis: Beim Lesen von Diagrammen: Achseneinteilung beachten!

4 Natürliche Zahlen Kapitel I KOORDINATENSYSTEME Zeichne ein Koordinatensystem (KOS) und trage die folgenden Punkte ein: A(2 2); B(4 3); C(3 7) Beachte die größte x- und y-koordinate, daraus ergibt sich die Länge der Achsen! Beschriftung der Achsen nicht vergessen und Pfeile nur nach rechts und oben!

5 Natürliche Zahlen Kapitel I ZAHLENMENGEN Beispiele: Primzahlen = {2; 3; 5; 7; 11; }, Quadratzahlen = {1; 4; 9; 16, }, Teilermengen z. B. T(24) = {1; 2; 3; 4; 6; 8; 12; 24}, Vielfachmengen z. B. V(7) = {7; 14; 21; } Überprüfe die Behauptungen! a) 9 T36 b) 3,1 NI ( 3,1 ist kein Element der natürlichen Zahlen ) a) Überlegung: 36 : 9 = 4 ohne Rest, d.h. 9 ist ein Teiler von 36. Also ist die Behauptung richtig! IN 1;2;3;4;5;..., d.h. 3,1 NI, die Behauptung ist richtig! b) RUNDEN Runde auf die vorgegebene Einheit: a) 475 cm (m) b) 4 kg 75 g (kg) a) Überlegung: 100 cm = 1 m ; 475 cm 5 m (7 an der Zehnerstelle Aufrunden) b) Überlegung: 1000g = 1 kg; 4 kg 75 g = 4075 g 4 kg

6 Addition und Subtraktion natürlicher Zahlen Kapitel II ADDIEREN UND SUBTRAHIEREN AM ZAHLENSTRAHL BEZEICHNUNGEN SCHRIFTLICHES ADDIEREN UND SUBTRAHIEREN Stelle den Term auf und Berechne ihn anschließend: Subtrahiere 28 von der Summe der Zahlen 312 und 115. Beachte, subtrahiere 4 von 10 bedeutet Von der Summe der Zahlen 312 und 115 soll also die Zahl 28 abgezogen werden. ( ) 28 = = 399 Beispiele: Ergänzen: Borgen:

7 Addition und Subtraktion natürlicher Zahlen Kapitel II KOMMUTATIVGESETZ (KG) UND ASSOZIATIVGESETZ (AG) GEMISCHTES ADDIEREN UND SUBTRAHIEREN OHNE KLAMMERN KG: Bei Summen dürfen die Summanden vertauscht werden: = Vorsicht, es gilt nicht: 15 4 = 4 15 AG: Klammern dürfen bei Summen beliebig versetzt werden: 27 + ( ) = ( ) Daraus entsteht ein Rechenvorteil! Vorsicht, es gilt nicht: = 27 (2+8). Der linke Term ergibt =33, der rechte Term ergibt = 17. Die Verwendung der Rechengesetze führt zu Rechenvorteilen Grundsätzlich wird von links nach rechts gerechnet Bsp.: = = = 135. Mit Hilfe des KG ist die Aufgabe viel leichter im Kopf zu rechnen. Kommutativgesetz (KG): Für alle natürlichen Zahlen a, b gilt: a + b = b + a Bsp.: = = ( ) ( ) = = 36 Zuerst: Sortieren der Plus- und Minusglieder. Dann: Summe der Plusglieder minus Summe der Minusglieder.

8 Addition und Subtraktion natürlicher Zahlen Kapitel II TERME Gliedere und berechne: = = 278 Differenz Summe Schreibe den Term ( ) (250 48) in Wortform. Subtrahiere die Differenz der Zahlen 250 und 48 von der Summe der Zahlen 475 und 25. oder: Der Term ist eine Differenz. Der Minuend ist die Summe der Zahlen 475 und 25, der Subtrahend ist die Differenz der Zahlen 250 und 48.

9 Addition und Subtraktion ganzer Zahlen Kapitel III GANZE ZAHLEN a) Hier dreht sich alles um die drei Zahlen 3, -7 und 0! In welchen der Zahlenmengen IN, IN0 bzw. Z sind die drei Zahlen jeweils enthalten? Lsg.: 3 Î IN, 3Î IN 0 und 3Î Z, -7 Î Z, 0 Î IN 0 und 0 Î Z Ordne die drei Zahlen, beginne mit der größten Zahl! Lsg.: 3 > 0 > -7 Wo befindet sich auf folgender Zahlengeraden die 0? Bestimme die Einheit! Lsg.: Einheit: 0,5 cm Welche der drei Zahlen hat den größten Betrag? Lsg.: 3 3; 7 7 ; 0 0; also die Zahl -7 hat den größten Betrag, nämlich 7 b) Trage die Punkte P(-3/2), Q(-1/-2), R(0/1) und S(4/-1) Überlege zuerst, wie groß das Koordinatensystem werden muss, indem Du die größte bzw. kleinste x-koordinate und die größte bzw. kleinste y-koordinate der gegebenen Punkte betrachtest P y 2 1 R Q -1-2 S x

10 Addition und Subtraktion ganzer Zahlen Kapitel III ADDIEREN UND SUBTRAHIEREN KOMMUTATIVGESETZ ASSOZIATIVGESETZ Berechne! ( 19) 68 (19 68) ( 68) ( 19) ( 68) (6819) ( 19) ( 68) (19 68) ( 68) (19) ( 68) (19 68) 87 Verschaffe Dir einen Rechenvorteil durch Anwendung Dir bekannter Rechengesetze! als Summe schreiben ( 19) ( 19) ( 19) 31 AG AG ( 19) KG AG

11 Geometrische Grundbegriffe Kapitel IV KÖRPER Welche Formen haben diese Gegenstände? Gib jeweils den entsprechenden geometrischen Grundkörper an! Würfel und Pyramide Kugel Prisma Kegel, Zylinder Quader und Quader PUNKTE, GERADEN, STRECKEN Zeichne [AB], [CA, BC und bestimme AB! A A C C B B AB 3,5 cm

12 Geometrische Grundbegriffe Kapitel IV GEOMETRISCHE LAGEBEZIEHUNGEN Suche ein Parallelenpaar und ein Paar senkrechter Geraden! h II i und g h oder g i k g h i SYMMETRIE Welche der Verkehrsschilder sind achsensymmetrisch? ( Die ersten drei Schilder.)

