Fragen und Aufgaben zum Grundwissen Mathematik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Fragen und Aufgaben zum Grundwissen Mathematik"

Transkript

1 Natürliche Zahlen Kapitel I ZÄHLEN UND ORDNEN GROßE ZAHLEN UND ZEHNERPOTENZEN Acht Schwimmer bestreiten einen Wettkampf. Miriam gewinnt die Bronzemedaille. Franz wird Vorletzter. Welche Platzierung haben die beiden erreicht? Miriam belegt den dritten, Franz den siebten Platz. Ordne der Größe nach: 104; 35; 47; 16; 58 16<35<47<58<104 Bestimme den Vorgänger und den Nachfolger: 52 und 1099 Vorgänger Zahl Nachfolger Lies drei Millionen dreiundsiebzigtausendachtzig Schreibe mit Hilfe einer Zehnerpotenz: = Schreibe ohne Zehnerpotenz: Schreibe mit Ziffern: dreiundzwanzig Millionen achthundertfünfundsiebzigtausend einundzwanzig DEZIMALSYSTEM Wie lautet die größte sechsstellige Zahl, die genau drei verschiedene Ziffern enthält? Wie lautet die kleinste sechsstellige Zahl, die genau drei verschiedene Ziffern enthält?

2 Natürliche Zahlen Kapitel I ZAHLENSTRAHL Gib bei jeder Teilaufgabe an, auf welche Zahlen die Pfeile zeigen. Finde zuerst den Maßstab heraus. Welchem Abstand entspricht ein Kästchen (K)? a) 1K ˆ 1; A=1; B=4; C=13; D=19; E=22 b) 1K ˆ 10; A=10; B=40; C=130; D=190; E=220 c) 1K ˆ 30:15 2 ; A=2; B=4 2=8; C=30-2 2=26; D=30+4 2=38; E=30+7 2=44 d) 1K ˆ 24: 8 3 ; A=3; B=4 3=12; C=24+5 3=39; D= =57; E= =66

3 Natürliche Zahlen Kapitel I DIAGRAMM Runde die Höhenangaben auf Hunderter und stelle die gerundeten Werte in einem passenden Diagramm dar. Runde sinnvoll! Überlege dir einen geeigneten Maßstab! Zugspitze 2964 m 3000 m Beispiel Säulendiagramm Mont Blanc 4884 m 4900 m Großer Arber 1456 m 1500 m Ochsenkopf 1023 m 1000 m Mädelegabel 2645 m 2600 m Kampenwand 1668 m 1700 m Höhe in m Zugsp. Mont B. Gr. Arber O.Kopf Mädeleg. K.wand Hinweis: Beim Lesen von Diagrammen: Achseneinteilung beachten!

4 Natürliche Zahlen Kapitel I KOORDINATENSYSTEME Zeichne ein Koordinatensystem (KOS) und trage die folgenden Punkte ein: A(2 2); B(4 3); C(3 7) Beachte die größte x- und y-koordinate, daraus ergibt sich die Länge der Achsen! Beschriftung der Achsen nicht vergessen und Pfeile nur nach rechts und oben!

5 Natürliche Zahlen Kapitel I ZAHLENMENGEN Beispiele: Primzahlen = {2; 3; 5; 7; 11; }, Quadratzahlen = {1; 4; 9; 16, }, Teilermengen z. B. T(24) = {1; 2; 3; 4; 6; 8; 12; 24}, Vielfachmengen z. B. V(7) = {7; 14; 21; } Überprüfe die Behauptungen! a) 9 T36 b) 3,1 NI ( 3,1 ist kein Element der natürlichen Zahlen ) a) Überlegung: 36 : 9 = 4 ohne Rest, d.h. 9 ist ein Teiler von 36. Also ist die Behauptung richtig! IN 1;2;3;4;5;..., d.h. 3,1 NI, die Behauptung ist richtig! b) RUNDEN Runde auf die vorgegebene Einheit: a) 475 cm (m) b) 4 kg 75 g (kg) a) Überlegung: 100 cm = 1 m ; 475 cm 5 m (7 an der Zehnerstelle Aufrunden) b) Überlegung: 1000g = 1 kg; 4 kg 75 g = 4075 g 4 kg

6 Addition und Subtraktion natürlicher Zahlen Kapitel II ADDIEREN UND SUBTRAHIEREN AM ZAHLENSTRAHL BEZEICHNUNGEN SCHRIFTLICHES ADDIEREN UND SUBTRAHIEREN Stelle den Term auf und Berechne ihn anschließend: Subtrahiere 28 von der Summe der Zahlen 312 und 115. Beachte, subtrahiere 4 von 10 bedeutet Von der Summe der Zahlen 312 und 115 soll also die Zahl 28 abgezogen werden. ( ) 28 = = 399 Beispiele: Ergänzen: Borgen:

7 Addition und Subtraktion natürlicher Zahlen Kapitel II KOMMUTATIVGESETZ (KG) UND ASSOZIATIVGESETZ (AG) GEMISCHTES ADDIEREN UND SUBTRAHIEREN OHNE KLAMMERN KG: Bei Summen dürfen die Summanden vertauscht werden: = Vorsicht, es gilt nicht: 15 4 = 4 15 AG: Klammern dürfen bei Summen beliebig versetzt werden: 27 + ( ) = ( ) Daraus entsteht ein Rechenvorteil! Vorsicht, es gilt nicht: = 27 (2+8). Der linke Term ergibt =33, der rechte Term ergibt = 17. Die Verwendung der Rechengesetze führt zu Rechenvorteilen Grundsätzlich wird von links nach rechts gerechnet Bsp.: = = = 135. Mit Hilfe des KG ist die Aufgabe viel leichter im Kopf zu rechnen. Kommutativgesetz (KG): Für alle natürlichen Zahlen a, b gilt: a + b = b + a Bsp.: = = ( ) ( ) = = 36 Zuerst: Sortieren der Plus- und Minusglieder. Dann: Summe der Plusglieder minus Summe der Minusglieder.

8 Addition und Subtraktion natürlicher Zahlen Kapitel II TERME Gliedere und berechne: = = 278 Differenz Summe Schreibe den Term ( ) (250 48) in Wortform. Subtrahiere die Differenz der Zahlen 250 und 48 von der Summe der Zahlen 475 und 25. oder: Der Term ist eine Differenz. Der Minuend ist die Summe der Zahlen 475 und 25, der Subtrahend ist die Differenz der Zahlen 250 und 48.

