Demo-Text für Geometrie Winkel und Dreiecke. Teil 1 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Mit Index am Ende des Textes

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Demo-Text für Geometrie Winkel und Dreiecke. Teil 1 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Mit Index am Ende des Textes"

Transkript

1 Teil 1 it Index am Ende des Textes Stand: 22. Februar 212 Datei Nr Friedric Buckel Geometrie Winkel und Dreiecke INTERNETBIBLITHEK FÜR SCHULTHETIK

2 Inalt 1. Dreunen durc Winkel messen 3 Zeicnen von Winkeln mit dem Geodreieck 5 Kopiervorlaen mit Geodreieck 7 Kopiervorlaen mit vielen Winkeln Winkel an Fiuren 14 Winkel zwiscen 2 Halberaden 14 Winkel zwiscen zwei Geraden 14 Kopiervorlaen (ufabenblätter) Herleitun: Winkelsumme im Dreieck Zusammenfassun über Winkel 3 Erebnisblatt: Paralleloramme 33 Trapezkonstruktion Systematisces Zeicnen von Dreiecken 4 Systematisce Beandlun von vier Konstruktionstypen: 42 2 Winkel und die einesclossene Seite 42 3 Seiten und kein Winkel 45 2 Seiten und der einesclossene Winkel 47 2 Seiten und ein Geenwinkel 49 ufabenblatt (7 ufaben) 5 Lösunen dazu Index zum Nacsclaen 55

3 1111 Klasse 6 Winkel Teil Dreunen durc Winkel messen Wenn man einen Punkt um einen Punkt dreen soll, dann kann man das mit dem Zirkel darstellen. Die Zirkelspitze wird in einestocen und die Zirkelmine auf esetzt. Dann dret man und der Zirkel zeicnet dabei die Spur auf, die der Punkt (die ine) bei der Dreun interlässt. Das Erebnis ist bei einer Volldreun ein Kreis (eine Kreislinie). Dret man wenier, dann nennt man es einen Kreisboen. bbildun 1 zeit eine Volldreun des Punktes um den Punkt. Der kleine (blaue) Pfeil auf der Kreislinie ibt die Drerictun an. Die atematiker bezeicnen die Drerictun een den Urzeiersinn als positive Drerictun. Und wenn nicts anderes aneeben ist, dreen wir immer enau in dieser Rictun! ist der ittelpunkt des Kreises, die Strecke eißt der Radius r des Kreises. Von aus et nac rects durc eine Halberade. Diese at den nfanspunkt und keinen Endpunkt. ftmals denkt man sic bei einer Dreun nict nur einen Punkt sondern die anze Halberade edret. Dann dreen sic also alle Punkte dieser Halberaden und bescreiben dabei einen Kreis, dessen Radius je nac Lae des neuen Punktes anders ist. Die folenden bbildunen zeien eine Vierteldreun von, eine Halbdreun von und eine Dreivierteldreun von. Die Endlae der Dreun ist dann jeweils eine neue Halberade, der ic den Namen ebe. ' bb. 3 : Halbdreun bb. 2 : Vierteldreun ' bb. 1 bb. 4 : Dreivierteldreun ' Friedric Buckel

4 1111 Klasse 6 Winkel Teil 1 4 Es ibt natürlic auc Zwiscendreunen wie diese beiden bbildunen zeien: bb. 5 bb. 6 Jetzt wird es scwer zu bescreiben, wie roß die Dreun ausefallen ist! Daer aben die enscen scon vor über 2 Jaren beonnen, die Volldreun in 36 leicer Teile einzuteilen. 1 Teil nennt man 1 Grad und screibt dies 1. Zur Volldreun eört dann der Vollwinkel und seine Größe ist 36. Zur Halbdreun eört dann der albe Vollwinkel, also. Die Vierteldreun eört zu einem Winkel von und die Dreivierteldreun zu 27. Die folende bbildun zeit vier Dreunen von um 6. B um 16, C um 24 und D um 315. Weitere Winkeleinteilunen sind darestellt ' B' 24 C' an erkennt auc, dass eine Dreun um (die ja eientlic ar nicts verändert), zum selben Enderebnis fürt wie eine Dreun um 36. ' ' 8 D' D 6 3 B C Friedric Buckel

5 1111 Klasse 6 Winkel Teil 1 5 Zeicnen von Winkeln mit dem Geodreieck Ein Geodreieck entält zwei Skalen von Gradeinteilunen. Die für uns wictie Einteilun läuft een den Urzeiersinn (elb unterlet), die zweite Skala läuft enteenesetzt dazu, wir braucen sie wenier oft! der in anderer Lae: Geen den Urzeiersinn im Urzeiersinn Geen den Urzeiersinn 6 im Urzeiersinn Friedric Buckel

6 1111 Klasse 6 Winkel Teil 1 6 it dem Geodreieck zeicnen wir zuerst einen so enannten spitzen Winkel. Deren Größe liet zwiscen und. Dies ist ein 3 Winkel one das Geodreieck. Übriens ist es eal, welcen Radius der Kreisboen erält, weil man ja jeden Punkt der Halberaden um 3 edret at! Nun so enannte stumpfe Winkel. Ire Größe liet zwiscen und Die untere bbildun zeit, wie man einen -Winkel zeicnet. Dieser Winkel at die Größe 3. ance Scüler erkennen ier nict, dass es und nict 3 sind, denn für uns ilt die äußere Skala Dieser Winkel at die Größe. Friedric Buckel

7 1111 Klasse 6 Winkel Teil 1 7 Welcer Winkel wurde ier ezeicnet? (a) (b) (c) Friedric Buckel