13 Geometrische Grundbegriffe Kapitel IV WINKEL Bestimme die Größen der Winkel und

14 Multiplikation und Division natürlicher Zahlen Kapitel V LERNINHALTE MULTIPLIZIEREN, DIVIDIEREN UND POTENZIEREN NATÜRLICHER ZAHLEN 1. Überschlage und berechne dann schriftlich Überschlag: = : 76 = 721 Überschlag: : 80 = Berechne. 8 2 = = 16 8² = 8 8 = = = = 21 7³ = = = Wie ändert sich der Wert eines Produktes, wenn man den ersten Faktor vervierfacht und den zweiten Faktor halbiert. Überprüfe an einem selbst gewählten Beispiel. Antwort: Der Wert verdoppelt sich. Beispiel: 3 8 = 24 und (3 4) (8 : 2) = 12 4 = Zerlege in Primfaktoren = = = = = = 2³ 5 7² RECHENGESETZE UND RECHENVORTEILE 1. Berechne. a) = = 141 Punkt vor Strich! b) (5 + 17) 8 = 22 8 = 176 Klammern zuerst! c) 2 4 : 4 3 (2 7)² = 2 4 : ² Klammern zuerst! = 16 : Hoch vor Punkt! = Punkt vor Strich! = 584

15 Multiplikation und Division natürlicher Zahlen 2. Berechne und gib das verwendete Rechengesetz an. a) 8 (13 125) = 8 (125 13) Kommutativgesetz = (8 125) 13 Assoziativgesetz = = b) 25 (10 + 4) = Distributivgesetz = = 350 c) (240 48) : 12 = 240 : : 12 Distributivgesetz = 20 4 = 16 d) = 17 (15 + 5) Distributivgesetz = = 340 Kapitel V TERME 1. Gliedere und berechne. [146 - ( :9 )] 11 Quotient Summe Differenz Produkt Rechnung: [146 ( : 9)] 11 = [146 ( ) ] 11 = [ ] 11 = = Stelle den Term auf und berechne. Subtrahiere das Doppelte der Summe aus 431 und 87 vom Quotienten aus 64 und : 16 2 ( ) = = = 1032

16 Multiplikation und Division natürlicher Zahlen Kapitel V ABZÄHLEN MIT BAUMDIAGRAMMEN Florian hat in einer Tüte drei rote und ein gelbes Gummibärchen. Er lässt seine drei Freunde Annette, Bastian und Carsten jeweils eines herausnehmen. Wie viele Möglichkeiten für die Verteilung der Gummibärchen gibt es? r g Annette r g r Bastian r g r r Carsten Es gibt vier verschiedene Möglichkeiten.

17 Multiplizieren und Dividieren ganzer Zahlen Kapitel VI MULTIPLIZIEREN UND DIVIDIEREN GANZER ZAHLEN 1. Berechne. a) 17 4 = 68 minus plus = minus b) ( 6) ( 12) = 72 minus minus = plus c) ( 2) 3 = ( 2) ( 2) ( 2) = 8 d) 2 4 = = Berechne. a) 48 : ( 6) = 8 plus : minus = minus b) ( 27) : ( 9) = 3 minus : minus = plus c) 0 : ( 23) = 0 d) ( 5) : 0 =?? Durch Null kann man nicht dividieren! 3. a) Welche Zahl muss man durch 7 dividieren, um 5 zu erhalten? : 7 = 5 = ( 5) ( 7) = 35 b) Welche Zahl muss man mit 12 multiplizieren, um 48 zu erhalten? ( 12) = 48 = 48 : ( 12) = 4 RECHENGESETZE UND RECHENVORTEILE Berechne indem du Rechenvorteile ausnutzt. a) ( 4) 13 ( 25) 3 = ( 4) ( 25) 13 3 Kommutativgesetz = Assoziativgesetz = 3900 b) ( 5) 99 = ( 5) (100 1) = ( 5) ( 5) ( 1) Distributivgesetz = = 495 c) ( 28) 43 = (8 28) 43 Distributivgesetz = = 860

18 Größen Kapitel VII UMRECHNEN VON GRÖßEN 1. Schreibe die Größe mit der in Klammern angegebenen Einheit. a) 18 m (cm) = 1800 cm b) mm (m) = 123,456 m c) 4 km 80 m (km) = 4,080 km d) 3,4 kg (g) = 3400 g e) 125 kg (t) = 0,125 t f) 3200 Ct ( ) = 32 g) 390 min (h) = 360 min + 30 min = 6 h + 0,5 h = 6,5 h h) 3 d 10 h (h) = 72 h + 10 h = 82 h i) 1 h (s) = 60 min = 3600 s 2. Schreibe in gemischten Einheiten. a) 2405 mm = 2000mm mm + 5 mm = 2 m 4 dm 5 mm b) 2002,02 m = 2000 m + 2 m + 0,02 m = 2 km 2m 2 cm c) mg = mg + 9 mg = 13 g 9 mg d) 4,30201 t = 4 t 302 kg 10 g e) 500 s = 480 s + 20 s = 8 min 20 s f) 70 h = 48 h + 22 h = 2 d 22 h RECHEN MIT GRÖßEN 1. Berechne. a) 5 dm 3 cm + 1,2 m 22 mm = 530 mm mm 22 mm = 1730 mm 22 mm = 1708 mm b) 1 h 20 s 12 2 d : 6 = 12 h 240 s 48 h : 6 Größe Zahl = Größe = 12 h 4 min 8 h Größe : Zahl = Größe = 4 h 4 min c) 1,8 m : 12 cm = 180 cm : 12 cm = 15 Größe : Größe = Zahl

19 Größen Kapitel VII 2. Ein Metzger schneidet von einem Stück Schweinefleisch 6 Schnitzel zu je 180 g ab. Danach wiegt das Stück noch 750 g. Welche Masse hatte das Stück vorher? 750 g g = 750 g g = 1830 g =1,83 kg MAßSTAB 1. Peter plant mit einer Karte im Maßstab 1: eine Wandertour. Auf der Karte ist der Weg 32 cm lang a) Wie lang ist die Strecke in Wirklichkeit? b) Peter legt pro Stunde 5 km zurück. In wie viel cm Entfernung von seinem Wohnort muss er auf der Karte ein Ziel aussuchen, wenn er nicht mehr als 3 Stunden unterwegs sein will? a) 32 cm = cm = 9600 m = 9,6 km b) (3 5 km) : = 15 km : = cm : = 50 cm 2. Auf einem Bauplan ist der Grundriss eines Hauses 18 cm breit. In Wirklichkeit ist das Haus 9 m breit. Welchen Maßstab besitzt der Bauplan? 9 m : 18 cm = 900 cm : 18 cm = 50, d.h. der Maßstab ist 1 : 50.