9 Addition und Subtraktion ganzer Zahlen Kapitel III GANZE ZAHLEN a) Hier dreht sich alles um die drei Zahlen 3, -7 und 0! In welchen der Zahlenmengen IN, IN0 bzw. Z sind die drei Zahlen jeweils enthalten? Lsg.: 3 Î IN, 3Î IN 0 und 3Î Z, -7 Î Z, 0 Î IN 0 und 0 Î Z Ordne die drei Zahlen, beginne mit der größten Zahl! Lsg.: 3 > 0 > -7 Wo befindet sich auf folgender Zahlengeraden die 0? Bestimme die Einheit! Lsg.: Einheit: 0,5 cm Welche der drei Zahlen hat den größten Betrag? Lsg.: 3 3; 7 7 ; 0 0; also die Zahl -7 hat den größten Betrag, nämlich 7 b) Trage die Punkte P(-3/2), Q(-1/-2), R(0/1) und S(4/-1) Überlege zuerst, wie groß das Koordinatensystem werden muss, indem Du die größte bzw. kleinste x-koordinate und die größte bzw. kleinste y-koordinate der gegebenen Punkte betrachtest P y 2 1 R Q -1-2 S x

10 Addition und Subtraktion ganzer Zahlen Kapitel III ADDIEREN UND SUBTRAHIEREN KOMMUTATIVGESETZ ASSOZIATIVGESETZ Berechne! ( 19) 68 (19 68) ( 68) ( 19) ( 68) (6819) ( 19) ( 68) (19 68) ( 68) (19) ( 68) (19 68) 87 Verschaffe Dir einen Rechenvorteil durch Anwendung Dir bekannter Rechengesetze! als Summe schreiben ( 19) ( 19) ( 19) 31 AG AG ( 19) KG AG

11 Geometrische Grundbegriffe Kapitel IV KÖRPER Welche Formen haben diese Gegenstände? Gib jeweils den entsprechenden geometrischen Grundkörper an! Würfel und Pyramide Kugel Prisma Kegel, Zylinder Quader und Quader PUNKTE, GERADEN, STRECKEN Zeichne [AB], [CA, BC und bestimme AB! A A C C B B AB 3,5 cm

12 Geometrische Grundbegriffe Kapitel IV GEOMETRISCHE LAGEBEZIEHUNGEN Suche ein Parallelenpaar und ein Paar senkrechter Geraden! h II i und g h oder g i k g h i SYMMETRIE Welche der Verkehrsschilder sind achsensymmetrisch? ( Die ersten drei Schilder.)

13 Geometrische Grundbegriffe Kapitel IV WINKEL Bestimme die Größen der Winkel und

14 Multiplikation und Division natürlicher Zahlen Kapitel V LERNINHALTE MULTIPLIZIEREN, DIVIDIEREN UND POTENZIEREN NATÜRLICHER ZAHLEN 1. Überschlage und berechne dann schriftlich Überschlag: = : 76 = 721 Überschlag: : 80 = Berechne. 8 2 = = 16 8² = 8 8 = = = = 21 7³ = = = Wie ändert sich der Wert eines Produktes, wenn man den ersten Faktor vervierfacht und den zweiten Faktor halbiert. Überprüfe an einem selbst gewählten Beispiel. Antwort: Der Wert verdoppelt sich. Beispiel: 3 8 = 24 und (3 4) (8 : 2) = 12 4 = Zerlege in Primfaktoren = = = = = = 2³ 5 7² RECHENGESETZE UND RECHENVORTEILE 1. Berechne. a) = = 141 Punkt vor Strich! b) (5 + 17) 8 = 22 8 = 176 Klammern zuerst! c) 2 4 : 4 3 (2 7)² = 2 4 : ² Klammern zuerst! = 16 : Hoch vor Punkt! = Punkt vor Strich! = 584

15 Multiplikation und Division natürlicher Zahlen 2. Berechne und gib das verwendete Rechengesetz an. a) 8 (13 125) = 8 (125 13) Kommutativgesetz = (8 125) 13 Assoziativgesetz = = b) 25 (10 + 4) = Distributivgesetz = = 350 c) (240 48) : 12 = 240 : : 12 Distributivgesetz = 20 4 = 16 d) = 17 (15 + 5) Distributivgesetz = = 340 Kapitel V TERME 1. Gliedere und berechne. [146 - ( :9 )] 11 Quotient Summe Differenz Produkt Rechnung: [146 ( : 9)] 11 = [146 ( ) ] 11 = [ ] 11 = = Stelle den Term auf und berechne. Subtrahiere das Doppelte der Summe aus 431 und 87 vom Quotienten aus 64 und : 16 2 ( ) = = = 1032

16 Multiplikation und Division natürlicher Zahlen Kapitel V ABZÄHLEN MIT BAUMDIAGRAMMEN Florian hat in einer Tüte drei rote und ein gelbes Gummibärchen. Er lässt seine drei Freunde Annette, Bastian und Carsten jeweils eines herausnehmen. Wie viele Möglichkeiten für die Verteilung der Gummibärchen gibt es? r g Annette r g r Bastian r g r r Carsten Es gibt vier verschiedene Möglichkeiten.

17 Multiplizieren und Dividieren ganzer Zahlen Kapitel VI MULTIPLIZIEREN UND DIVIDIEREN GANZER ZAHLEN 1. Berechne. a) 17 4 = 68 minus plus = minus b) ( 6) ( 12) = 72 minus minus = plus c) ( 2) 3 = ( 2) ( 2) ( 2) = 8 d) 2 4 = = Berechne. a) 48 : ( 6) = 8 plus : minus = minus b) ( 27) : ( 9) = 3 minus : minus = plus c) 0 : ( 23) = 0 d) ( 5) : 0 =?? Durch Null kann man nicht dividieren! 3. a) Welche Zahl muss man durch 7 dividieren, um 5 zu erhalten? : 7 = 5 = ( 5) ( 7) = 35 b) Welche Zahl muss man mit 12 multiplizieren, um 48 zu erhalten? ( 12) = 48 = 48 : ( 12) = 4 RECHENGESETZE UND RECHENVORTEILE Berechne indem du Rechenvorteile ausnutzt. a) ( 4) 13 ( 25) 3 = ( 4) ( 25) 13 3 Kommutativgesetz = Assoziativgesetz = 3900 b) ( 5) 99 = ( 5) (100 1) = ( 5) ( 5) ( 1) Distributivgesetz = = 495 c) ( 28) 43 = (8 28) 43 Distributivgesetz = = 860

18 Größen Kapitel VII UMRECHNEN VON GRÖßEN 1. Schreibe die Größe mit der in Klammern angegebenen Einheit. a) 18 m (cm) = 1800 cm b) mm (m) = 123,456 m c) 4 km 80 m (km) = 4,080 km d) 3,4 kg (g) = 3400 g e) 125 kg (t) = 0,125 t f) 3200 Ct ( ) = 32 g) 390 min (h) = 360 min + 30 min = 6 h + 0,5 h = 6,5 h h) 3 d 10 h (h) = 72 h + 10 h = 82 h i) 1 h (s) = 60 min = 3600 s 2. Schreibe in gemischten Einheiten. a) 2405 mm = 2000mm mm + 5 mm = 2 m 4 dm 5 mm b) 2002,02 m = 2000 m + 2 m + 0,02 m = 2 km 2m 2 cm c) mg = mg + 9 mg = 13 g 9 mg d) 4,30201 t = 4 t 302 kg 10 g e) 500 s = 480 s + 20 s = 8 min 20 s f) 70 h = 48 h + 22 h = 2 d 22 h RECHEN MIT GRÖßEN 1. Berechne. a) 5 dm 3 cm + 1,2 m 22 mm = 530 mm mm 22 mm = 1730 mm 22 mm = 1708 mm b) 1 h 20 s 12 2 d : 6 = 12 h 240 s 48 h : 6 Größe Zahl = Größe = 12 h 4 min 8 h Größe : Zahl = Größe = 4 h 4 min c) 1,8 m : 12 cm = 180 cm : 12 cm = 15 Größe : Größe = Zahl