8 1111 Klasse 6 Winkel Teil 1 8 Die Lösun: (a) zeit einen Winkel mit 11, denn die dicke Linie an der Kante des Dreiecks liet bei. Nun zält man entlan der elben Skala bis 11. (b) zeit einen 45 Winkel. (c) birt eine Falle. Hier ist der Winkel mit einem blauen Kreisboen markiert. Wie man siet, muss man daer ausnamsweise die Skala verwenden, die nict elb unterlet ist, also im Urzeiersinn zält. Und daer kommt man zu 12! it dem Geodreieck zeicnen wir nun überstumpfe Winkel. Ire Größe liet über und unter 36. Hier drei Beispiele für überstumpfe Winkel: Hier abe ic den Winkeln zum ersten al Namen eeben. an verwendet aus Tradition kleine riecisce Bucstaben: bedeutet lpa, bedeutet Beta bedeutet Gamma. Nun eine kleine ufabe: iss mit Hilfe Deines Geodreiecks die Größen dieser drei Winkel. Screibe das Erebnis so auf: = 12 (der Wert stimmt nict! ) usw. Jetzt eine Übersictstabelle über die Namen der Winkel: Name Spitzer Winkel Recter Winkel Stumpfer Winkel Winkelröße zwiscen und zwiscen und Gestreckter Winkel Überstumpfer Winkel Vollwinkel Zwiscen und Friedric Buckel

Demo-Text für Winkel. Geometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Stand: 19. Juni Datei Nr

Demo-Text für  Winkel. Geometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Stand: 19. Juni Datei Nr Geometrie 0 50 b 0 Winkel Stnd: 9. Juni 207 Dtei Nr. 0 = 55 = 25 2 INTERNETBIBLITHEK FÜR SCHULMTHEMTIK = 25 2 = 55 Demo-Text für 0 Winkel Grundlen 2 Inlt. Dreunen durc Winkel messen 3 Zeicnen von Winkeln

Mehr

Grundwissen Ebene Geometrie

Grundwissen Ebene Geometrie Micael Körner Grundwissen bene Geometrie 5.0. Klasse eredorfer Kopiervorlaen Zu diesem Material: Was ist ein Stufenwinkel? Wie findet man die Höen von reiecken eraus? Wie werden Fläceninalt und Umfan bei

Mehr

1. Hilbertschen Geometrie I: Punkte, Geraden, Ebenen

1. Hilbertschen Geometrie I: Punkte, Geraden, Ebenen 1. Hilbertscen eometrie I: Punkte, eraden, benen Wir bescreiben den axiomatiscen Zuan zur eometrie, wie er von Hilbert erstmals formuliert wurde. Der Ausanspunkt unserer Betractun ist die folende Definition.

Mehr

Kreise Winkel Drehung

Kreise Winkel Drehung Kreise Winkel Drehun.) Der Kreis: ufabe: Zeichne in ein Koordinatensystem folende Punkte ein: M(4/) ; (/) ; (6/8) ; D(/8) ; E(6/) 9 8 D Durchmesser (d) 7 6 M Sehne (s) 4 Radius (r) E - 4 6 7 8 9 a.) Zeichne

Mehr

Aufgabe 1 Beweise: Das Quadrat einer Primzahl lässt sich nicht als Summe der Quadrate von drei Primzahlen darstellen.

Aufgabe 1 Beweise: Das Quadrat einer Primzahl lässt sich nicht als Summe der Quadrate von drei Primzahlen darstellen. Landeswettbewerb atematik aden-württember 1998 Runde ufabe 1 eweise: Das Quadrat einer Primzal lässt sic nict als umme der Quadrate von drei Primzalen darstellen. 1. Lösun Die Quadrate von natürlicen Zalen

Mehr

iek Institut für Entwerfen und Konstruieren

iek Institut für Entwerfen und Konstruieren Grundlaen der Darstellun Institut für Entwerfen und Konstruieren Prof. José Luis Moro Heiko Stacel Mattias Rottner 1 Konstruktion der senkrecten Axonometrie 2 Mertafelprojektion B(A) A B A Aufriss Seitenriss

Mehr

2.7. Aufgaben zu Ähnlichkeitsabbildungen

2.7. Aufgaben zu Ähnlichkeitsabbildungen .7. Aufaben zu Änlickeitsabbildunen Aufabe 1 Strecke das Dreieck AB mit A(3 1), B( 3) und ( ) an Z(1 1) um die Streckfaktoren k 1 =, k = 1, k 3 = 1, k 4 = und k =. Aufabe Strecke das Dreieck AB mit A(

Mehr

Einstieg in die Koordinatengeometrie - lineare Funktionen -

Einstieg in die Koordinatengeometrie - lineare Funktionen - Einstie in die Koordinateneoetrie - lineare Funktionen - Was ist eine Funktion? Definition: Funktion Eine Zuordnun f: D}, D eißt Funktion, wenn sie jede Eleent xd enau eine reelle Zal y zuordnet. f(x)=y

Mehr

VORSCHAU. zur Vollversion. Inhaltsverzeichnis. Grundwissen Ebene Geometrie

VORSCHAU. zur Vollversion. Inhaltsverzeichnis. Grundwissen Ebene Geometrie Inhaltsverzeichnis Grundwissen bene Geometrie Grundlaen der Geometrie 1 Grundberiffe 2 Koordinatensystem 3 Senkrechte Geraden 4 Parallele Geraden 5 bstand 6 Vermischte Übunen zu Linien 7 Winkelarten 8

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

3. Hintereinanderausführen von Kongruenzabbildungen. a) Hintereinanderausführen von 2 Achsenspiegelungen

3. Hintereinanderausführen von Kongruenzabbildungen. a) Hintereinanderausführen von 2 Achsenspiegelungen ctun: Beim Verknüpfen von bbildunen screibt der Verfasser(ist mir unbekannt) die erste bbildun links auf. Reimund lbers 3. Hintereinanderausfüren von Konruenzabbildunen Warum liefert das Hintereinanderausfüren

Mehr

9 Anhang. 9.1 Verhältnisgleichungen. 9.2 Strahlensätze. Elemente der Geometrie 22

9 Anhang. 9.1 Verhältnisgleichungen. 9.2 Strahlensätze. Elemente der Geometrie 22 Elemente der Geometrie 9 Anang 9.1 Verältnisgleicungen Verältnisgleicungen sind spezielle Formen von Gleicungen. Es a werden zwei Quotienten gleic gesetzt. Die Gleicung! b = c d kann man auc screiben als!a:b