20 Fläche und Flächenmessung Kapitel VIII FLÄCHENMESSUNG UND FLÄCHENEINHEITEN FLÄCHENINHALTE VON RECHTECKEN Schreibe mit der in Klammern angegebenen Einheit. a) 18 m 2 (cm 2 ) = cm 2 b) 0,876 dm² (m²) = 87,6 m² c) 567,2 ha (km²) = 5,672 km² d) 156 a (m²) = m² 1. a) Ein Quadrat hat einen Flächeninhalt von 9 a. Wie lang ist der Umfang des Quadrats? 9 a = 900 m²; 30 m 30 m = 900 m² ; Also ist der Umfang: 4 30 m = 120 m. b) Ein Quadrat hat einen Umfang von 124 m. Welchen Flächeninhalt hat das Quadrat? 124 m : 4 = 31 m; Also ist der Flächeninhalt: 31 m 31 m = 961 m². c) Ein Rechteck hat die Länge 147 m und die Breite 313 m. Welchen Flächeninhalt hat das Rechteck? 147 m 313 m = m² = 4 ha 60 a 11 m² d) Ein Rechteck hat den Flächeninhalt 135 cm² und die Länge 30 cm. Berechne die Breite und den Umfang. Breite: mm² : 300 mm = 45 mm; Umfang: 2 (30 cm + 4,5 cm) = 69 cm

21 Fläche und Flächenmessung Kapitel VIII 2. a) Der Umfang eines rechtwinkligen Gartens, der doppelt so lang wie breit ist, ist 126 m lang. Wie lang sind die Seiten des Gartens? Welchen Flächeninhalt hat er? 126 m : 6 = 21 m; Also ist die Breite 21 m und die Länge 42 m. Flächeninhalt: 21 m 42 m = 882 m² b) Um den Garten wird ein 1 m breiter Weg mit Platten ausgelegt. Wie viel m² Platten werden benötigt? (21 m + 2 m) (42 m + 2 m) 882 m² = 23 m 44 m 882 m² = 1012 m² m² = 130m² 3. Bestimme den Flächeninhalt. A = (4 m + 3 m) 2 m 4 m 2 m = 14 m² - 8 m² = 6 m²

22 Fläche und Flächenmessung Kapitel VIII OBERFLÄCHENINHALTE VON QUADERN 1. Berechne den Oberflächeninhalt eines Quaders mit a) l = 5 cm, b = 6 cm, h = 7 cm 2 (5 cm 6 cm + 5 cm 7cm + 6 cm 7 cm) = 214 cm² b) l = 0,8 m, b = 8 cm, h = 80 mm 2 (80 cm 8 cm + 80 cm 8cm + 8 cm 8 cm) = 2688 cm² 2. Berechne die Länge eines Quaders mit O = 118 cm², b = 7 cm, h = 2cm. 118 cm² : 2 = 59 cm²; 59cm² - (7 2) cm² = 45 cm²; 45 cm² : (7 + 2) cm = 5 cm Also ist die Länge des Quaders 5cm. 3. Berechne den Oberflächeninhalt des Körpers. O = 2 (4 cm 4 cm + 2 cm 1 cm + 3 cm 6 cm + 4 cm 3 cm) = 96 cm²

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl 0 1 2 3 4 5 6 7 8 Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt,

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

GRUNDWISSEN MATHEMATIK

GRUNDWISSEN MATHEMATIK GRUNDWISSEN MATHEMATIK 5 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158

I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158 Grundwissen Mathematik G8 5. Klasse 1 Zahlen 1.1 Zahlenmengen IN = {1; 2; 3; } Menge der natürlichen Zahlen IN o = {0; 1; 2; 3; } Menge der natürlichen Zahlen mit Null Z = { ; -3; -2; -1; 0; 1; 2; 3; }

Mehr

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT

Mehr

GW Mathematik 5. Klasse

GW Mathematik 5. Klasse Begriffe zur Gliederung von Termen Term Rechenart a heißt b heißt a + b (Summe) Addition 1. Summand 2. Summand a b (Differenz) Subtraktion Minuend Subtrahend a b ( Produkt) Multiplikation 1. Faktor 2.

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5 Stand:.0.206 Sommerferien Zahlen und Operationen» Zahlen sachangemessen runden» große Zahlen lesen und schreiben» konkrete Repräsentanten großer Zahlen nennen» Zahlen auf der Zahlengeraden und in der Stellenwerttafel

Mehr

Grundwissen Mathematik 5

Grundwissen Mathematik 5 Grundwissen Mathematik 5 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1.1 Zahlenmengen 1.2 Besondere Zahlen 1.3 Stellenwertsystem 1.4 Runden 1.5 Darstellen von Zahlen in Tabellen

Mehr

Begriffe zur Gliederung von Termen, Potenzen 5

Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen Term Rechenart Termbezeichnung a heißt b heißt a + b Addition Summe 1. Summand 2. Summand a b Subtraktion Differenz Minuend

Mehr

Lösungen Kapitel 1: Rechnen mit natürlichen Zahlen

Lösungen Kapitel 1: Rechnen mit natürlichen Zahlen Lösungen Kapitel 1: Rechnen mit natürlichen Zahlen Arbeitsblatt 01: Zahlen am Zahlenstrahl oder Aufgabe 3 oder Arbeitsblatt 02: Große Zahlen Millionen Tausender H Z E H Z E H Z E 8 0 6 2 0 1 1 7 Achtzig

Mehr

b) Notieren Sie hier die Brüche aus der Tabelle, die sich noch kürzen lassen und kürzen Sie diese soweit als möglich: 1 2

b) Notieren Sie hier die Brüche aus der Tabelle, die sich noch kürzen lassen und kürzen Sie diese soweit als möglich: 1 2 Addieren und Subtrahieren gleichnamiger Brüche Addition gleichnamiger Brüche: Nenner übernehmen; Zähler addieren: Subtraktion gleichnamiger Brüche: Nenner übernehmen; Zähler subtrahieren. Füllen Sie die

Mehr

Basiswissen Klasse 5, Algebra (G8)