19 Größen Kapitel VII 2. Ein Metzger schneidet von einem Stück Schweinefleisch 6 Schnitzel zu je 180 g ab. Danach wiegt das Stück noch 750 g. Welche Masse hatte das Stück vorher? 750 g g = 750 g g = 1830 g =1,83 kg MAßSTAB 1. Peter plant mit einer Karte im Maßstab 1: eine Wandertour. Auf der Karte ist der Weg 32 cm lang a) Wie lang ist die Strecke in Wirklichkeit? b) Peter legt pro Stunde 5 km zurück. In wie viel cm Entfernung von seinem Wohnort muss er auf der Karte ein Ziel aussuchen, wenn er nicht mehr als 3 Stunden unterwegs sein will? a) 32 cm = cm = 9600 m = 9,6 km b) (3 5 km) : = 15 km : = cm : = 50 cm 2. Auf einem Bauplan ist der Grundriss eines Hauses 18 cm breit. In Wirklichkeit ist das Haus 9 m breit. Welchen Maßstab besitzt der Bauplan? 9 m : 18 cm = 900 cm : 18 cm = 50, d.h. der Maßstab ist 1 : 50.

20 Fläche und Flächenmessung Kapitel VIII FLÄCHENMESSUNG UND FLÄCHENEINHEITEN FLÄCHENINHALTE VON RECHTECKEN Schreibe mit der in Klammern angegebenen Einheit. a) 18 m 2 (cm 2 ) = cm 2 b) 0,876 dm² (m²) = 87,6 m² c) 567,2 ha (km²) = 5,672 km² d) 156 a (m²) = m² 1. a) Ein Quadrat hat einen Flächeninhalt von 9 a. Wie lang ist der Umfang des Quadrats? 9 a = 900 m²; 30 m 30 m = 900 m² ; Also ist der Umfang: 4 30 m = 120 m. b) Ein Quadrat hat einen Umfang von 124 m. Welchen Flächeninhalt hat das Quadrat? 124 m : 4 = 31 m; Also ist der Flächeninhalt: 31 m 31 m = 961 m². c) Ein Rechteck hat die Länge 147 m und die Breite 313 m. Welchen Flächeninhalt hat das Rechteck? 147 m 313 m = m² = 4 ha 60 a 11 m² d) Ein Rechteck hat den Flächeninhalt 135 cm² und die Länge 30 cm. Berechne die Breite und den Umfang. Breite: mm² : 300 mm = 45 mm; Umfang: 2 (30 cm + 4,5 cm) = 69 cm

21 Fläche und Flächenmessung Kapitel VIII 2. a) Der Umfang eines rechtwinkligen Gartens, der doppelt so lang wie breit ist, ist 126 m lang. Wie lang sind die Seiten des Gartens? Welchen Flächeninhalt hat er? 126 m : 6 = 21 m; Also ist die Breite 21 m und die Länge 42 m. Flächeninhalt: 21 m 42 m = 882 m² b) Um den Garten wird ein 1 m breiter Weg mit Platten ausgelegt. Wie viel m² Platten werden benötigt? (21 m + 2 m) (42 m + 2 m) 882 m² = 23 m 44 m 882 m² = 1012 m² m² = 130m² 3. Bestimme den Flächeninhalt. A = (4 m + 3 m) 2 m 4 m 2 m = 14 m² - 8 m² = 6 m²

22 Fläche und Flächenmessung Kapitel VIII OBERFLÄCHENINHALTE VON QUADERN 1. Berechne den Oberflächeninhalt eines Quaders mit a) l = 5 cm, b = 6 cm, h = 7 cm 2 (5 cm 6 cm + 5 cm 7cm + 6 cm 7 cm) = 214 cm² b) l = 0,8 m, b = 8 cm, h = 80 mm 2 (80 cm 8 cm + 80 cm 8cm + 8 cm 8 cm) = 2688 cm² 2. Berechne die Länge eines Quaders mit O = 118 cm², b = 7 cm, h = 2cm. 118 cm² : 2 = 59 cm²; 59cm² - (7 2) cm² = 45 cm²; 45 cm² : (7 + 2) cm = 5 cm Also ist die Länge des Quaders 5cm. 3. Berechne den Oberflächeninhalt des Körpers. O = 2 (4 cm 4 cm + 2 cm 1 cm + 3 cm 6 cm + 4 cm 3 cm) = 96 cm²

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} 1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung

Mehr

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; }

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } Nimmt man auch die 0 hinzu, schreibt man: N 0 = {0; 1; 2; 3; 4; } Zahlenstrahl 0 1 2 3 4

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: 1; 2; 3; 4; Nimmt man auch die 0 hinzu, schreibt man: 0; 1; 2; 3; 4; Zahlenstrahl Je weiter rechts eine Zahl

Mehr

MTG Grundwissen Mathematik 5.Klasse

MTG Grundwissen Mathematik 5.Klasse MTG Grundwissen Mathematik 5.Klasse Umgang mit großen Zahlen Beispiel: 47.035.107.006 = 4 10 10 + 7 10 9 + 3 10 7 + 5 10 6 + 10 5 + 7 10 3 + 6 10 0 A1: Schreibe 117 Billionen 12 Milliarden vierhundertsiebentausendsechzig

Mehr

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl 0 1 2 3 4 5 6 7 8 Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt,

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Natürliche Zahlen, besondere Zahlenmengen

Natürliche Zahlen, besondere Zahlenmengen Natürliche Zahlen, besondere Zahlenmengen A5_01 Menge der natürlichen Zahlen N = {1, 2, 3,...} Menge der natürlichen Zahlen mit der Null N 0 = {0, 1, 2,...} Primzahlen: Eine Primzahl hat genau zwei Teiler,

Mehr

GRUNDWISSEN MATHEMATIK

GRUNDWISSEN MATHEMATIK GRUNDWISSEN MATHEMATIK 5 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Grundwissen Seite 1 von 11 Klasse5

Grundwissen Seite 1 von 11 Klasse5 Grundwissen Seite 1 von 11 Klasse5 IN = {1; 2; 3; 4; 5; 6; } Menge der natürlichen Zahlen Beispiele: 5 ist eine natürliche Zahl kurz: 5 IN 5 ist ein Element von IN Natürliche Zahlen -2 ist keine natürliche