Mehr

Jgst. 11/I 1.Klausur

Jgst. 11/I 1.Klausur Jgst. /I.Klausur..00 A. Bestimme den Scnittpunkt und den Scnittwinkel der beiden folgenden Geraden: g : x y = 5 : + y = 5x Zunäcst müssen die beiden Geraden auf Normalform gebract werden: x y = 5 y = x

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenbur-Gymnasium Wunsiedel Grundwissen für das Fac Matematik Jaransstufe 5 Natürlice und anze Zalen 1;2;3;4;5;6; ist die Mene der natürlicen Zalen. ; 4; 3; 2; 1;0;1;2;3;4; ist die Mene der anzen Zalen.

Mehr

Seite 1 von 6 Standardaufgaben Grundwissen M5 Beispiele 1. Fasse alle Primzahlen und alle Quadratzahlen A.1 Menge IN der natürlichen Zahlen

Seite 1 von 6 Standardaufgaben Grundwissen M5 Beispiele 1. Fasse alle Primzahlen und alle Quadratzahlen A.1 Menge IN der natürlichen Zahlen Seite 1 von 6 Standardaufaben Grundwissen M5 Beispiele 1. Fasse alle Primzahlen und alle Quadratzahlen A.1 Mene IN der natürlichen Zahlen 5 ist eine natürliche Zahl: der folenden Mene in jeweils einer

Mehr

A.5 Menge der ganzen Zahlen = { ; 3; 2; 1; 0; 1; 2; 3; }

A.5 Menge der ganzen Zahlen = { ; 3; 2; 1; 0; 1; 2; 3; } Dietrich-Bonhoeffer-Gymnasium Oberasbach Standardaufaben. Fasse alle Primzahlen und alle Quadratzahlen der folenden Mene in jeweils einer eienen Mene zusammen: {; 79; 56; ; ; 96; 7; 65; 8; 95; 97; }. Schreibe

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Baden-Württember: Facocsclreife 2014 www.mate-afaben.com Haptprüfn Facocsclreife 2014 Baden-Württember Afabe 3 Analysis Hilfsmittel: rafikfäier Tascenrecner Berfskolle Alexander Scwarz www.mate-afaben.com

Mehr

2 Kongruenzabbildungen

2 Kongruenzabbildungen EINFÜHRUNG IN DIE GEOMETRIE SS 05 16 DEISSLER 2 Konruenzabbildunen 2.1 Geradenspieelunen a) Spieel Wie wirkt ein Spieel? Warum lauben wir, zu jedem unkt vor dem Spieel äbe es inter dem Spieel einen entsprecenden

Mehr

19 Aufstellen von Funktionstermen

19 Aufstellen von Funktionstermen 9 Austellen von Funktionstermen 9 Austellen von Funktionstermen Kert man die Kurvendiskussion um, so ordert man jetzt, dass aus voreebenen Eienscaten eines Funktionsraen die entsrecende Funktion eunden

Mehr

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4 Klasse / Augaben ab Seite 4 rundlagen und Begrie der Dierenzialrecnung Die Zeicnungen und Erklärungen sind etwas ausürlicer als notwendig u versciedene Screibweisen und Darstellungen auzuzeigen. Steigung

Mehr

Der Konstruktionsbericht

Der Konstruktionsbericht Der Konstruktionsbericht Philipp Gressly Freimann 11. November 2016 Inhaltsverzeichnis 1 Einleitun 1 2 Grundkonstruktionen (G1, G2, G3) 2 2.1 G1: Punkte wählen (leistift)...................... 3 2.2 G2:

Mehr

DOWNLOAD. Flächeninhalt und Umfang: Dreieck. Flächeninhalt und Umfang. Arbeitsblätter und Test zur sonderpädagogischen Förderung

DOWNLOAD. Flächeninhalt und Umfang: Dreieck. Flächeninhalt und Umfang. Arbeitsblätter und Test zur sonderpädagogischen Förderung DOWNLOAD Andreas Marscall Laura Petry Fläceninalt und Umfan: Dreieck Arbeitsblätter und Test zur sonderpädaoiscen Förderun Andreas Marscall, Laura Petry Beredorfer Unterrictsideen Downloadauszu aus dem

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Basics-Trainer / 4. Schuljahr Grundlagentraining für jeden Tag!

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Basics-Trainer / 4. Schuljahr Grundlagentraining für jeden Tag! Unterrictsmaterialien in diitaler und in edructer Form Auszu aus: Mate-Basics-Trainer /. Sculjar Grundlaentrainin für jeden Ta! Das omplette Material finden Sie ier: Scool-Scout.de . Sculjar Hans-J. Scmidt

Mehr

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten. V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

Mehr

Mechanik 1.Gleichförmige Bewegung 1

Mechanik 1.Gleichförmige Bewegung 1 Mecanik 1.Gleicförige Bewegung 1 1. Geradlinige, gleicförige Bewegung (Bewegung it kontanter Gecwindigkeit) Zeit: 1 Unterricttunde 45 Minuten 2700 Sekunden 1 Sculjar entält etwa 34 Doppeltunden 68 Unterricttunden

Mehr

Übungsaufgaben zur Kursarbeit

Übungsaufgaben zur Kursarbeit Übungsaufgaben zur Kursarbeit I) Tema Funktionen. Gib jeweils die maximale Definitionsmenge der Funktion an f(x) = (x ) D f = R (x) = x D = {x R /x } g(x) = (x ) D = {x R /x } g k(x) = x D = {x R /x >

Mehr

DOWNLOAD. Vertretungsstunde Mathematik Klasse: Winkel. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Vertretungsstunde Mathematik Klasse: Winkel. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel: DOWNLOAD Marco Bettner/Erik Dinges Vertretungsstunde Mathematik 9 6. Klasse: auszug aus dem Originaltitel: haben Namen 1 Ordne die Bezeichnungen den bereichen zu. spitzer gestreckter rechter stumpfer überstumpfer

