Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert."

Transkript

1 XV. Testen von Hypothesen ================================================================== 15.1 Alternativtest Eine Urne enthält entweder a) 4 rote und weiße Kugeln b)7 rote und 3 weiße Kugeln enthält. Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert. Man spricht von einer Stichprobe der Länge 5. Nullhypothese H 0 : Es sind 4 rote Kugeln in der Urne d.h. die Wahrscheinlichkeit eine rote Kugel zu ziehen ist gleich 0.4. Man schreibt kurz : H 0 : p = p 0 = 0,4 Gegenhypothese H 1 : Es sind rote Kugeln in der Urne d.h. die Wahrscheinlichkeit eine rote Kugel zu ziehen ist gleich 0,7. Man schreibt kurz : H 1 : p = p 1 = 0,4 Dr Wert, den die Zufallsgröße Z : Anzahl der gezogenen roten Kugeln, annimmt soll darüber entscheiden, welche Hypothese angenommen wird. Es ist W Z = 0, 1, 2, 3, 4, 5 Werden wenig rote Kugeln gezogen, dann ist es sinnvoll anzunehmen, dass die Urne nur 3 rote Kugeln enthält und die Nullhypothese anzunehmen. Werden viele rote Kugeln gezogen lehnt man sie ab. Man definiert den Annahmebereich von H 0 als a = 0, 1, 2

2 d. h. ist Z a, dann wird H 0 angenommen. Als Ablehnungsbereich von H 0 fefiniert man a = 3, 4, 5} d. h. ist Z a, dann wird H 0 abgelehnt. Als Ergebnis des Tests ist dann möglich : H 0 wird angenommen H 0 wird abgelehnt H 0 ist wahr d.h. p = 0,4 richtig falsch (Fehler 1. Art) H 1 ist wahr d.h. p = 0,7 falsch (Fehler 2. Art) richtig Die Wahrscheinlichkeit, dass man den Fehler 1. Art begeht bezeichnet man mit α und den Fehler 2. Art mit β. Es ist α = P p=0,4 (Z a) = P 0,4 (Z > 2) = 1 P 0,4 (Z 2) = 1 F 5 0,4 (2) 0,317 = 31,7% 1 α 8,3% heißt Sicherheitswahrscheinlichkeit des Tests β = P p=0,7 (Z a) = P 0,7 (Z 2) = F 5 0,7 (2) 1,3% Alternativer Hypothesentest : 1. Aufstellen der Nullhypothese 2. Festlegung von Annahmebereich aund Ablehnungsbereich a 3. a) Fehler 1. Art oder Signifikanzniveau : Obwohl die Nullhyothese stimmt, wird sie abgelehnt α = P p = p0 (Z A) b) Fehler 2. Art Obwohl die Nullhyothese nicht stimmt, wird sie angenommen β = P p = p1 (Z A)

3 Ein Test mit einem Fehler 1. Art von höchstens 5% bzw. 1% heißt signifikant bzw. hochsignifikant. Bemerkungen : a) Der Fehler 1. Art kann durch Vergrößern des Annahmebereichs verkleinert werden. Allerdings erhöht sich dann der Fehler 2. Art. b) Der Fehler 2. Art kann durch Verkleinern des Anahmebereichs verkleinert werden. Allerdings erhöht sich dann der Fehler 1. Art. c) Durch Vergrößern der Stichprobenlänge lassen sich beide Fehler verkleinern. Für obiges Beispiel ergibt dann : a) Wählt man für das Einführungsbeispiel a = 0, 1, 2, 3, dann ergibt sich α = P 0,4 (Z > 3) = 1 P 0,4 (Z 3) = 1 F 5 0,4 (3) 0,087 = 8,7 % β = P 0,7 (Z 3) = F 5 0,7 (3) 0,472 = 47,2 % b) Wählt man dagegen a = 0, 1, dann ergibt sich α = P 0,4 (Z > 1) = 1 P 0,4 (Z 1) = 1 F 5 0,4 (1) 0,3 =,3 % β = P 0,7 (Z 1) = F 5 0,7 (1) 0,031 = 3,1 % c) Wählt man als Stichprobenlänge n = 20 und a = 0, 1, 2,..., 10, 11 = 1; 11 bzw. a = 12, 13, 14, 15,..., 20 = 12; 20 α = P 0,4 (Z > 11) = 1 P 0,4 (Z 11) = 1 F 20 0,4 (11) 0,057 = 5,7% β = P 0,7 (Z 11) = F 20 0,7 (11) 0,113 = 11,3 %