Basiswissen Klasse 5, Algebra (G8) Basiswissen Klasse, Algebra (G8) Natürliche Zahlen Sicherer Umgang mit den vier Grundrechenarten MH 1, S. 4- Große Zahlen schreiben und lesen Rechenregeln, wie Punkt vor Strich, Klammern Rechengesetze:

Mehr

Stoffverteilungsplan Mathematik 5 und 6 auf Grundlage der Rahmenpläne Klettbücher und

Stoffverteilungsplan Mathematik 5 und 6 auf Grundlage der Rahmenpläne Klettbücher und Zeitraum Rahmenplan Klasse 5 und 6 Schnittpunkt 5 Klassenarbeit Darstellen und Ordnen natürlicher Zahlen, große Zahlen Runden, Schätzen und Überschlagen Kapitel 1 Natürliche Zahlen Unsere neue Klasse 1

Mehr

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Klasse 5 5 Kapitel I Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Rechnen mit natürlichen Zahlen 4 Größen messen und

Mehr

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM NEU-ULM Lessing-Gymnasium Neu-Ulm 2/17 I. ZAHLEN 1. Natürliche und ganze Zahlen 1.1 Zahlenmengen Natürliche Zahlen N = { 1, 2, 3, 4,...} Natürliche Zahlen

Mehr

6. KLASSE MATHEMATIK GRUNDWISSEN

6. KLASSE MATHEMATIK GRUNDWISSEN 6. KLASSE MATHEMATIK GRUNDWISSEN Thema BRÜCHE Bruchteil - Man teilt das Ganze durch den Nenner und multipliziert das Ergebnis mit dem Zähler von 24 kg = (24 kg : 4) 2 = 6 kg 2 = 12 kg h = von 1 h = (1

Mehr

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5 Funktionen 1 Natürliche Zahlen Lesen Informationen aus Text, Bild, Tabelle mit eigenen Worten wiedergeben Problemlösen Lösen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln

Mehr

Kompetenzübersicht A Klasse 5

Kompetenzübersicht A Klasse 5 Kompetenzübersicht A Klasse 5 Natürliche Zahlen und Größen A1 Ich kann eine Umfrage durchführen und die Ergebnisse in einer Strichliste und einem Säulendiagramm darstellen. A2 Ich kann große Zahlen vorlesen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Fit in Test und Klassenarbeit - Mathe 5./6.

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Fit in Test und Klassenarbeit - Mathe 5./6. Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Fit in Test und Klassenarbeit - Mathe 5./6. Klasse Gymnasium Das komplette Material finden Sie hier: School-Scout.de Christine Kestler

Mehr

Schulinternes Curriculum Mathematik 5 / 6

Schulinternes Curriculum Mathematik 5 / 6 Die dargestellte Reihenfolge der Unterrichtsinhalte ist eine von mehreren sinnvollen Möglichkeiten und daher nicht bindend. Lambacher Schweizer 5 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Grundwissen 5 Lösungen

Grundwissen 5 Lösungen Grundwissen 5 Lösungen Zahlengerade Zeichne eine Zahlengerade, wähle eine passende Einheit und trage folgende Zahlen ein: 12 30 3 60 Welche Zahlen werden auf den Zahlengeraden in der Figur durch die Pfeile

Mehr

Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5

Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5 Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5 Kernlehrplan G8 Verbalisieren mathematische Sachverhalte, Begriffe, Regeln und Begründen verschiedene Arten des Begründens intuitiv nutzen:

Mehr

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele. Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.

Mehr

Natürliche Zahlen. Natürliche Zahlen addieren und subtrahieren. Addiere die Ziffern stellengerecht untereinander.

Natürliche Zahlen. Natürliche Zahlen addieren und subtrahieren. Addiere die Ziffern stellengerecht untereinander. Grundwissen Natürliche Zahlen 1 Zeichne eine Zahlenhalbgerade und markiere. 8; 4; ; 11; 2; 6; 9 ; 1; 0; 4; 10; 60 2 Welches ist die größte (kleinste) natürliche Zahl, die man aus den Ziffern 8, 1,, und

Mehr

Größere Zahl minus kleinerer Zahl anschreiben. Komma unter Komma schreiben. 33,8 : 1,3 = 33,8 : 13 = 26

Größere Zahl minus kleinerer Zahl anschreiben. Komma unter Komma schreiben. 33,8 : 1,3 = 33,8 : 13 = 26 E1 E E3 E4 E5 E6 E7 Lösungen 1 Mein Wissen aus der 1. Klasse z. B., 1 F angemalt im Plan Da sie in unterschiedlichen Abteilungen des Flugzeugs saßen (Business-Class + Economy-Class), konnten sie einander

Mehr

Jahresplanung 1.Klasse 100% Mathematik

Jahresplanung 1.Klasse 100% Mathematik Jahresplanung 1.Klasse 100% Mathematik Unterrichtswoche Schuljahr 2015/2016 Kapitel Seitentitel Schulbuchseiten 1 - Wiederholung von Lerninhalten der Volksschule 2 1 Statistik Wie viele Geschwister hast

Mehr

Fachcurriculum Mathematik (G8) MPG Klassen 5 und 6. Bildungsplan Bildungsstandards für Mathematik. Kern- und Schulcurriculum Klassen 5 und 6

Fachcurriculum Mathematik (G8) MPG Klassen 5 und 6. Bildungsplan Bildungsstandards für Mathematik. Kern- und Schulcurriculum Klassen 5 und 6 Bildungsplan 2004 Bildungsstandards für Mathematik Kern- und Klassen 5 und 6 Max-Planck-Gymnasium Böblingen 1 UE 1: Rechnen mit großen Zahlen UE 2: Messen und Auswerten natürliche Zahlen einfache Zehnerpotenzen

Mehr

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen prozessbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen konkrete Umsetzung zur Zielerreichung Die SuS können... Kapitel I:

Mehr

Schulinterner Lehrplan Mathematik G8 Klasse 5

Schulinterner Lehrplan Mathematik G8 Klasse 5 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/7 Jg 5, Stand: 07.12.2008 Schulinterner Lehrplan Mathematik G8 Klasse 5 Verbindliche Inhalte zu Kapitel I Natürliche Zahlen 1 Zählen und 2 Große Zahlen

Mehr

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche?