Mehr

Übungen zum Mathematik-Abitur. Geometrie 1

Übungen zum Mathematik-Abitur. Geometrie 1 Geometrie Übungen zum atematik-abitur -7/8 Übungen zum atematik-abitur Geometrie Gegeben sind die Punkte ( 4 ) und ( 5 6 4) P und die Gerade 7 4 g: x= + r 4 Aufgabe : Die Ebene E entält g und Bestimmen

Mehr

Solche Abbildungen nennt man ZENTRISCHE STRECKUNGEN. DEFINITION:

Solche Abbildungen nennt man ZENTRISCHE STRECKUNGEN. DEFINITION: ZENTRICHE TRECKUNG DER TORCHENCHNABEL ol Farstift Zeicenstift ol, Farstift und Zeicenstift lieen immer auf einer Geraden! Früer at man den torcenscnabel (antorap) benutzt um Bilder maßstäblic zu verrößern,

Mehr

LU 08 Parallelogramme untersuchen

LU 08 Parallelogramme untersuchen 1 LU 08 Paralleloramme untersuchen LU 08 Paralleloramme untersuchen Ich kann... eriffe: 1 die nebenstehenden eriffe erklären und zeichnen Punkt, Gerade, Halberade oder Strahl, Strecke, iaonale, Umfan,

Mehr

Theorie des Glücksrads auf der schiefen Ebene 1/6

Theorie des Glücksrads auf der schiefen Ebene 1/6 Teorie des Glücksrads auf der sciefen Ebene 1/6 Das Glücksrad auf der sciefen Ebene Von der Idee zur Teorie WOLFGANG RIEMER Abstract Beim Dreen eines Roulettes auf einer sciefen Ebene erlebt man alle Facetten

Mehr

a) b) c) d) e) f) g) h) i) j) k) l) s) t) u) v) w) x) y) z)

a) b) c) d) e) f) g) h) i) j) k) l) s) t) u) v) w) x) y) z) Aufabe 1: a) b) c) d) e) f) ) h) i) j) k) l) m) n) o) p) q) r) s) t) u) v) w) x) y) z) a) Welche der Fiuren a) z) ist achsensymmetrisch? Trae die Symmetrieachsen ein. b) Gib an, welche der Fiuren a) z)

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (1) - Geometrische Grundlagen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (1) - Geometrische Grundlagen Unterrictsmterilien in diitler und in edruckter Form uszu us: Kopiervorlen Geometrie (1) - Geometrisce Grundlen s komplette Mteril finden Sie ier: Scool-Scout.de Inltsverzeicnis Geometrie Gerde, Strecke

Mehr

ma t 4 u GITARREN- UND LAUTENBÜNDE GRUNDLEGENDES DAS MONOCHORD

ma t 4 u GITARREN- UND LAUTENBÜNDE GRUNDLEGENDES DAS MONOCHORD GRUNDLEGENDES DAS MONOCHORD Scon in der Antike war es üblic, Intervalle durc Streckenteilung auf einer gespannten Saite geometrisc darzustellen. Das dabei benützte Instrument eißt Kanon oder Monocordon

Mehr

Download. Mathe an Stationen Umgang mit Geodreieck. Einführung Geodreieck. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Mathe an Stationen Umgang mit Geodreieck. Einführung Geodreieck. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dines Mathe an Stationen Uman mit Geodreieck Einführun Geodreieck Downloadauszu aus dem Oriinaltitel: Mathe an Stationen Uman mit Geodreieck Einführun Geodreieck Dieser Download

Mehr

Analytische Geometrie

Analytische Geometrie nalytisce Geometrie. Vektoren Mitte einer Strecke B M B Verbindunsvektor B B B Mittelwert der zwei Ortsvektoren ( 6 ) B( 5 ) m B ( a + b) M( ( ) ( + 5) ( + 6) M( ) Spitze nfan: B b a ( 6 ) B( 5 ) 6 B Scwerpunkt

Mehr

Kraft F in N Dehnung s in m

Kraft F in N Dehnung s in m . Klausur Pysik Leistungskurs Klasse 7. 9. 00 Dauer: 90 in. Wilel T., ein junger, talentierter Bogenscütze darf sic einen neuen Bogen kaufen. Er kann den Bogen it axial 50 N spannen und seine Are reicen

Mehr

Download. Mathe an Stationen Umgang mit Zirkel. Grundkonstruktionen Zirkel. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Mathe an Stationen Umgang mit Zirkel. Grundkonstruktionen Zirkel. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco ettner, Erik Dines Mathe an Stationen Uman mit Zirkel Zirkel Downloadauszu aus dem Oriinaltitel: Mathe an Stationen Uman mit Zirkel Zirkel Dieser Download ist ein uszu aus dem Oriinaltitel

Mehr

Teil 1: 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr Friedrich Buckel. Stand 29.

Teil 1: 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr Friedrich Buckel. Stand 29. Teil 1: Gleicungen mit Unbekannten mit Textaufgaben und 3 Gleicungen mit Unbekannten Datei Nr. 1180 Friedric Buckel Stand 9. Juni 016 Lineare Gleicungssysteme Demo-Text für www.mate-cd.de Dieser Text stet

Mehr

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11.

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11. Teil Gleicungen mit Unbekannten mit Textaufgaben und 3 Gleicungen mit Unbekannten Datei Nr. 80 Stand. April 0 Lineare Gleicungssysteme INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 80 Gleicungssysteme Vorwort

Mehr

Reise nach Rio Klimadiagramme lesen

Reise nach Rio Klimadiagramme lesen Reise nac Rio Klimadiagramme lesen Maria will im Juli nac Brasilien fliegen und dort Urlaub macen. Um iren Koffer passend zu packen und Unternemungen planen zu können, suct sie im Internet zunäcst nac

Mehr

Kapitel 6: Der Flächeninhalt. Flächeninhalt bestimmen bedeutet : Möglichst vielen Figuren F (Maß-)Zahl A(F) zuordnen.