4 Aufgabentypen : Bei einem Würfel soll entschieden werden, ob es sich um einen L-Würfel oder um ein gezinkten Würfel handelt bei dem die Sechs mit einer Wahrscheinlichkeit von p = 0,2 auftritt. Berechnen der Fehler 1. und 2. Art Der Würfel wird 200-mal bzw. 00-mal geworfen. Fällt dabei höchstens 3-mal bzw. 110-mal die Sechs, dann nimmt man die Nullhypothese H 0 : Es handelt sich um einen L-Würfel. an, anderfalls wird sie verworfen. Bestimmen Sie den Fehler 1. und 2. Art. α = P 1 (Z > 3) = 1 P 1 α = P 1 (Z > 110) = 1 P 1 (Z 3) = 1 F 200 (3) 27,0% 1 (Z 110) = 1 Φ( ,5 ) 1 Φ(1,15) 12,5% β = P 1 5 (Z 3) = F ,2% β = P 1 (Z 110) = Φ( ,5 ) Φ( 0,97) = 1 Φ(0,97) 1,%

5 Bestimmung des Annahmebereichs bzw. Ablehnungsbereichs bei vorgegebenem Fehlern 1. bzw 2. Art Bestimmen Sie zu obigem Beispiel jeweils den Anahmebereich a = 0; 1;... ; k so, dass der Fehler 1. Art bzw. der Fehler 2. Art höchstens 5% beträgt und der jeweilig andere Fehler möglichst klein bleibt. Bedingung : α = P 1 (Z > k) = 1 P 1 Aus der Stochastiktabelle entnimmt man k 42. (Z k) = 1 F 200 (k) 5% F 200 (k) 0,95 1 Damit der Fehler 2. Art möglichst klein bleibt, muss der Annahmebereich möglichst klein gehalten werden. Also ergibt sich a = 0; 1;... ; 44 Bedingung : α = P 1 (Z > k) = 1 P 1 Φ( k ,5 ) 0, (Z k) = 1 Φ( k ,5 ) 5% Daraus ergibt sich a = 0; 1;... ; 108

6 Entscheidung über Annahme oder Ablehnung einer Hypothese Der Würfel wird 00mal geworfen und es fällt 117mal die Sechs. Kamm mit einer Irrtumswahrscheinlichkeit von 2,5% (auf einem Signifikanzniveau von 2,5% die Nullhypothese abgelehnt werden. Man bestimmt den Annahmebereich zum Signifikanzniveau von 2,5%. Es ergibt sich a = 0; 1;...; 118. Wegen 117 a kann die Nullhypothese unter der gestellten Bedingung nicht abgelehnt werden. Ermittlung der Stichprobenlänge Die Nullhypothese soll jetzt abgelehnt werden, wenn die Anzahl der Sechsen um mehr als 10% von ihrem Erwartungswert nach oben abweicht. Wie oft muss man mindestens würfeln, damit der Fehler 1. Art unter 2,5% liegt. Bedingung : α = P 1 (Z > k) = 1 P 1 (Z k) < 0,025 Φ( 1 n + 0,1 1 n 1 n 1 5 Das ergibt n 181 n + 0,5 ) = Φ( 1 0 n + 0,5 ) > 0,975% n 1 5