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche? So fit BIST du 1 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! Quadrat 3) Erkennst du die Fläche? Rechteck 4) Versuch es gleich noch einmal: Rechteck 102 So fit

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 1. Teilbarkeitsregeln 1. Teilbarkeit durch 2, 4 und 8 2. Teilbarkeit durch 5 und 10 3. Quersummen berechnen 4. Teilbarkeit durch 3, 6 und 9 5. Gemischte

Mehr

Curriculum Mathematik

Curriculum Mathematik Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von

Mehr

Neue Wege Klasse 6 Schulcurriculum EGW

Neue Wege Klasse 6 Schulcurriculum EGW Neue Wege Klasse 6 Schulcurriculum EGW Inhalt Neue Wege 6 Kapitel 1 Ganze Zahlen 1.1 Negative Zahlen beschreiben Situationen und Vorgänge 1.2 Anordnung auf der Zahlengeraden 1.3 Addieren und Subtrahieren

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 Turmzimmer 1: Teilbarkeitsregeln 1. Teilbarkeit durch 2, 4 und 8 7. Ist die Zahl ein Teiler? 2. Teilbarkeit durch 5 und 10 8. Teiler in der Zahlentafel suchen 3. Quersummen berechnen 9. Ist die

Mehr

155 Rechnen und Textaufgaben. Gymnasium 5. Klasse

155 Rechnen und Textaufgaben. Gymnasium 5. Klasse 155 Rechnen und Textaufgaben Gymnasium 5. Klasse Inhaltsverzeichnis Aufgabennummer Der Zahlenraum der natürlichen Zahlen............... 1 Große natürliche Zahlen........... 3 Zahlenstrahl.............................

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse 1. Nachbarzahlen, Zahlenrätsel und römische Zahlen 1. Versteckte Zahlen finden 2. Nachbarzahlen 3. Zahlenrätsel 1/2 4. Zahlenrätsel 2/2 5. Zahlen ordnen

Mehr

Gymnasium OHZ Schul-KC Mathematik Jahrgang 5 eingeführtes Schulbuch: Lambacher Schweizer 5

Gymnasium OHZ Schul-KC Mathematik Jahrgang 5 eingeführtes Schulbuch: Lambacher Schweizer 5 6 Wochen mathematische Sachverhalte, Begriffe, Regeln, Verfahren und Zusammenhänge mit eigenen Worten und geeigneten Fachbegriffen erläutern Lösungswege beschreiben, begründen und Mit symbolischen, formalen

Mehr

MATHEMATIK GRUNDWISSEN KLASSE 5

MATHEMATIK GRUNDWISSEN KLASSE 5 MATHEMATIK GRUNDWISSEN KLASSE 5 Them NATÜRLICHE ZAHLEN Zählen und Ordnen Ntürliche Zhlen werden zum Zählen und Ordnen verwendet Stefn ist beim 100m-Luf ls 2. ins Ziel gekommen. Große Zhlen und Zehnerpotenzen

Mehr

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Stoff für den Einstufungstest Mathematik in das 1. Jahr AHS: Mit und ohne Taschenrechner incl. Vorrangregeln ( Punkt vor Strich, Klammern, ):

Mehr

Mathematik-Arbeitsblatt Klasse: Aufgabe 1 (5Z e) H2:I1:K Setze < oder > ein! a) c) e)

Mathematik-Arbeitsblatt Klasse: Aufgabe 1 (5Z e) H2:I1:K Setze < oder > ein! a) c) e) Mathematik-Arbeitsblatt Klasse: 29.10.2015 Aufgabe 1 (5Z1.11-004-e) H2:I1:K1 0 1 2 Setze < oder > ein! a) 397 3397 c) 456 655 e) 2345 2435 1 b) 67 890 67 980 d) 632 432 f) 10 001 1001 Aufgabe 2 (5Z1.11-013-m)

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse Seite 1 Turmzimmer 1: Nachbarzahlen, Zahlenrätsel und römische Zahlen 1. Versteckte Zahlen finden 7. Schreibe mit arabischen Ziffern! 1 2. Nachbarzahlen 8. Schreibe mit arabischen Ziffern! 2 3. Zahlenrätsel

Mehr

Rechendreiecke Ich erkenne einfache Formen aus der Umwelt, beschreibe und benenne sie: Rechteck, Dreieck, Kreis, Quadrat

Rechendreiecke Ich erkenne einfache Formen aus der Umwelt, beschreibe und benenne sie: Rechteck, Dreieck, Kreis, Quadrat Mathematik 1. Klasse EBENE UND RAUM Gegenstandsmengen zählen, vergleichen und Ich orientiere und positioniere mich im Raum (links, rechts, oben, unten) und bewege mich zielorientiert. Zahlenraum 20/30

Mehr

KGS Curriculum Mathematik Hauptschule Klasse 5

KGS Curriculum Mathematik Hauptschule Klasse 5 KGS Curriculum Mathematik Hauptschule Klasse 5 Lehrwerk: Maßstab Band 5 Verlag: Schrödel Inhalte Kapitel 1 Zahlen und Daten - Fragebogen auswerten, Strichlisten, Tabellen und Diagramme anlegen - Zahlen

Mehr

Inhaltsbezogene Kompetenzen 1 Klasse 5 und 6 Curriculum Klasse 5 Schulcurriculum für alle Kompetenzen: Üben und Vertiefen

Inhaltsbezogene Kompetenzen 1 Klasse 5 und 6 Curriculum Klasse 5 Schulcurriculum für alle Kompetenzen: Üben und Vertiefen Curriculum Mathematik Klasse 5 und 6 SCHÖNBUCH-GYMNASIUM HOLZGERLINGEN Natürliche Zahlen natürliche Zahlen dezimales Stellenwertsystem Zweiersystem (Schulcurriculum) Primzahlen, Primfaktoren Teilbarkeitsregeln

Mehr

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 1.1 Runden und Schätzen - Große Zahlen 1.2 Zahlen in Bildern Kapitel 2 Größen 2.1 Längen - Was sind 2.2 Zeit Größen? 2.3 Gewichte Kreuz und quer

Mehr

WAchhalten und DIagnostizieren

WAchhalten und DIagnostizieren Staatliches Seminar für Didaktik und Lehrerbildung (Gymnasien) Tübingen WAchhalten und DIagnostizieren von Grundkenntnissen und Grundfertigkeiten im Fach Mathematik Klassenstufe 5/6 Teil 1 Rolf Dürr Hans