Mehr

Marie Kilders. Grundwissen Klasse 5

Marie Kilders. Grundwissen Klasse 5 Grundwissen Klasse 5 1 Inhaltsverzeichnis 1. Natürliche und ganze Zahlen... 3 1.1 Dezimalsystem (Zehnersystem)... 4 1.2 Rechnen mit natürlichen Zahlen... 5 1.3 Diagramme... 8 1.4 Primfaktorzerlegung und

Mehr

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

I. Zahlen. Zahlensysteme 2035= Zahlenmengen 2035=5 407= Teilbarkeitsregeln. Runden Z H T

I. Zahlen. Zahlensysteme 2035= Zahlenmengen 2035=5 407= Teilbarkeitsregeln. Runden Z H T I. Zahlen Zahlensysteme Unser Zahlensystem besteht aus den Ziffern 0 bis 9 (Dezimalsystem) und ist ein Stellenwertsystem; die Stelle einer Ziffer bestimmt ihren Wert in der Zahl. Das römische Zahlensystem

Mehr

1 Zahlen. 1.1 Zahlenmengen. Grundwissen Mathematik 5

1 Zahlen. 1.1 Zahlenmengen. Grundwissen Mathematik 5 1 Zahlen 1.1 Zahlenmengen I N= { 1, 2, 3,...} Menge der natürlichen Zahlen I N 0 = { 0, 1, 2,...} Menge der natürlichen Zahlen mit Null Z = {...-3; -2; -1; 0; 1; 2; 3;...} Menge der ganzen Zahlen V 12

Mehr

Aufgaben zum Basiswissen 5. Klasse

Aufgaben zum Basiswissen 5. Klasse Aufgaben zum Basiswissen 5. Klasse 1. Daten 1. Aufgabe: Familie Tierlieb besitzt 4 Katzen, 2 Hunde, 5 Kaninchen, 2 Papageien, 4 Mäuse und ein Pferd. Zeichne hierfür ein Kreisdiagramm. 2. Aufgabe: Zeichne

Mehr

Kapitel im Fokus. Ich kann / kenne. 5. Klasse Stand Juni **Anzahl der KA: 6 pro Schuljahr** Daten und Zufall. Größen messen

Kapitel im Fokus. Ich kann / kenne. 5. Klasse Stand Juni **Anzahl der KA: 6 pro Schuljahr** Daten und Zufall. Größen messen Daten und Zufall Sammeln und Auswerten von Daten Strichliste Absolute Häufigkeit Säulendiagramm Daten erfassen (Strichlisten, Tabellen). gesammelte Daten auswerten. Daten mithilfe von Diagrammen darstellen.

Mehr

Grundwissen Mathematik für die Jahrgangsstufe 6 - Lösungen

Grundwissen Mathematik für die Jahrgangsstufe 6 - Lösungen Grundwissen Mathematik für die Jahrgangsstufe 6 - Lösungen 1. Gib mindestens drei Eigenschaften der natürlichen Zahlen an. Jede natürliche Zahl hat einen Nachfolger und jede natürliche Zahl außer 1 hat

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Grundwissen 5 Lösungen

Grundwissen 5 Lösungen Grundwissen 5 Lösungen Zahlengerade Zeichne eine Zahlengerade, wähle eine passende Einheit und trage folgende Zahlen ein: 12 30 3 60 Welche Zahlen werden auf den Zahlengeraden in der Figur durch die Pfeile

Mehr

I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158

I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158 Grundwissen Mathematik G8 5. Klasse 1 Zahlen 1.1 Zahlenmengen IN = {1; 2; 3; } Menge der natürlichen Zahlen IN o = {0; 1; 2; 3; } Menge der natürlichen Zahlen mit Null Z = { ; -3; -2; -1; 0; 1; 2; 3; }

Mehr

GW Mathematik 5. Klasse

GW Mathematik 5. Klasse Begriffe zur Gliederung von Termen Term Rechenart a heißt b heißt a + b (Summe) Addition 1. Summand 2. Summand a b (Differenz) Subtraktion Minuend Subtrahend a b ( Produkt) Multiplikation 1. Faktor 2.

Mehr

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Stoffverteilungsplan Mathematik Klasse 5

Stoffverteilungsplan Mathematik Klasse 5 Stoffverteilungsplan Mathematik Klasse 5 Lehrwerk: Mathematik heute; Schroedel Zeitraum Themen/Inhalte Begriffe/Bemerkungen Lehrbuch/KA Leitidee/Kompetenzen Weitere Hinweise 6 Wochen Natürliche Zahlen

Mehr

PDF created with pdffactory Pro trial version

PDF created with pdffactory Pro trial version 1. Berechne: a) - 311 185 b) - 176 + 213 c) 234 865 d) 195 (- 523) e) (- 324) (- 267) f) 165 + (- 316) g) (-23) 18 h) (- 17) (- 54) i) 35 (- 78) j) 314 1234 k) (- 8) 4 l) (- 11) 3 m) (- 2) 9 n) (- 2) 10

Mehr

Terme, Gleichungen und Zahlenmengen

Terme, Gleichungen und Zahlenmengen Die natürlichen Zahlen Die natürlichen Zahlen werden mit dem Symbol N dargestellt. N = {1 ;2 ;3 ;4 ;5; 6;...} Zur einfachen Erfassung von Daten kann man eine Strichliste anfertigen. Beispiel: Größen der

Mehr

Grundwissen JS 5 Algebra

Grundwissen JS 5 Algebra GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium Grundwissen JS 5 Algebra WILHELM-VON-HUMBOLDT-STRASSE 7 91257 PEGNITZ FERNRUF 09241/48333 FAX 09241/2564 Rechnen in N 29. Juli 2009

Mehr

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5 Stand:.0.206 Sommerferien Zahlen und Operationen» Zahlen sachangemessen runden» große Zahlen lesen und schreiben» konkrete Repräsentanten großer Zahlen nennen» Zahlen auf der Zahlengeraden und in der Stellenwerttafel

Mehr

Addition und Subtraktion natürlicher Zahlen

Addition und Subtraktion natürlicher Zahlen 0 Minuten Addition und Subtraktion natürlicher Zahlen Kurztest : Addieren und Subtrahieren 1 Bei der linken Rechenmauer wird nach oben addiert, bei der rechten Rechenmauer nach oben subtrahiert. a) b)

Mehr

Grundwissen Mathematik 5

Grundwissen Mathematik 5 Grundwissen Mathematik 5 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1.1 Zahlenmengen 1.2 Besondere Zahlen 1.3 Stellenwertsystem 1.4 Runden 1.5 Darstellen von Zahlen in Tabellen

Mehr

Marie Kilders. Grundwissen Klasse 5. Aufgaben

Marie Kilders. Grundwissen Klasse 5. Aufgaben Grundwissen Klasse 5 Aufgaben 1 Inhaltsverzeichnis 1. Natürliche und ganze Zahlen... 3 1.1 Dezimalsystem... 3 1.2 Rechnen mit natürlichen Zahlen... 3 1.3 Diagramme... 3 1.4 Primfaktorzerlegung und Potenzen...