7 15.2 Einseitiger Hypothesentest Beispiel : Ein Biologe, behauptet ein Mittel entdeckt zu haben, dass die Geburt weiblicher Kälber (p 0 = 50%) wahrscheinlicher macht. Das Mittel wird 10 Kühen verabreicht. Die Nullhypothese geht davon aus, dass sich diese Wahrscheinlichkeit nicht geändert hat. H 0 : p = 0,5 Die Gegenhypothese läßt nur durch eine Ungleichung angeben. Sie H 1 : p > 0,5 Als Annahme bzw. Ablehungsbereich wird a = {0, 1, 2, 3, 4, 5, } bzw. a = {7, 8, 9, 10} gewählt. Der Fehler 1. Art : α = P 0,5 (Z > ) = 1 P 0,5 (Z ) = 1 F 10 0,51 () 0,17 = 17 % Der größe Fehler 2. Art ergibt sich im Fall p p 0 d.h. die Erhöhung der Wahrscheinlichkeit für die Geburt weiblicher Kälber ist infinitesimal klein. Es ist dann β = lim P p (Z ) = P 0,5 (Z ) = 1 α = 83 % p p 0

8 Bei einem einseitigen Test liegt der Ablehnungsbereich "auf einer Seite" das Annahmebereichs. Man unterscheidet rechtseitigen und linksseitigen Hypothesentest. p Annahmebereich Ablehnungsbereich k Beim rechtseitigen Hypothesentest (Stichprobenlänge n) gilt : H 0 : p p 0 und a = {0; 1;... ; g}, g n p Ablehnungsbereich Annahmebereich k Beim linksseitigen Hypothesentest (Stichprobenlänge n) gilt : H 0 : p p 0 und a = {g + 1;...n}, g 0 Ist bei einem Test die Gegenhypothese nicht scharf festgelegt (man spricht dann auch von einer zusammengesetzten Gegenhypothese), dann ist der Fehler 2. Art nicht exakt angebbar. Ist die Hypothese H 0 : p p 0 bzw. H 0 : p p 0 und hat die die Gegenhypothese die Form H 1 : p > p 0 bzw. H 1 : p < p 0 und stoßen a und a aneinander, dann ist 1 α die kleinste obere Schranke für den Fehler 2. Art. Ist auch die Nullhypothese nicht scharf festgelegt, dann läßt sich auch der Fehler 1. Art nur nach oben abschätzen. Man spricht analog von einer zusammengesetzten Nullhypothese. Der größte Fehler erster Art ergibt sich für die Wahrscheinlichkeit der Nullhypothese, die dem Wahrscheinlichkeitsbereich der Gegenhypothese am nächsten liegt. Der größte Fehler zweiter Art ergibt sich für die Wahrscheinlichkeit der Gegenhypothese, die dem Wahrscheinlichkeitsbereich der Nullhypothese am nächsten liegt.

9 Beispiel : H 0 : p = 0,25 H 1 : p > 0,25 Stichprobenlänge n = 20 Bestimme a so, dass α 0,05 ist und der Fehler 2. Art möglichst gering ist. Ansatz : a = {0,..., c} a = {c + 1,..., 20} Bedingung : P(Z > c) 0,05 1 P(Z c) 0,05 P(Z c) 0,95 F 20 0,25 (c) 0,95 Damit der Fehler zweiter Art möglichst gering ist, muss c minimal gewählt werden. Aus der Tabelle entnimmt man : c = 8 d.h. a = {0,..., c}.

10 15.3 Zweiseitiger Hypothesentest Beispiel : Es wird vermutet, dass der Anteil roter Kugeln in einer Urne bei 20% liegt Es wird 1000mal mit Zurücklegen gezogen H 0 : p = 0,2 und a = 180,..., 220 H 1 : p 0,2 und a = 0,..., ,..., 1000 Fehler 1. Art : α = P(Z 179) + P(Z > 220) = P(Z 180) + 1 P(Z 220) = = Φ( ,5 ) + 1 Φ( ,2 0, ,5 ) = ,2 0,8 = Φ( 1,2) + 1 Φ(1,2) = 2 2Φ(1,2) 10,74 % Kleinste obere Schranke für den Größter Fehler 2. Art : β max = 1 α 89,47 %