Mehr

Mathematik - Jahrgangsstufe 5

Mathematik - Jahrgangsstufe 5 Mathematik - Jahrgangsstufe 5 1. Natürliche Zahlen und Größen (Stochastik, Arithmetik/Algebra) Strichlisten, Tabellen und Diagramme Die Stellenwerttafel im Dezimalsystem & Runden Grundrechenarten: Summe,

Mehr

Rechnen mit Bruchzahlen

Rechnen mit Bruchzahlen Addition und Subtraktion von Brüchen Aufgabe: Rechnen mit Bruchzahlen In einem Gefäß befinden sich Liter Orangensaft. a.) Jemand trinkt b.) Jemand gießt c.) Jemand gießt Liter davon. Wie viel Saft befindet

Mehr

Stoffverteilungsplan Klasse 5

Stoffverteilungsplan Klasse 5 Stoffverteilungsplan Klasse 978--1-1218-8 1. Natürliche Zahlen Große Zahlen beschreiben die Welt Große Zahlen lesen und schreiben Zählen und Schätzen Zahlen anordnen Zahlen runden Zahlenfolgen Zweiersystem

Mehr

SRB- Schulinterner Lehrplan Mathematik Klasse 5

SRB- Schulinterner Lehrplan Mathematik Klasse 5 Problemlösen Lösen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln Funktionen Beziehungen zwischen Zahlen und zwischen Größen in Tabellen und Diagrammen darstellen Interpretieren

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 6

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 6 Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 6 Reihenfolge Buchabschnitt Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 1.1 1.7 Brüche mit gleichem

Mehr

Ute May Lern- und Übungsheft Mathematik 4. Klasse als Vorbereitung für den Schulübertritt

Ute May Lern- und Übungsheft Mathematik 4. Klasse als Vorbereitung für den Schulübertritt Ute May Lern- und Übungsheft Mathematik 4. Klasse als Vorbereitung für den Schulübertritt Bestellnummer 20-038 Zur Autorin Ute May, Jahrgang 1984, hat an der RWTH Aachen Mathematik studiert. Nach ihrem

Mehr

Flächeneinheiten und Flächeninhalt

Flächeneinheiten und Flächeninhalt Flächeneinheiten und Flächeninhalt Was ist eine Fläche? Aussagen, Zeichnungen, Erklärungen MERKE: Eine Fläche ist ein Gebiet, das von allen Seiten umschlossen wird. Beispiele für Flächen sind: Ein Garten,

Mehr

(13+ 46) 4= (51+ 19) 6= (13+ 22) 6= (53+ 3) 5= Summe der Ergebnisse: 3 530 Summe der Ergebnisse: 3 259

(13+ 46) 4= (51+ 19) 6= (13+ 22) 6= (53+ 3) 5= Summe der Ergebnisse: 3 530 Summe der Ergebnisse: 3 259 Klammerrechnung Lösungen 1. Löse die Aufgaben wie im Beispiel. (+ 38) = 90 = 360 (9+ 31) 3= 60 3= 180 (3+ 36) 6= 70 6= 0 (63+ 17) 3= 80 3= 0 (19+ 1) 6= 0 6= 0 (7+ 16) 9= 90 9= 810 (36+ ) 8= 80 8= 60 (8+

Mehr

Grundrechnungsarten mit Dezimalzahlen

Grundrechnungsarten mit Dezimalzahlen Grundrechnungsarten mit Dezimalzahlen Vorrangregeln Die Rechnungsarten zweiter Stufe haben Vorrang vor den Rechnungsarten erster Stufe. Man sagt: "Punktrechnung geht vor Strichrechnung" Treten in einer

Mehr

Stoffverteilungsplan Mathematik 5/6 auf der Grundlage des Lehrplans 2005 Schnittpunkt 5 Klettbuch

Stoffverteilungsplan Mathematik 5/6 auf der Grundlage des Lehrplans 2005 Schnittpunkt 5 Klettbuch Stoffverteilungsplan Mathematik 5/6 auf der Grundlage des Lehrplans 2005 Schnittpunkt 5 Klettbuch 3-12-742651-8 Die neuen Lehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht

Mehr

Kompetenzraster Förderschwerpunkt Lernen: MATHE

Kompetenzraster Förderschwerpunkt Lernen: MATHE Kompetenzraster Förderschwerpunkt Lernen: MATHE Orientierung im Zahlenraum bis (20, 100, 1.000, 10.000, 100.000 ) 1. Halbjahr: 2. Halbjahr: Negative Zahlen Kompetenzfeld: Zahlvorstellung / Umgang mit Größen

Mehr

Lernzirkel Grundrechenarten und Terme Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18. a + b = c

Lernzirkel Grundrechenarten und Terme Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18. a + b = c Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18 Station 1 Addition (lat. addere = dazutun) 1.1 Wie lauten die korrekten Bezeichnungen? a + b = c 1.2 Addiere schriftlich 3 5 6

Mehr

Deutsch. a hoch 3. a zum Quadrat. acht. achtzig. dividiert. drei. dreißig. dreizehn

Deutsch. a hoch 3. a zum Quadrat. acht. achtzig. dividiert. drei. dreißig. dreizehn Deutsch Deutsch Plural a hoch 3 a zum Quadrat acht achtzig Addition, die Ar, das Basis, die Betrag von a, der Binom, das Bruch, der Bruchstrich, der Deckfläche, die Dekagramm, das Deltoid, das Dezimalbruch,

Mehr

Repetition Mathematik 6. Klasse (Zahlenbuch 6)

Repetition Mathematik 6. Klasse (Zahlenbuch 6) Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von

Mehr

A Bruchzahlen B Rechnen mit Dezimalzahlen C Winkel und Abbildungen D Flächen- und Rauminhalte

A Bruchzahlen B Rechnen mit Dezimalzahlen C Winkel und Abbildungen D Flächen- und Rauminhalte Inhalt A B C D Bruchzahlen Bruchteile 6 Bruchteile von Größen Kürzen und Erweitern von Brüchen 0 Verhältnisse und Maßstäbe Bruchzahlen 6 Brüche und Dezimalbrüche Prozentzahlen Addition und Subtraktion

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

Lehrplan Mathematik 3. Hinweise (Methoden mögliche Anschauungsmittel, evtl.schwierigkeiten) Lernziele / Inhalte. I. Zahlenraum bis 1000 beherrschen