Kapitel 6: Der Flächeninhalt. Flächeninhalt bestimmen bedeutet : Möglichst vielen Figuren F (Maß-)Zahl A(F) zuordnen. Fläceninalt 1 Fläceninalt als Größe Fläceninalt 2 Messprozess Pysik Kapitel 6: er Fläceninalt Fläceninalt einer Fiur soll etwas über deren Größe aussaen Fläceninaltsberiff intuitiv irendwie klar, ab der

Mehr

Thema: Winkel in der Geometrie:

Thema: Winkel in der Geometrie: Thema: Winkel in der Geometrie: Zuerst ist es wichtig zu wissen, welche Winkel es gibt: - Nullwinkel: 0 - spitzer Winkel: 1-89 (Bild 1) - rechter Winkel: genau 90 (Bild 2) - stumpfer Winkel: 91-179 (Bild

Mehr

Die Welt der Winkel Eine Anleitung zur Arbeit. Seite 1. Eine Anleitung zur Arbeit

Die Welt der Winkel Eine Anleitung zur Arbeit. Seite 1. Eine Anleitung zur Arbeit Seite 1 40 Seite 2 Seite 2 Seite 3 Seite 4 Seite 5 Seite 6 9 Seite 10 13 Seite 14 17 Seite 18 21 Seite 22 25 Seite 26 29 Seite 30 33 Seite 34 36 Seite 37 40 Seite 41 44 Seite 45 48 Seite 49 52 Seite 53

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Mittwoc: Ableiten, Kurvendiskussionen, Optimieren, Folgen und Reien Betracte auf einem Hügel einen Weg, dessen Seitenansict

Mehr

ZUKUNFT BILDEN. Die Bildungsinitiative der Region. Februar 2015. Journalistische Darstellungsformen. Teil 3

ZUKUNFT BILDEN. Die Bildungsinitiative der Region. Februar 2015. Journalistische Darstellungsformen. Teil 3 ZUKUNFT Februar 2015 Journalistisce Darstellungsformen Teil 3 Das Projekt zur Bildungsförderung für Auszubildende getragen von starken Partnern Initiatoren: Förderer und Stiftungspartner: INHALT Journalistisce

Mehr

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10 www.mate-aufgaben.com Analysis: Ableitung, Änderungsrate,Tangente Analysis Ableitung, Änderungsrate, Tangente Teil Gymnasium Klasse 0 Alexander Scwarz www.mate-aufgaben.com April 0 www.mate-aufgaben.com

Mehr

Grundwissen Klasse 7

Grundwissen Klasse 7 Grundwissen Klasse 7 Zahlenmenen = {1; 2; 3; 4; 5; 6;... } Die ene der natürlichen Zahlen. = {... 3; 2; 1; 0; + 1; + 2; + 3;...} Die ene der anzen Zahlen. Die ene der rationalen Zahlen. ultiplikation und

Mehr

Symmetrien und Winkel

Symmetrien und Winkel Eigenschaften der Achsenspiegelung Alle Punkte werden an der Symmetrieachse gespiegelt. Die Verbindungslinien stehen senkrecht zur Symmetrieachse. Original- und Bildpunkte haben je den gleichen Abstand

Mehr

Ableitungen. Manfred Hörz. ..., f (x n. ,..., x i. ,..., x n ) +Δ x,..., x n

Ableitungen. Manfred Hörz. ..., f (x n. ,..., x i. ,..., x n ) +Δ x,..., x n Ableituge Mafred Hörz. Partielle Ableitug Hat eie Fuktio mer als eie Variable ud leitet ma pro Variable ab, idem ma die adere als kostat betractet, so sprict ma vo partielle Ableituge. Alle Ableituge zusamme

Mehr

VORSCHAU. zur Vollversion. Schätzen, messen, zeichnen und berechnen eine Lerntheke zu den Winkeln. Didaktisch-methodische Hinweise

VORSCHAU. zur Vollversion. Schätzen, messen, zeichnen und berechnen eine Lerntheke zu den Winkeln. Didaktisch-methodische Hinweise Lerntheke Winkel 1 von 12 Schätzen, messen, zeichnen und berechnen eine Lerntheke zu den Winkeln Matthias Nowak, Schorndorf Geometrie Winkel schätzen, messen und zeichnen, Winkelarten kennen, Winkelsumme

Mehr

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis Inhaltsverzeichnis Grundbegriffe der Geometrie Geometrische Abbildungen Das Koordinatensystem Schnittpunkt von Geraden Symmetrien Orthogonale Geraden Abstände Parallele Geraden Vierecke Diagonalen in Vielecken

Mehr

Wir wollen nun die gegenseitige Lage von Punkten, Geraden und Ebenen untersuchen.

Wir wollen nun die gegenseitige Lage von Punkten, Geraden und Ebenen untersuchen. Lebezieunen Lebezieunen Wir wollen nun die eenseiie Le von Punken, Gerden und benen unersucen.. Le eines Punkes bezülic einer Gerden Ds is eine scon beknne Übun. Nics deso roz ier noc einml ein Beispiel.

Mehr

Winkel messen und zeichnen Markus Wurster

Winkel messen und zeichnen Markus Wurster Winkel messen und zeichnen Markus Wurster Winkel messen und zeichnen Winkel werden in Grad gemessen. Das Zeichen dafür ist ein kleiner, hochgestellter Kreis ( ). Die Winkel Maßeinheit Grad hat nichts mit

Mehr

Heizung Pumpen-Auslegung Seite 1 von 5

Heizung Pumpen-Auslegung Seite 1 von 5 Heizung Pumpen-Auslegung Seite 1 von 5 Aus der Heizlastberecnung ergab sic für das gesamte Gebäude ein Wert von 25 kw. Die Vorlauftemperatur ist mit 70 C und die Rücklauftemperatur mit 50 C geplant. Die

Mehr

Liebe Lehrerin, lieber Lehrer, dieses Unterrichtsmaterial ist speziell auf die Boardstory und das Buch "Als. hnsuch. ferd. das Nilpfe.