11 Bei einem zweiseitigen Test liegt der Ablehnungsbereich "auf beiden Seite" des Annahmebereichs. p Ablehnungsbereich I Annahmebereich Ablehnungsbereich II g g 1 2 k Der Annahmebereich hat die Form a = g 1, g 1 + 1,..., g 2 mit 0 < g 1 g 2 < n. Bei der Wahl des Annahmebereichs bei vorgegebenem Signifikanzniveau verteilt man den Fehler 1. Art meist symmetrisch auf beide Teile des Ablehnungsbereiches oder man wählt den Annahmebereich im Falle einer einfachen Nullhypothese H 0 : p = p 0 symmetrisch zum Erwartungswert E(Z) = n p 0 mit der Stichprobenlänge n. Ist die Hypothese einfach, die Gegenhypothesezusammengesetzte,dann ist der Fehler 2. Art nicht exakt festgelegt. Stoßen a und a jedoch aneinander, dann ist 1 α die kleinste obere Schranke für den Fehler 2. Art. Ist auch die Nullhypothese zusammengesetztt, dann lässt sich auch der Fehler 1. Art nur nach oben abschätzen.

12 Beispiel 1 : Bestimme für obiges Beispiel den zum Erwartungswert symmetrischen Annahmebereich zum Signifikanzniveau 5%, für den der Fehler 2. Art möglichst gering ist. a = 200 k,..., k a = 0,..., 200 k k + 1,...,1000 Bedingung : P(Z 200 k 1) + P(Z > k) 0,05 P(Z 200 k 1) + 1 P(Z k) 0,05 Φ( 2Φ( k 0,5 ) Φ( ,8 0,2 k + 0,5 ) 1, ,8 0,2 k + 0,5 ) 0, ,8 0,2 Φ( k + 0, ,8 0,2 ) 0,975 Φ 1 k 25 Damit der Fehler 2.Art möglichst klein ist, wählt man k so klein wie möglich d. h. a = 175,..., 225 a = 0,...,174 22,..., 1000 Beispiel 2 : Die Nullhypothese soll abgelehnt werden, wenn mehr der Anteil der Wähler mehr als 10% vom Erwartungswert abweicht. Wie viele Wahlberechtigte müssen mindestens befragt werden, damit die Nullypothese mit mindestens 95% Wahrscheinlichkeit als richtig erkannt wird. a = 0,9np,..., 1,1np Bedingung : P(0,9np Z 1,1np) 0,95 0,02n + 0,5 Φ( 0,1n 0,02p 0,5 ) Φ( ) 0,95 0,1n

13 0,02n + 0,5 2Φ( 0,1n ) 1,95 0,02n + 0,5 Φ( 0,1n ) 0,975 Φ 1 n = 1487

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert.

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert. 7. Testen von Hypothesen ================================================================== 15.1 Alternativtest -----------------------------------------------------------------------------------------------------------------

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Hypothesentest, ein einfacher Zugang mit Würfeln

Hypothesentest, ein einfacher Zugang mit Würfeln R. Brinkmann http://brinkmann-du.de Seite 4..4 ypothesentest, ein einfacher Zugang mit Würfeln Von einem Laplace- Würfel ist bekannt, dass bei einmaligem Wurf jede einzelne der Zahlen mit der Wahrscheinlichkeit

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 17.3.21 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit

Mehr

Überblick Hypothesentests bei Binomialverteilungen (Ac)

Überblick Hypothesentests bei Binomialverteilungen (Ac) Überblick Hypothesentests bei Binomialverteilungen (Ac) Beim Testen will man mit einer Stichprobe vom Umfang n eine Hypothese H o (z.b.p o =70%) widerlegen! Man geht dabei aus von einer Binomialverteilung

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 24.2.214 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit

Mehr

Testen von Hypothesen, Beurteilende Statistik

Testen von Hypothesen, Beurteilende Statistik Testen von Hypothesen, Beurteilende Statistik Was ist ein Test? Ein Test ist ein Verfahren, mit dem man anhand von Beobachtungen eine begründete Entscheidung über die Gültigkeit oder Ungültigkeit einer

Mehr

Grundlagen der Stochastik

Grundlagen der Stochastik Grundlagen der Stochastik Johannes Recker / Sep. 2015, überarbeitet Nov. 2015 Fehlermeldungen oder Kommentare an recker@sbshh.de Inhalt 1. Grundlegende Begriffe der Wahrscheinlichkeitsrechnung... 2 1.1.