Lehrplan Mathematik 3. Hinweise (Methoden mögliche Anschauungsmittel, evtl.schwierigkeiten) Lernziele / Inhalte. I. Zahlenraum bis 1000 beherrschen Lehrplan Mathematik 3 I. Zahlenraum bis 1000 beherrschen - sich im Zahlenraum bis 1000 orientieren - Zahlvorstellungen entwickeln - Gröβenbegriffe - Zahlen darstellen - Rechnen mit Geld - aus Texten mathematische

Mehr

Lernzirkel Grundrechenarten und Terme Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21

Lernzirkel Grundrechenarten und Terme Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21 Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21 Station 1 Addition (lat. addere = dazutun) 1.1 Wie lauten die korrekten Bezeichnungen? a + b = c 1.2 Addiere schriftlich 3 5 6 8

Mehr

Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten. Größen und Messen Konstruieren Winkel zeichnen

Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten. Größen und Messen Konstruieren Winkel zeichnen Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Symbolschreib- symbolische und

Mehr

Stoffverteilungsplan Mathematik 5 / 6 auf der Grundlage des neuen G8 Kernlehrplans 2007 _ Stand:Okt.2015

Stoffverteilungsplan Mathematik 5 / 6 auf der Grundlage des neuen G8 Kernlehrplans 2007 _ Stand:Okt.2015 Jg 5. I Natürliche Zahlen Stochastik Zählen und Tabellen, Balken- und Säulendiagramme Große Zahlen Runden von Zahlen, Zahldarstellung, Potenzschreibweise Rechnen mit natürlichen Zahlen Grundrechenarten,

Mehr

6. (a) Darstellung der Weitsprungergebnisse, Darstellung der ersten Kugelstoßversuche, Geld im Geldbeutel,

6. (a) Darstellung der Weitsprungergebnisse, Darstellung der ersten Kugelstoßversuche, Geld im Geldbeutel, Aufgabenpaket Crashkurs - 5. Jahrgangsstufe - Lösungen 1 Große Zahlen und Zehnerpotenzen 1. (a) x = 1000000000 300000000 = 700000000 (b) x = 1000000000 800000000 = 200000000 (c) x = 1000000000 750000000

Mehr

Mathematik Sekundarstufe I Index des Begleitheftes 1

Mathematik Sekundarstufe I Index des Begleitheftes 1 Mathematik Sekundarstufe I Index des Begleitheftes 1 Begriff abrunden x Das Runden 1 3b 46 absolute Häufigkeit x Die absolute und die relative Häufigkeit 1 5 62 Achsenspiegelung x Die Abbildung 1 1c 8

Mehr

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik Klasse 5/6 Stand Schuljahr 2009/10 Klasse 5 UE 1 Natürliche en und Größen Große en Zweiersystem Römische en Anordnung, Vergleich Runden, Bilddiagramme Messen von Länge

Mehr

Anhang 5. Eingangstest I. 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3 und Wie groß ist die Summe von Berechnen Sie: : =

Anhang 5. Eingangstest I. 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3 und Wie groß ist die Summe von Berechnen Sie: : = Anhang 5 Eingangstest I 1. Berechnen Sie: 63,568 1000 = 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3. Wie groß ist die Summe von 4 3 und 6 5? 8 4 4. Berechnen Sie: : = 35 15 5. Berechnen Sie:

Mehr

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen ELEMENTE DER MATHEMATIK 5 Schroedel Verlag Argumentieren Problemlösen Modellieren Werkzeuge Arithmetik/ Algebra Funktionen Geometrie

Mehr

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:...

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:... Titel MB 7 LU Nr nhaltliche Allg. Buch Arbeitsheft AB V* Mit Kopf, Hand und Taschenrechner MB 7 LU 3 nhaltliche Allg. Buch Arbeitsheft AB einfache Rechnungen im Kopf lösen und den TR sinnvoll einsetzen

Mehr

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse:

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse: Grundwissen Mathematik 6 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1. Brüche 1.1 Bruchteile 1.2 Brüche als Werte von Quotienten 1.3 Bruchzahlen 1.4 Anordnung der Bruchzahlen

Mehr

5 Grundwissen der 5. Klasse

5 Grundwissen der 5. Klasse Gymnasium bei St. Anna, Augsburg Seite 1 Grundwissen 5. Klasse 5 Grundwissen der 5. Klasse 5.1 Natürliche Zahlen und ganze Zahlen Definition: 1. Alle natürlichen Zahlen 1, 2, 3, 4,... fasst man zur Zahlenmenge

Mehr

Stoffverteilungsplan Mathematik 6 auf der Grundlage der Kerncurricula 2005 Schnittpunkt 6 Klettbuch KGS Schneverdingen

Stoffverteilungsplan Mathematik 6 auf der Grundlage der Kerncurricula 2005 Schnittpunkt 6 Klettbuch KGS Schneverdingen Kompetenzen Inhalte Schnittpunkt 6 nehmen Probleme als Herausforderung an nutzen das Buch zur Informationsbeschaffung übertragen Lösungsbeispiele auf neue Aufgaben stellen das Problem anders dar ebener

Mehr

Zahlenmengen Menge der natürlichen Zahlen mit Null

Zahlenmengen Menge der natürlichen Zahlen mit Null Zahlenmenen N = {1,2,3,...} Mene der natürlichen Zahlen N o = {0,1,2,3,...} Mene der natürlichen Zahlen mit Null Z = {..., -3, -2, -1, 0, 1, 2, 3,...} Mene der anzen Zahlen Vielfachmenen eispiel: V(3)

Mehr

Lernziele Matbu. ch 8

Lernziele Matbu. ch 8 Lernziele Matbu. ch 8 Beachte auch den Refernzrahmen des Stellwerk8 www. stellwerk- check. ch LU Priorität Grobziel (aus Mathbu.ch 8) Lernziele Begriffe 2 1 Mit gebrochenen Zahlen operieren: Gebrochene

Mehr

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem

Mehr

Curriculum MATHEMATIK Sekundarstufe I. Genoveva-Gymnasium Köln Lehrplan SEK1 G8 Mathematik Seite 1

Curriculum MATHEMATIK Sekundarstufe I. Genoveva-Gymnasium Köln Lehrplan SEK1 G8 Mathematik Seite 1 Curriculum MATHEMATIK Sekundarstufe I Klasse Inhalte Fertigkeiten Sonstiges 5 Natürliche Zahlen und Größen Große Zahlen Stellentafel Zweiersystem; Römische Zahlzeichen Zahlenstrahl Runden von Zahlen Bilddiagramme

Mehr

Inhaltsübersicht Fach: Mathematik FachkollegInnen scj, krö, sja, nah,erf, sik Jahrgang: 5 Schuljahr: 2016/2017 Halbjahr: 1/2

Inhaltsübersicht Fach: Mathematik FachkollegInnen scj, krö, sja, nah,erf, sik Jahrgang: 5 Schuljahr: 2016/2017 Halbjahr: 1/2 Halbjahr/1 Zeit (in Wochen) Inhalte Seite inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler prozessbezogene Kompetenzen Die Schülerinnen und Schüler Berufsorientierung 1 19.- 23.09.2016 Daten Daten

Mehr

Themenkreise der Klasse 5

Themenkreise der Klasse 5 Mathematik Lernzielkatalog bzw. Inhalte in der MITTELSTUFE Am Ende der Mittelstufe sollten die Schüler - alle schriftlichen Rechenverfahren beherrschen. - Maßeinheiten umformen und mit ihnen rechnen können.