Mehr

Aufgaben mit Lösungen

Aufgaben mit Lösungen Aufgaben mit Lösungen Dezimalsystem: 1. Schreibe die angegebenen Zahlen wie in jeder Teilaufgabe verlangt. (eigen) a) 734 000 005 709 001 (in Worten) siebenhundertvierunddreißig Billionen fünf Millionen

Mehr

Einführung 2. Hinweis: In der elektronischen Version sind die Seiten verlinkt.

Einführung 2. Hinweis: In der elektronischen Version sind die Seiten verlinkt. Inhaltsverzeichnis Einführung 2 Aufgaben Lösungen A1 Zahlverständnis (Natürliche Zahlen)... 3 27 A1* Zahlverständnis (Natürliche Zahlen)... 4 28 A2 Rechnen (Natürliche Zahlen)... 5 29 A2* Rechnen (Natürliche

Mehr

Rechentraining. 4 a) b) c) d) e) f) g) h)

Rechentraining. 4 a) b) c) d) e) f) g) h) Rechentraining Kopfrechenaufgaben 1 a) 27 + 13 b) 45 + 25 c) 78 + 22 d) 64 + 36 e) 205 + 95 f) 909 + 91 g) 487 + 23 h) 630 + 470 i) 777 + 333 j) 34 23 k) 42 33 l) 177 78 m) 555 444 n) 1010 101 o) 808 88

Mehr

Klasse 5. Inhalt(sfelder) Inhaltsbezogene Kompetenzen. Prozessbezogene Kompetenzen. Die Schülerinnen und Schüler... Die Schülerinnen und Schüler...

Klasse 5. Inhalt(sfelder) Inhaltsbezogene Kompetenzen. Prozessbezogene Kompetenzen. Die Schülerinnen und Schüler... Die Schülerinnen und Schüler... I Natürliche Zahlen 1. Zählen und darstellen stellen Beziehungen zwischen Zahlen und Größen in Tabellen bzw. Diagrammen (Säulendiagramm, Balkendiagramm) dar, lesen Informationen aus Tabellen und Diagrammen

Mehr

Basiswissen 5. Klasse

Basiswissen 5. Klasse Basiswissen 5. Klasse 1. Daten Zur Darstellung von Daten werden oft Strichlisten, Figurendiagramme oder Säulen- und Strichdiagramme verwendet. Strichliste: Alter Strichliste Anzahl 5-10 Jahre 3 10-15 Jahre

Mehr

Darstellen, Ordnen und Vergleichen

Darstellen, Ordnen und Vergleichen Darstellen, Ordnen und Vergleichen negative Zahlen positive Zahlen 1_ 6 < 3,5 3 < +2 +1 2 < +5 Um negative Zahlen darstellen zu können, wird der Zahlenstrahl zu einer Zahlengeraden erweitert. Wenn zwei

Mehr

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden.

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 1 Grundwissen Rechenarten Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 418 + 2 987 = 3 405 + 2 987 418 Umkehraufgabe 3 405 Summe Ergebnis der Summe 2 987

Mehr

Begriffe zur Gliederung von Termen, Potenzen 5

Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen Term Rechenart Termbezeichnung a heißt b heißt a + b Addition Summe 1. Summand 2. Summand a b Subtraktion Differenz Minuend

Mehr

II. Die Addition und Subtraktion natürlicher Zahlen ================================================================= 2.1 Die Addition +2 0 1 2 3 4 5 6 Zählen wir von 3 um 2 weiter, dann schreiben wir

Mehr

Lösungen Kapitel 1: Rechnen mit natürlichen Zahlen

Lösungen Kapitel 1: Rechnen mit natürlichen Zahlen Lösungen Kapitel 1: Rechnen mit natürlichen Zahlen Arbeitsblatt 01: Zahlen am Zahlenstrahl oder Aufgabe 3 oder Arbeitsblatt 02: Große Zahlen Millionen Tausender H Z E H Z E H Z E 8 0 6 2 0 1 1 7 Achtzig

Mehr

b) Notieren Sie hier die Brüche aus der Tabelle, die sich noch kürzen lassen und kürzen Sie diese soweit als möglich: 1 2

b) Notieren Sie hier die Brüche aus der Tabelle, die sich noch kürzen lassen und kürzen Sie diese soweit als möglich: 1 2 Addieren und Subtrahieren gleichnamiger Brüche Addition gleichnamiger Brüche: Nenner übernehmen; Zähler addieren: Subtraktion gleichnamiger Brüche: Nenner übernehmen; Zähler subtrahieren. Füllen Sie die

Mehr

Bruchrechnen ohne Variablen Anwendungen 11

Bruchrechnen ohne Variablen Anwendungen 11 Bruchrechnen ohne Variablen Anwendungen Addieren/Subtrahieren gleichnamiger Brüche Addition gleichnamiger Brüche: Nenner übernehmen; Zähler addieren: Subtraktion gleichnamiger Brüche: Nenner übernehmen;

Mehr

Grundkenntnisse: Mathematik

Grundkenntnisse: Mathematik Grundkenntnisse: Mathematik nach der 4. Klasse Grundschule (Lösungsgeheft) 1. Umgang mit Zahlen 1.1 Zahlenstrahl A: 350 B: 470 C: 545 D: 590 E: 695 42500 45100 410073 410100 42 000 43 000 44 000 45 000

Mehr

Bruchrechnen ohne Variablen Anwendungen 11 - Lösungen

Bruchrechnen ohne Variablen Anwendungen 11 - Lösungen Bruchrechnen ohne Variablen Anwendungen - Addieren/Subtrahieren gleichnamiger Brüche Addition gleichnamiger Brüche: Nenner übernehmen; Zähler addieren: Subtraktion gleichnamiger Brüche: Nenner übernehmen;

Mehr

Mathematik 5. Klasse. 1. Grundlagen der Algebra. Zahlenmengen

Mathematik 5. Klasse. 1. Grundlagen der Algebra. Zahlenmengen Mathematik 5. Klasse Diese Stoffübersicht ist in drei Hauptteile gegliedert: 1. Grundlagen der Algebra (Zahlenmengen, Rechenarten, Rechengesetze); 2. Geometrie; 3. Darstellung und Kombinatorik Quellen:

Mehr

Wiederholungsaufgaben Klasse 6 Blatt 1 EG Wörth

Wiederholungsaufgaben Klasse 6 Blatt 1 EG Wörth Wiederholungsaufgaben Klasse 6 Blatt 1 EG Wörth Fülle die Tabelle aus Vorgänger 898989 Zahl 115 1519900 Nachfolger 9000 Schreibe ohne Klammern und berechne dann: a) 43 77 = b) 64 35 = Einen Linienzug erhält

Mehr

Basiswissen Klasse 5, Algebra (G8)

Basiswissen Klasse 5, Algebra (G8) Basiswissen Klasse, Algebra (G8) Natürliche Zahlen Sicherer Umgang mit den vier Grundrechenarten MH 1, S. 4- Große Zahlen schreiben und lesen Rechenregeln, wie Punkt vor Strich, Klammern Rechengesetze:

Mehr

Seite 1 von 6 Standardaufgaben Grundwissen M5 Beispiele 1. Fasse alle Primzahlen und alle Quadratzahlen A.1 Menge IN der natürlichen Zahlen

Seite 1 von 6 Standardaufgaben Grundwissen M5 Beispiele 1. Fasse alle Primzahlen und alle Quadratzahlen A.1 Menge IN der natürlichen Zahlen Seite 1 von 6 Standardaufaben Grundwissen M5 Beispiele 1. Fasse alle Primzahlen und alle Quadratzahlen A.1 Mene IN der natürlichen Zahlen 5 ist eine natürliche Zahl: der folenden Mene in jeweils einer

Mehr

Stoffverteilungsplan Mathematik 5 und 6 auf Grundlage der Rahmenpläne Klettbücher und

Stoffverteilungsplan Mathematik 5 und 6 auf Grundlage der Rahmenpläne Klettbücher und Zeitraum Rahmenplan Klasse 5 und 6 Schnittpunkt 5 Klassenarbeit Darstellen und Ordnen natürlicher Zahlen, große Zahlen Runden, Schätzen und Überschlagen Kapitel 1 Natürliche Zahlen Unsere neue Klasse 1

Mehr

Stoffverteilungsplan Mathematik 5 für den G9-Zweig

Stoffverteilungsplan Mathematik 5 für den G9-Zweig Stoffverteilungsplan Mathematik 5 für den G9-Zweig prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lehrbuch Argumentieren / Darstellungen (Text, Bild, Tabelle) mit eigenen Worten Begriffe, Regeln

Mehr

Mein Schnittpunkt-Lernplan: Kapitel 1 Natürliche Zahlen

Mein Schnittpunkt-Lernplan: Kapitel 1 Natürliche Zahlen Mein Schnittpunkt-Lernplan: Kapitel 1 Natürliche Zahlen Name: Klasse: Ich kann Übungen Kapitel 1 Das kann Das muss erledigt 1 Strichlisten und Diagramme (Seiten 8 10) 1 Strichlisten erstellen Nr.1, 2 Nr.

Mehr

Schulinternes Curriculum Mathematik 5 Goethe-Gymnasium Lambacher Schweizer 5 Klettbuch

Schulinternes Curriculum Mathematik 5 Goethe-Gymnasium Lambacher Schweizer 5 Klettbuch Lambacher Schweizer 5 Klettbuch 3-12-734411-0 Kapitel I Natürliche Zahlen Erkundung 1 1. Zählen und darstellen S. 14 Nr.4 Stochastik Zahlen ordnen und vergleichen, natürliche Zahlen runden Verbalisieren

Mehr

Lösungen zu den Aufgaben 5. Klasse

Lösungen zu den Aufgaben 5. Klasse Lösungen zu den Aufgaben 5. Klasse 1. Daten 18 Tiere 360 : 18 = 20 pro Tier (1 Tier 20 ) Kaninchen Katzen Mäuse 2 Papageien Hunde Pferd 1 5 2 4 4 München 20 C 15 C 10 C 5 C 0 C Januar Februar März April

Mehr

Grundkenntnisse: Mathematik

Grundkenntnisse: Mathematik Grundkenntnisse: Mathematik nach der 4. Klasse Grundschule (Aufgaben) 1. Umgang mit Zahlen 1.1 Zahlenstrahl 1. Lies die markierten Zahlen auf dem Zahlenstrahl ab. A B C D E 300 400 500 600 A: B: C: D:

Mehr

Unterrichtsvorhaben Mathematik 5 auf der Grundlage des G8-Kernlehrplans Lambacher Schweizer 5

Unterrichtsvorhaben Mathematik 5 auf der Grundlage des G8-Kernlehrplans Lambacher Schweizer 5 Unterrichtsvorhaben Mathematik 5 auf der Grundlage des G8-Kernlehrplans prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Methodische 1. Halbjahr Argumentieren / bei der Lösung von Problemen im Team

Mehr

Kopfrechenphase Wo ist das A? vorne, links, oben. (vorne, rechts) 2. Was wurde markiert? Fünf von sechs Teilen sind farbig. Also fünf Sechstel

Kopfrechenphase Wo ist das A? vorne, links, oben. (vorne, rechts) 2. Was wurde markiert? Fünf von sechs Teilen sind farbig. Also fünf Sechstel Kopfrechenphase 1 1. Wo ist das A? vorne, links, oben (vorne, rechts) 2. Was wurde markiert? Fünf von sechs Teilen sind farbig. Also fünf Sechstel 3. Fehler gesucht! a) 1kg sind 1000g b) 1m hat 1000mm

Mehr

Schulcurriculum Mathematik

Schulcurriculum Mathematik Fachkonferenz Mathematik Schulcurriculum Mathematik Schuljahrgang 5 Lehrwerk: Fundamente der Mathematik 5, Schroedel-Verlag, ISBN 978-3-06-040348-6 Das Schulcurriculum ist auf Grundlange des Stoffverteilungsplans

Mehr

A.5 Menge der ganzen Zahlen = { ; 3; 2; 1; 0; 1; 2; 3; }

A.5 Menge der ganzen Zahlen = { ; 3; 2; 1; 0; 1; 2; 3; } Dietrich-Bonhoeffer-Gymnasium Oberasbach Standardaufaben. Fasse alle Primzahlen und alle Quadratzahlen der folenden Mene in jeweils einer eienen Mene zusammen: {; 79; 56; ; ; 96; 7; 65; 8; 95; 97; }. Schreibe

Mehr

Teilbarkeit natürlicher Zahlen: Teilbarkeitsregeln, Teiler, Vielfaches, ggt, kgv, Primzahl. Rechnen mit Bruchzahlen, Kopfrechenübungen, Sachaufgaben

Teilbarkeit natürlicher Zahlen: Teilbarkeitsregeln, Teiler, Vielfaches, ggt, kgv, Primzahl. Rechnen mit Bruchzahlen, Kopfrechenübungen, Sachaufgaben Vernetztes Anwenden Primzahlen und Teiler/ größte Teiler und gemeinsame Vielfache Teilbarkeit natürlicher Zahlen: Teilbarkeitsregeln, Teiler, Vielfaches, ggt, kgv, Primzahl. die Teilbarkeitsregeln [durch

Mehr

I. Natürliche Zahlen (Seite 1)

I. Natürliche Zahlen (Seite 1) I. Natürliche Zahlen (Seite 1) Natürliche Zahlen und der Zahlenstrahl: Man bezeichnet die Zahlen 1, 2, 3, als natürliche Zahlen. Jede natürliche Zahl hat einen Nachfolger und jede (außer 1) einen Vorgänger.