Liebe Lehrerin, lieber Lehrer, dieses Unterrichtsmaterial ist speziell auf die Boardstory und das Buch Als. hnsuch. ferd. das Nilpfe. i Liebe Lererin, lieber Lerer, dieses Unterrictsmaterial ist speziell auf die Boardstory und das Buc "Als fe Sen nsuc suct t atte te" von Iri ris Wewe wer ausgelegt. Die Arbeitsblätter unterstützen Lesekompetenz

Mehr

Geometrie-Dossier Symmetrie in der Ebene

Geometrie-Dossier Symmetrie in der Ebene Geometrie-oier Symmetrie in der Ebene Name: Inhalt: Symmetrieeienchaft und bbildun: eriffe chenymmetrie und Geradenpieelun rehymmetrie und rehun Punktymmetrie und Punktpieelun Verwendun: iee Geometriedoier

Mehr

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren Lösungen zur analytiscen Geometrie, Buc S. 9f. a) E in die Parameterform umwandeln: x = x + x + Wäle: x = ; x = x = + E : X = x x x = + + = + In F einsetzen: + + = + = = In E einsetzen: s: X = + + ( )

Mehr

Winkel zeichnen. Hilfe. ACHTUNG! Achte immer genau darauf

Winkel zeichnen. Hilfe. ACHTUNG! Achte immer genau darauf Hilfe Winkel zeichnen 1. Zeichne einen Schenkel (die rote Linie) S 2. Lege das Geodreieck mit der Null am Scheitelpunkt an. (Dort wo der Winkel hinkommen soll) S 3. Möchtest du zum Beispiel einen Winkel

Mehr

Mathematik II Prüfung für den Übertritt aus der 9. Klasse

Mathematik II Prüfung für den Übertritt aus der 9. Klasse Kantonale Prüfungen 2013 für die Zulassung zum gymnasialen Unterrict im 9. Sculjar Matematik II Serie H9 Gymnasien des Kantons Bern Matematik II Prüfung für den Übertritt aus der 9. Klasse Bitte beacten:

Mehr

Definitionen des Flächeninhaltsbegriffs werden immer mehr verfeinert, durch den Messprozess festgelegt.

Definitionen des Flächeninhaltsbegriffs werden immer mehr verfeinert, durch den Messprozess festgelegt. Fläceninalt 1 Fläceninalt 2 Kapitel 7: Der Fläceninalt Fläceninalt einer Fiur soll etwas über deren Größe aussaen Fläceninaltsberiff intuitiv irendwie klar, ab der Grundscule durc Ausleen von Fiuren mit

Mehr

e-funktion und natürlicher Logarithmus

e-funktion und natürlicher Logarithmus e-funktion und natürlicer Logaritmus. Die Differentialgleicung y=y' Gibt es eine Funktion, die mit irer Ableitung identisc ist, d.. dass f = f ' für alle gilt? Wenn die Ableitung trigonometriscer Funktionen

Mehr

Download. Mathe an Stationen Handlungsorientierte Materialien für die Klassen 3 und 4. Mathe an Stationen SPEZIAL Geometrie 3-4.

Download. Mathe an Stationen Handlungsorientierte Materialien für die Klassen 3 und 4. Mathe an Stationen SPEZIAL Geometrie 3-4. Download Carolin Donat Mathe an Stationen SPEZIAL Geometrie 3-4 Das Geodreieck zielt üben Anforderunen des ch Geometrie erfüllen wichtie Inhalte und leiten zuleich Ihre eiten trotz unterschiedlicher Lern

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 2 Wetterstation Aufgabe aus der scriftlicen Abiturprüfung Hamburg 05. In einer Wetterstation wird die Aufzeicnung eines Niedersclagmessgeräts vom Vortag (im Zeitraum von 0 Ur bis Ur) ausgewertet.

Mehr

Hilfe zum neuen Online-Shop

Hilfe zum neuen Online-Shop Hilfe zum neuen Online-Sop Hier finden Sie umfassend bescrieben, wie Sie sic in unserem neuen Sop zurectfinden. Wenn Sie Fragen zur Kunden-Nr., Kunden-ID oder zum Passwort aben, rufen Sie uns bitte an:

Mehr

Euklid ( v. Chr.) Markus Wurster

Euklid ( v. Chr.) Markus Wurster Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Punkte und Linien Zwei Linien Markus Wurster Markus Wurster Geometrische Grundbegriffe Winkel Euklid

Mehr

Musterlösung zu Übungsblatt 1

Musterlösung zu Übungsblatt 1 Prof. R. Pandaripande J. Scmitt, C. Scießl Funktionenteorie 23. September 16 HS 2016 Musterlösung zu Übungsblatt 1 Aufgabe 1. Sei F ein Körper, der R als einen Unterkörper entält. Das eisst R ist eine

Mehr

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Matematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Cristian Leibold 7. Oktober 2014 Folgen Allgemeines zu Folgen Monotonie und Bescränkteit Grenzwerte und Konvergenz Summen und Reien

Mehr

= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein.

= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein. Aufgabe : Die Die ist der fünftgrößte der neun Planeten unseres Sonnensystems und wiegt 5,98* 0 4 kg. Sie ist zwiscen 4 und 4,5 Millionen Jaren alt und bewegt sic auf einer elliptiscen Ban in einem durcscnittlicen

Mehr

Bestimmung von Azimut und Abstand: Berechnete Höhe (= Entfernung des gegißten Ortes vom Bildpunkt):

Bestimmung von Azimut und Abstand: Berechnete Höhe (= Entfernung des gegißten Ortes vom Bildpunkt): Bestimmung von Azimut und Abstand: Stundenwinkel: t = Grt + λ + für E-Längen - für W-Längen Berecnete Höe (= Entfernung des gegißten Ortes vom Bildpunkt): sin = sin ϕ sin δ + cos ϕ cosδ cos t Bei der Verwendung

Mehr

Eine Hilfe, wenn du mal nicht mehr weiterweisst...