Mehr

Mögliche Fehler beim Testen

Mögliche Fehler beim Testen Mögliche Fehler beim Testen Fehler. Art (Irrtumswahrscheinlichkeit α), Zusammenfassung: Die Nullhypothese wird verworfen, obwohl sie zutrifft. Wir haben uns blamiert, weil wir etwas Wahres abgelehnt haben.

Mehr

: p= 1 6 ; allgemein schreibt man hierfür H : p = p. wird Gegenhypothese genannt und mit H 1 bezeichnet.

: p= 1 6 ; allgemein schreibt man hierfür H : p = p. wird Gegenhypothese genannt und mit H 1 bezeichnet. Einseitiger Signifikanztest Allgemein heißt die Hypothese, dass eine vorgelegte unbekannte Wahrscheinlichkeitsverteilung mit einer angenommenen Verteilung übereinstimmt, Nullhypothese und wird mit H 0

Mehr

Hypothesentest. Ablehnungsbereich. Hypothese Annahme, unbewiesene Voraussetzung. Anzahl Kreise

Hypothesentest. Ablehnungsbereich. Hypothese Annahme, unbewiesene Voraussetzung. Anzahl Kreise Hypothesentest Ein Biologe vermutet, dass neugeborene Küken schon Körner erkennen können und dies nicht erst durch Erfahrung lernen müssen. Er möchte seine Vermutung wissenschaftlich beweisen. Der Biologe

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

an, anderfalls wird sie verworfen. Bestimmen Sie den Fehler 1. und 2. Art. Bestimmen Sie zu obigem Beispiel jeweils den Anahmebereich a 0; 1;...

an, anderfalls wird sie verworfen. Bestimmen Sie den Fehler 1. und 2. Art. Bestimmen Sie zu obigem Beispiel jeweils den Anahmebereich a 0; 1;... Hypothesentest ================================================================== Fehler 1. und 2.Art Ein Pilzsammler findet einen Pilz der giftig sein könnte. a) Welchen Fehler kann er bei der Überprüfung

Mehr

1,64 1,96 2,56. Statistik. Cusanus-Gymnasium Wittlich Faustregeln

1,64 1,96 2,56. Statistik. Cusanus-Gymnasium Wittlich Faustregeln Faustregeln Die folgenden Faustregeln für Binomialverteilungen gelten umso genauer, je größer n ist, insbesondere falls die Laplace- Bedingung n p q 3 erfüllt ist. Radius der Umgebung Wahrscheinlichkeit

Mehr

WB 11 Aufgabe: Hypothesentest 1

WB 11 Aufgabe: Hypothesentest 1 WB 11 Aufgabe: Hypothesentest 1 Ein Medikament, das das Überleben eines Patienten sichern soll, wird getestet. Stelle Null- und Alternativhypothese auf und beschreibe die Fehler 1. Art und 2. Art. Welcher

Mehr

Alternativtest Einführung und Aufgabenbeispiele

Alternativtest Einführung und Aufgabenbeispiele Alternativtest Einführung und Aufgabenbeispiele Ac Einführendes Beispiel: Ein Medikament half bisher 10% aller Patienten. Von einem neuen Medikament behauptet der Hersteller, dass es 20% aller Patienten

Mehr

Die Abfüllmenge ist gleich dem Sollwert 3 [Deziliter].

Die Abfüllmenge ist gleich dem Sollwert 3 [Deziliter]. Eine Methode, um anhand von Stichproben Informationen über die Grundgesamtheit u gewinnen, ist der Hypothesentest (Signifikantest). Hier wird erst eine Behauptung oder Vermutung (Hypothese) über die Parameter

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 7.9. Lösungen zum Hypothesentest II Ausführliche Lösungen: A A Aufgabe Die Firma Schlemmerland behauptet, dass ihre Konkurrenzfirma Billigfood die Gewichtsangabe,

Mehr

Der Provider möchte möglichst vermeiden, dass die Werbekampagne auf Grund des Testergebnisses irrtümlich unterlassen wird.