Mehr

Lehrwerk: Lambacher Schweizer, Klett Verlag

Lehrwerk: Lambacher Schweizer, Klett Verlag Thema 1: Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Zahlensysteme 4 Rechnen mit natürlichen Zahlen 5 Runden 6 Größen messen und schätzen (Zeit, Länge, Gewicht) 7 Mit Größen rechnen 1. Klassenarbeit

Mehr

Zahl der Unterrichtsstunden: 5 Wochen Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler

Zahl der Unterrichtsstunden: 5 Wochen Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler Nr. 1 des s (1. Halbjahr) Thema: Zahlen Zahl der Unterrichtsstunden: 5 Wochen stellen im Bereich Arithmetik/Algebra natürliche Zahlen dar (Zifferndarstellung, Stellenwerttafel, Wortform, Zahlenstrahl),

Mehr

k) (Zehntausender) f) (Hunderter)

k) (Zehntausender) f) (Hunderter) Hier findet ihr zu allen Themen der 5. Klasse Aufgaben zum Wiederholen. Wenn ihr Rechen- oder Tippfehler findet, bitte informiert mich (z. B. mit einer Email an voss@dsbarcelona.com), damit ich sie beseitigen

Mehr

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM NEU-ULM Lessing-Gymnasium Neu-Ulm 2/17 I. ZAHLEN 1. Natürliche und ganze Zahlen 1.1 Zahlenmengen Natürliche Zahlen N = { 1, 2, 3, 4,...} Natürliche Zahlen

Mehr

Jahresarbeitsplan denkstark 1 ( )

Jahresarbeitsplan denkstark 1 ( ) Jahresarbeitsplan denkstark 1 (978-3-507-84815-3) Schulwoche Zeitraum Leitidee Projekte und Inhalt denkstark 1 (978-3-507-84815-3) Kompetenzen Denkstark 1 1-2 2 Wochen Raum und Form Projekt: Kunst und

Mehr

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Klasse 5 5 Kapitel I Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Rechnen mit natürlichen Zahlen 4 Größen messen und

Mehr

Bilde die Quersumme! Wie heißen die Nachbarzehner? Wie heißen Nachbarhunderter? Wie heißen Nachbartausender?

Bilde die Quersumme! Wie heißen die Nachbarzehner? Wie heißen Nachbarhunderter? Wie heißen Nachbartausender? Arbeit mit der gelegten Zahl Bilde die Quersumme! Wie heißen die Nachbarzehner? Wie heißen Nachbarhunderter? Wie heißen Nachbartausender? Wie heißen Nachbarzehntausender? Wie heißen die Nachbarzahlen?

Mehr

Kernlernplan Jahrgangsstufe 5 5 NATÜRLICHE ZAHLEN. Algebra 1.) Darstellen natürlicher Zahlen: Vor- und Nachteile der Darstellungsformen erarbeiten.

Kernlernplan Jahrgangsstufe 5 5 NATÜRLICHE ZAHLEN. Algebra 1.) Darstellen natürlicher Zahlen: Vor- und Nachteile der Darstellungsformen erarbeiten. Kernlernplan Jahrgangsstufe 5 5 NATÜRLICHE ZAHLEN 1.) Darstellen natürlicher Zahlen: Stochastik Funktionen Zahl als Ziffern- und Wortform Große Zahlen Darstellung am Zahlenstrahl; Darstellung im Zehnersystem

Mehr

Kompetenzübersicht A Klasse 5

Kompetenzübersicht A Klasse 5 Kompetenzübersicht A Klasse 5 Natürliche Zahlen und Größen A1 Ich kann eine Umfrage durchführen und die Ergebnisse in einer Strichliste und einem Säulendiagramm darstellen. A2 Ich kann große Zahlen vorlesen

Mehr

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5 Funktionen 1 Natürliche Zahlen Lesen Informationen aus Text, Bild, Tabelle mit eigenen Worten wiedergeben Problemlösen Lösen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln

Mehr

Mathematik Klasse 5/6 Lehrbuch: LOGO 5 und LOGO 6, C.C. Buchner Verlag, 1. Auflage, 2010

Mathematik Klasse 5/6 Lehrbuch: LOGO 5 und LOGO 6, C.C. Buchner Verlag, 1. Auflage, 2010 Im Mathematik-Bereich von Serlo findest du zusätzlich zu den nachfolgenden Links 930 Artikel, 20 Online-Kurse, 105 Videos und 5.000 mit Musterlösungen zu Schulmathematik komplett kostenlos: https://de.serlo.org/mathe

Mehr

Terme ================================================================== Rechteck mit den Seiten a und b :

Terme ================================================================== Rechteck mit den Seiten a und b : Terme ================================================================== Rechteck mit den Seiten a und b : Flächeninhalt : A(a; b) = a b b Umfang : U(a; b) = 2 a + 2 b = 2a + 2b a Quader mit einem Quadrat

Mehr

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen Mathematik Solothurn, 21. Mai 2012 1 Arithmetik 1.1 Natürliche Zahlen 1.1.1 Die Sch können natürliche Zahlen lesen und schreiben. S. 6/7 S.

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Fit in Test und Klassenarbeit - Mathe 5./6.

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Fit in Test und Klassenarbeit - Mathe 5./6. Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Fit in Test und Klassenarbeit - Mathe 5./6. Klasse Gymnasium Das komplette Material finden Sie hier: School-Scout.de Christine Kestler

Mehr

Grundwissen 5 Lösungen

Grundwissen 5 Lösungen Grundwissen 5 Lösungen Zahlengerade Zeichne eine Zahlengerade, wähle eine passende Einheit und trage folgende Zahlen ein: 12 30 3 60 Welche Zahlen werden auf den Zahlengeraden in der Figur durch die Pfeile

Mehr

Aufgaben zu Lambacher Schweizer 5 Hessen

Aufgaben zu Lambacher Schweizer 5 Hessen Aufgaben zu Kapitel I Kopfrechenaufgaben 1 Berechne im Kopf. a) 60 + 32 b) 57 + 41 c) 130 + 72 d) 504 + 91 e) 75 + 47 f) 76 + 85 g) 124 + 127 h) 295 + 76 i) 129 + 396 j) 747 + 239 2 a) 3800 + 4600 b) 5700

Mehr

Begriffe, die auf eine Multiplikation oder Division hinweisen

Begriffe, die auf eine Multiplikation oder Division hinweisen Fachbegriffe der Addition und Subtraktion Bei der Addition werden Zahlen zusammengezählt: 2 + 4 = 6 1. Summand 2. Summand Summe Bei der Subtraktion wird eine Zahl von einer anderen abgezogen. 7 2 = 5 Minuend

Mehr

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24 Inhalt A Grundrechenarten Grundwissen 6 Dezimalbrüche (Dezimalzahlen) 9 Brüche Rationale Zahlen 6 5 Potenzen und Wurzeln 0 6 Größen und Schätzen B Zuordnungen Proportionale Zuordnungen 8 Umgekehrt proportionale

Mehr

Schulinternes Curriculum Mathematik 5 / 6

Schulinternes Curriculum Mathematik 5 / 6 Die dargestellte Reihenfolge der Unterrichtsinhalte ist eine von mehreren sinnvollen Möglichkeiten und daher nicht bindend. Lambacher Schweizer 5 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen

Mehr

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche?