Eine Hilfe, wenn du mal nicht mehr weiterweisst... Geometrie 6. Klasse Eine Hilfe, wenn du mal nicht mehr weiterweisst... Themen Seite Das 1 Das Viereck 2 Der Kreis 2 Die Winkel 3 Parallele Geraden zeichnen 4 Eine Senkrechte zeichnen 4 Die Spiegelsymmetrie

Mehr

Beweisen im Mathematikunterricht

Beweisen im Mathematikunterricht Beweisen im Matematiunterrict Jüren Zumdic Satzfindun, Aufstellen einer Vermutun durc a Anscauun Etremwertriterien b Abstraieren Variation des Parameters a in f a² mit einem Funtionenplotter c Generalisieren

Mehr

Produktregel (Ableitung von f g)

Produktregel (Ableitung von f g) Produktregel (Ableitung von f g) f f g 0 f 0 g g 0 Wir aben die Hoffnung, dass die Ableitung von f g mit Hilfe der Ableitungen von f und g ermittelt werden kann. f ( 0 ) = lim 0 f( 0 +) f( 0 ) g ( 0 )

Mehr

Bereich Thema Schwierigkeit Geometrie Berechnungen in Rechtwinkligen Dreiecken II ***

Bereich Thema Schwierigkeit Geometrie Berechnungen in Rechtwinkligen Dreiecken II *** Ballon Von einem Freiballon aus werden die Orte A und B, die 2700m voneinander entfernt sind, unter den Tiefenwinkeln mit den Winkelweiten α = 66 und β = 24 angepeilt Bestimme, in welcer Höe der Ballon

Mehr

Geradenspiegelung: Diese Abbildung haben wir schon untersucht. Punktspiegelung: Die beiden Spiegelungsachsen schneiden sich senkrecht.

Geradenspiegelung: Diese Abbildung haben wir schon untersucht. Punktspiegelung: Die beiden Spiegelungsachsen schneiden sich senkrecht. 17 25 Die 5 Typen on Isometrien Geradenspieelun: Diese Abbildun haben wir schon untersucht unktspieelun: Die beiden Spieelunsachsen schneiden sich senkrecht Rotation (Drehun): Die beiden Spieelunsachsen

Mehr

Wehrformeln Grundlage: Energiesatz Arten des Abflusses: 1. Ausfluss 2. Unterströmung 3. Überströmung

Wehrformeln Grundlage: Energiesatz Arten des Abflusses: 1. Ausfluss 2. Unterströmung 3. Überströmung Werformeln Grundlae: Eneriesatz Arten des Aflusses:. Ausfluss. Unterströmun. Üerströmun Torricelli (68-647) Ausfluss aus kleiner kreisförmier Öffnun mit Berücksictiun eines Auslauferlustes: Eneriesatz:

Mehr

Zahlenmengen Menge der natürlichen Zahlen mit Null

Zahlenmengen Menge der natürlichen Zahlen mit Null Zahlenmenen N = {1,2,3,...} Mene der natürlichen Zahlen N o = {0,1,2,3,...} Mene der natürlichen Zahlen mit Null Z = {..., -3, -2, -1, 0, 1, 2, 3,...} Mene der anzen Zahlen Vielfachmenen eispiel: V(3)

Mehr

Aufgabe 11: Windanlage

Aufgabe 11: Windanlage Zentrale schritliche Abiturprüunen im Fach Mathematik Auabe 11: Windanlae Das Foto zeit einen Darrieus-Windenerie-Konverter. Der Wind setzt die drei Blätter um die vertikale Achse in Drehun; die Blätter

Mehr

PACKAGING DESIGN LIMBIC SCHMIDT SPIELE KNIFFEL MASTER

PACKAGING DESIGN LIMBIC SCHMIDT SPIELE KNIFFEL MASTER PAKAGING DESIGN LIMBI SHMIDT SPIELE KNIFFEL MASTER 16. Präsentation 03. Dezember 2014 Für alle Kniffel-Fans dürfte Einiges bei Kniffel Master scon bekannt sein. Der blaue Text kann daer von allen überspruen

Mehr

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1 Tecnisce Universität Berlin Wintersemester 004/005 Fakultät II; Institut für Matematik Prof. Dr. G. Bärwolff/C. Mense.0.005 Probeklausur zur LV Numerik für Informatiker en Aufgabe a Berecnen Sie die LU-Zerlegung

Mehr

Wirsberg-Gymnasium Grundwissen Mathematik 7. Jahrgangsstufe

Wirsberg-Gymnasium Grundwissen Mathematik 7. Jahrgangsstufe Wirsber-Gymnasium Grundwissen Mathematik 7. Jahransstufe Lerninhalte Fakten-Reeln-eispiele Symmetrie Eienschaften der chsensymmetrie: - Zueinander symmetrische Strecken sind leich lan. - Zueinander symmetrische

Mehr

Á 4. Differenzierbarkeit, Stetigkeit

Á 4. Differenzierbarkeit, Stetigkeit Á 4. Differenzierbarkeit, Stetigkeit Historisc ist der Begriff der Differenzierbarkeit lange vor dem der Stetigkeit entwickelt worden. Untersciedlice Definitionen der Differenzierbarkeit werden von Gottfried

Mehr

Eigenschaften von Funktionen

Eigenschaften von Funktionen Eienscaten von Funktionen Gesetzmäßikeiten Relationen und Funktionen Eine Relation liet vor, wenn es zu jedem Element der Mene M enau einen Partner y in der Mene M ibt. Hat jedes M ein zueordnetes y M.