Mehr

Band 5. Lösen elementare mathematische Regeln und Verfahren (Messen, Rechnen, Schließen) zum Lösen von anschaulichen Alltagsproblemen nutzen

Band 5. Lösen elementare mathematische Regeln und Verfahren (Messen, Rechnen, Schließen) zum Lösen von anschaulichen Alltagsproblemen nutzen Mathematik Neue Wege 5/6 Vergleich mit dem Kernlehrplan Mathematik für das Gymnasium (G8) in Nordrhein-Westfalen / Kompetenzerwartungen am Ende der Jahrgangsstufe 6 Viele der im Kernlehrplan aufgeführten

Mehr

Formelsammlung Mathematik 7 I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7.

Formelsammlung Mathematik 7 I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7. I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7.3) Rechnen mit proportionalen Zuordnungen... 2 7.4) Die antiproportionale Zuordnung... 2

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen Grundwissen Mathematik 6.Klasse Gymnasium SOB.Weiterentwicklung der Zahlvorstellung..Bruchteile und Bruchzahlen 3 des Kreises ist rot, des Kreises ist blau gefärbt. Über dem Bruchstrich steht der Zähler,

Mehr

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen Grundwissen Mathematik G8 6. Klasse Zahlen. Brüche.. Bruchteile und Bruchzahlen Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Ganzes: 0 Kästchen 6 6 graue Kästchen, also: 0

Mehr

Anhang 6. Eingangstest II. 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 2. Berechnen Sie: : = 3. Berechnen Sie: = 3 und 6

Anhang 6. Eingangstest II. 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 2. Berechnen Sie: : = 3. Berechnen Sie: = 3 und 6 Anhang 6 Eingangstest II 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 8 4 2. Berechnen Sie: : = 3 1 2x x 3. Berechnen Sie: = 9 9 4. Wie groß ist die Summe von 4 3 und 6?. Berechnen Sie: 3 (

Mehr

Inhalt 1 Natürliche Zahlen 2 Addition und Subtraktion natürlicher Zahlen 3 Multiplikation und Division natürlicher Zahlen

Inhalt 1 Natürliche Zahlen 2 Addition und Subtraktion natürlicher Zahlen 3 Multiplikation und Division natürlicher Zahlen Inhalt 1 Natürliche Zahlen 1.1 Der Zahlbegriff... 6 1.2 Das Zehnersystem... 7 1.3 Andere Stellenwertsysteme... 8 1.4 Römische Zahlen... 10 1.5 Große Zahlen... 11 1.6 Runden... 13 1.7 Rechnen mit Einheiten...

Mehr

Arbeitsplan Mathe, 3. Schuljahr

Arbeitsplan Mathe, 3. Schuljahr : 1.-10.Woche Lernvoraussetzungen erfassen Wiederholung des in Klasse 2 Gelernten Lerninhalte des 2. Schuljahres beherrschen Eingangsdiagnostik Wiederholung mit abgewandelten Übungen Diagnosebögen zum

Mehr

Schulcurriculum für das Fach Mathematik

Schulcurriculum für das Fach Mathematik Evangelisches Gymnasium Siegen Schulcurriculum für das Fach Mathematik Unterrichtsinhalte der Jahrgangsstufe 5 1. Zahlen (Kapitel 1) Runden und Schätzen Große Zahlen Zahlen in Bildern 2. Größen (Kapitel

Mehr

(53+ 3) 5 = = Summe der Ergebnisse: 3.530 Summe der Ergebnisse: 3.259

(53+ 3) 5 = = Summe der Ergebnisse: 3.530 Summe der Ergebnisse: 3.259 Klammerrechnung 1. Löse die Aufgaben wie im Beispiel. (+ 38) = 90 = 360 (9+ 31) 3 = = (3+ 36) 6 = = (63+ 17) 3 = = (19+ 1) 6 = = (7+ 16) 9 = = (36+ ) 8 = = (8+ 7) 8 = = (3+ 8) 3 = = (13+ 6) = = (8+ 76)

Mehr

1) Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b.

1) Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b. 1 Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b. 1, 1, 1 usw. Diese Brüche bezeichnet man als Stammbrüche. 2 2 Der Stammbruch

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

Zahlen. Bruchrechnung. Natürliche Zahlen

Zahlen. Bruchrechnung. Natürliche Zahlen Themenübersicht 1/5 Alle aktuell verfügbaren Themen (Klasse 4 10) Dieses Dokument bildet alle derzeit verfügbaren Themen ab. Die jeweils aktuellste Version des Dokuments können Sie auf der Startseite in

Mehr

Themen (mit Kapitelbezeichnungen aus dem Buch, kursiv Zusatzthemen) Geometrie I:

Themen (mit Kapitelbezeichnungen aus dem Buch, kursiv Zusatzthemen) Geometrie I: Vorgehensweise in Klasse 5 In der folgenden Tabelle ist zusammengestellt, welche Inhalte in welcher zeitlichen Reihenfolge behandelt werden können. Zu jeder Inhaltszeile der Tabelle kann man eine Arbeit

Mehr

Grundwissen Seite 1 von 17 Klasse6

Grundwissen Seite 1 von 17 Klasse6 Grundwissen Seite 1 von 17 Klasse6 IN = {1; 2; 3; 4; 5; 6; } Menge der natürlichen Zahlen 5 ist eine natürliche Zahl kurz: 5 IN 5 ist ein Element von IN Natürliche Zahlen -2 ist keine natürliche Zahl kurz:

Mehr