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche? So fit BIST du 1 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! Quadrat 3) Erkennst du die Fläche? Rechteck 4) Versuch es gleich noch einmal: Rechteck 102 So fit

Mehr

6. KLASSE MATHEMATIK GRUNDWISSEN

6. KLASSE MATHEMATIK GRUNDWISSEN 6. KLASSE MATHEMATIK GRUNDWISSEN Thema BRÜCHE Bruchteil - Man teilt das Ganze durch den Nenner und multipliziert das Ergebnis mit dem Zähler von 24 kg = (24 kg : 4) 2 = 6 kg 2 = 12 kg h = von 1 h = (1

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6

Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6 Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6 In dieser Anfangsphase sollen die Schülerinnen und Schüler keine Wiederholung des Grundschulstoffs durchmachen, sondern bereits

Mehr

Matherad. Kathrin Brand Tanja Hitzel Katrin Zacher. 873 der 9er-Trick hilft mir

Matherad. Kathrin Brand Tanja Hitzel Katrin Zacher. 873 der 9er-Trick hilft mir Matherad 3 Lösungen Trainingsheft Kathrin Brand Tanja Hitzel Katrin Zacher 873 der 9er-Trick hilft mir Wiederholung: Zehner und Einer Z 3 E 5 Z 2 E 8 Z 8 E 30 + 5 = 3 5 20 + 8 = 2 8 80 + = 8 Z 4 E Z E

Mehr

Natürliche Zahlen. Natürliche Zahlen addieren und subtrahieren. Addiere die Ziffern stellengerecht untereinander.

Natürliche Zahlen. Natürliche Zahlen addieren und subtrahieren. Addiere die Ziffern stellengerecht untereinander. Grundwissen Natürliche Zahlen 1 Zeichne eine Zahlenhalbgerade und markiere. 8; 4; ; 11; 2; 6; 9 ; 1; 0; 4; 10; 60 2 Welches ist die größte (kleinste) natürliche Zahl, die man aus den Ziffern 8, 1,, und

Mehr

Mathematik für Gymnasien Übungsaufgaben - Jahrgangsstufe 6

Mathematik für Gymnasien Übungsaufgaben - Jahrgangsstufe 6 Mathematik für Gymnasien Übungsaufgaben - Jahrgangsstufe I. Brüche. Allgemein: a) Aus welchen Bestandteilen besteht ein Bruch? b) Was besagt der Nenner? c) Was besagt der Zähler? d) In welchen Diagrammen

Mehr

Größere Zahl minus kleinerer Zahl anschreiben. Komma unter Komma schreiben. 33,8 : 1,3 = 33,8 : 13 = 26

Größere Zahl minus kleinerer Zahl anschreiben. Komma unter Komma schreiben. 33,8 : 1,3 = 33,8 : 13 = 26 E1 E E3 E4 E5 E6 E7 Lösungen 1 Mein Wissen aus der 1. Klasse z. B., 1 F angemalt im Plan Da sie in unterschiedlichen Abteilungen des Flugzeugs saßen (Business-Class + Economy-Class), konnten sie einander

Mehr

Inhaltsbezogene Kompetenzen 1 Klasse 5 und 6 Curriculum Klasse 5 Schulcurriculum für alle Kompetenzen: Üben und Vertiefen

Inhaltsbezogene Kompetenzen 1 Klasse 5 und 6 Curriculum Klasse 5 Schulcurriculum für alle Kompetenzen: Üben und Vertiefen Curriculum Mathematik Klasse 5 und 6 SCHÖNBUCH-GYMNASIUM HOLZGERLINGEN Natürliche Zahlen natürliche Zahlen dezimales Stellenwertsystem Zweiersystem (Schulcurriculum) Primzahlen, Primfaktoren Teilbarkeitsregeln

Mehr

Grundwissen. 6. Jahrgangsstufe. Mathematik

Grundwissen. 6. Jahrgangsstufe. Mathematik Grundwissen 6. Jahrgangsstufe Mathematik 1 Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite 1 1.1 Bruchteil 1.2 Erweitern und Kürzen Erweitern: Zähler und Nenner mit der selben Zahl multiplizieren

Mehr

Hauscurriculum Klasse 5 (ab Schuljahr 2015/16)

Hauscurriculum Klasse 5 (ab Schuljahr 2015/16) 1 1. Statistische Erhebungen Natürliche Zahlen (4 Wochen) 1.1. Statistische Erhebungen in der Klasse 1.2 Große Zahlen Stellenwerttafel planen statistische Erhebungen in Form einer Befragung oder einer

Mehr

Stoffverteilungsplan Mathematik Klasse 5 RS,

Stoffverteilungsplan Mathematik Klasse 5 RS, Stoffverteilungsplan Mathematik Klasse 5 RS, 04.12.2006 Inhalte Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Methoden 1 Die natürlichen Zahlen Unsere neue Klasse 1 Strichlisten und Diagramme

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 1. Teilbarkeitsregeln 1. Teilbarkeit durch 2, 4 und 8 2. Teilbarkeit durch 5 und 10 3. Quersummen berechnen 4. Teilbarkeit durch 3, 6 und 9 5. Gemischte

Mehr

1. Mathematik-Schularbeit, Name:. 1a) Gib den Vorgänger und Nachfolger folgender Zahl an!

1. Mathematik-Schularbeit, Name:. 1a) Gib den Vorgänger und Nachfolger folgender Zahl an! 1. Mathematik-Schularbeit, Name:. am 13. 11. 2013 Klasse: 1. 1a) Gib den Vorgänger und Nachfolger folgender Zahl an! 4 532 2 399 1b) Stelle die folgende Zahlen am Zahlenstrahl dar. Setze ein Kreuz an die

Mehr

Abfolge in 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

Abfolge in 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen 1. Natürliche Zahlen und Größen 1.1 Große Zahlen Stellentafel 1.2 1.3 Zweiersystem 1.4 Römische Zahlzeichen 1.5 Anordnung der natürlichen Zahlen Zahlenstrahl 1.6 Runden von Zahlen Bilddiagramme 1.7 Länge

Mehr

Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5

Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5 Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5 Kernlehrplan G8 Verbalisieren mathematische Sachverhalte, Begriffe, Regeln und Begründen verschiedene Arten des Begründens intuitiv nutzen:

Mehr

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele. Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.

Mehr

MATHE - CHECKER. 5. Klasse. by W. Rasch

MATHE - CHECKER. 5. Klasse. by W. Rasch MATHE - CHECKER 5. Klasse by W. Rasch 1. Aufgabe Gegeben ist die Zahl 5 909 999. Wie heißt ihr Nachfolger? A: 5909000 B: 5909100 C: 5910000 D: 6000000 2. Aufgabe Gegeben ist der Term 41 555 + 4 927-8 062.

Mehr