Mehr

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur Aufgabe 1: Die Skulptur Um die Höe einer Skulptur zu bestimmen, die auf einem Sockel stet, stellt sic eine Person (Augenöe 1,70 m) in einer Entfernung von 10 m mit dem Rücken zur Skulptur und ält sic einen

Mehr

Kantonale Prüfungen Mathematik II Prüfung für den Übertritt aus der 9. Klasse

Kantonale Prüfungen Mathematik II Prüfung für den Übertritt aus der 9. Klasse Kantonale Prüfungen 2013 für die Zulassung zum gymnasialen Unterrict im 9. Sculjar Matematik II Serie H9 Gymnasien des Kantons Bern Matematik II Prüfung für den Übertritt aus der 9. Klasse Bitte beacten:

Mehr

2 Ein Beispiel und der Haken an der Sache

2 Ein Beispiel und der Haken an der Sache Numerik I. Version: 9.02.08 2 Ein Beispiel und der Haken an der Sace In lineare Algebra I-II wurde gezeigt, wie durc das Gaußsce Verfaren lineare Gleicungssysteme gelöst werden. Das folgende einface Beispiel

Mehr

Analysis: Ableitung, Änderungsrate,Tangente Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10 Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10 Aleander Scwarz www.mate-aufgaben.com Dezember 01 1 Teil 1: one Hilfsmittel Aufgabe 1: Ermittle die Steigung von f() = + 4 an

Mehr

Hydrodynamik y I - Strömungsmechanik

Hydrodynamik y I - Strömungsmechanik Pysik VL8 (0..0 Hydrodynamik y I - Strömunsmecanik Strömunen und Strömunsarten Die Kontinuitätsleicun Die Bernoulli-Gleicun Gli Strömunen und Strömunsarten Hd Hydrodynamikd Bescreibun on Massenströmen

Mehr

Beispiele für Terme: a 7 + 4x Eine Zahl ist durchaus sinnvoll. Die Addition zweier Zahlen ist sinnvoll.

Beispiele für Terme: a 7 + 4x Eine Zahl ist durchaus sinnvoll. Die Addition zweier Zahlen ist sinnvoll. 2 Terme, Variaen, Geicungen 01 Üera Terme Merke dir: Ein Term ist ein sinnvoer matematiscer Ausdruck. Information Ein Term ist ein sinnvoer matematiscer Ausdruck, der aus Zaen, Recenzeicen und Variaen

Mehr

Download. Mathematik Üben Klasse 5 Spiegelung. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein

Download. Mathematik Üben Klasse 5 Spiegelung. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein Download Martin Gehstein Mathematik Üben Klasse 5 Spieelun Differenzierte Materialien für das anze Schuljahr Downloadauszu aus dem Oriinaltitel: Mathematik üben Klasse 5 Spieelun Differenzierte Materialien

Mehr

Klasse 9 a/b/c 4. Schulaufgabe aus der Mathematik

Klasse 9 a/b/c 4. Schulaufgabe aus der Mathematik Klasse 9 a/b/c 4. Sculaufgabe aus der Matematik 14. 06. 00 (WWG) Gruppe A 1. Von einem Würfel der Kantenlänge a wird wie unten eingezeicnet eine Pyramide abgescnitten. Berecne das Volumen der Pyramide.

Mehr

WF Mathematik: 1. Grundbegriffe der Geometrie

WF Mathematik: 1. Grundbegriffe der Geometrie WF Mathematik: 1. Grundbegriffe der Geometrie Geometrie setzt sich aus den beiden griechischen Wörtern geo (Erde) und metrein (messen) zusammen, bedeutet ursprünglich Erdvermessen. Alle Gegenstände unseres

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN Einfürung in die Pysik für Cemiker Prof. J. Lipfert en zu Übungsblatt 7 WS 203/4 en zu Übungsblatt 7 Aufgabe Ballscleuder. Zwei Bälle werden übereinander und gleiczeitig fallen gelassen. Die Massen

Mehr

Verlauf Material LEK Glossar Lösungen. Perspektivisch betrachtet Geometrie mit Fluchtlinien und Fluchtpunkten. Wolfgang Göbels, Bergisch Gladbach

Verlauf Material LEK Glossar Lösungen. Perspektivisch betrachtet Geometrie mit Fluchtlinien und Fluchtpunkten. Wolfgang Göbels, Bergisch Gladbach Reie 15 S 1 Verlauf Material Perspektivisc betractet Geometrie mit Fluctlinien und Fluctpunkten Wolfgang Göbels, Bergisc Gladbac Hoc inaus Froscperspektive beim Altenberger Dom in Odental Klasse: 10 Dauer:

Mehr

Vierte Schularbeit Mathematik Klasse 1E am

Vierte Schularbeit Mathematik Klasse 1E am Vierte Schularbeit Mathematik Klasse 1E am 08.05.2014 SCHÜLERNAME: Gruppe A Lehrer: Dr. D. B. Westra Punkteanzahl : von 24 Punkten NOTE: NOTENSCHLÜSSEL 23-24 Punkte Sehr Gut (1) 20-22 Punkte Gut (2) 16-19

Mehr

Teil 1 Winkel und Winkelmessung. Parallelverschiebung, Achsenspiegelung,Halbdrehung Dreieckskonstruktion Würfel, Quader, Säule

Teil 1 Winkel und Winkelmessung. Parallelverschiebung, Achsenspiegelung,Halbdrehung Dreieckskonstruktion Würfel, Quader, Säule Heiner Prüser Geometriearbeitsblätter Teil 1 Winkel und Winkelmessung Teil 2 Teil 3 Teil 4 Parallelverschiebung, chsenspiegelung,halbdrehung Dreieckskonstruktion Würfel, Quader, äule Inhalt von Teil 1

Mehr

Harmonische Schwingung

Harmonische Schwingung Haronice Scwingung 1. a Foto zeigt eine Atronautin i BMM (Body Ma Meaureent evice) der NASA. Mit diee BMM betien die Atronauten i Spaceuttle in der Erdulaufban ire Körperae. E betet au eine Getell, in

Mehr