Der Provider möchte möglichst vermeiden, dass die Werbekampagne auf Grund des Testergebnisses irrtümlich unterlassen wird. Hypothesentest ================================================================== 1. Ein Internetprovider möchte im Fichtelgebirge eine Werbekampagne durchführen, da er vermutet, dass dort höchstens 40%

Mehr

Abiturvorbereitung Alkoholsünder, bedingte Wahrscheinlichkeit, Hypothesentest Aufgabenblatt

Abiturvorbereitung Alkoholsünder, bedingte Wahrscheinlichkeit, Hypothesentest Aufgabenblatt R. Brinkmann http://brinkmann-du.de Seite 2.05.2009 Abiturvorbereitung Alkoholsünder, bedingte Wahrscheinlichkeit, Hypothesentest Aufgabenblatt Aufgabe 0 0. In einer bestimmten Stadt an einer bestimmten

Mehr

9 Prinzipien der statistischen Hypothesenprüfung

9 Prinzipien der statistischen Hypothesenprüfung 9 Prinzipien der statistischen Hypothesenprüfung Prinzipien der statistischen Hypothesenprüfung Bei der Schätzung eines Populationsparamters soll dessen Wert aus Stichprobendaten erschlossen werden. Wenn

Mehr

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X Hypothesentests Bisher betrachtet: Punkt- bzw. Intervallschätzung des unbekannten Mittelwerts Hierzu: Verwendung der 1 theoretischen Information über Verteilung von X empirischen Information aus Stichprobenrealisation

Mehr

1. rechtsseitiger Signifikanztest

1. rechtsseitiger Signifikanztest Testen von Hypothesen HM2 Seite Geschichte und ufgabe der mathematischen Statistik Stochastik ist die Kunst, im Falle von Ungewißheit auf geschickte Weise Vermutungen aufzustellen. Entwickelt wurde sie

Mehr

Stochastik: Hypothesentest Stochastik Testen von Hypothesen (einseitiger Test) allgemein bildende Gymnasien J1/J2

Stochastik: Hypothesentest Stochastik Testen von Hypothesen (einseitiger Test) allgemein bildende Gymnasien J1/J2 Stochastik Testen von Hypothesen (einseitiger Test) allgemein bildende Gymnasien J/J2 Alexander Schwarz www.mathe-aufgaben.com Oktober 25 Hinweis: Für die Aufgaben darf der GTR benutzt werden. Aufgabe

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

HYPOTHESENTESTS. Die Hypothesentests, die in der Kursstufe behandelt werden, basieren alle auf Wahrscheinlichkeitsexperimenten,

HYPOTHESENTESTS. Die Hypothesentests, die in der Kursstufe behandelt werden, basieren alle auf Wahrscheinlichkeitsexperimenten, HYPOTHESENTESTS F. LEMMERMEYER Die Hypothesentests, die in der Kursstufe behandelt werden, basieren alle auf Wahrscheinlichkeitsexperimenten, die binomialverteilt sind. Betrachten wir einen idealen Würfel,

Mehr

Testen von Hypothesen:

Testen von Hypothesen: Testen von Hypothesen: Ein Beispiel: Eine Firma produziert Reifen. In der Entwicklungsabteilung wurde ein neues Modell entwickelt, das wesentlich ruhiger läuft. Vor der Markteinführung muss aber auch noch

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

Anzahl der Möglichkeiten in der Werkstatthalle, 3 ohne eingebaute Alarmanlage: N N 2

Anzahl der Möglichkeiten in der Werkstatthalle, 3 ohne eingebaute Alarmanlage: N N 2 Abiturprüfung Berufliche Oberschule 003 Mathematik 13 Technik - B I - Lösung Teilaufgabe 1.0 Eine Kfz-Werkstatt für Autoelektronik baut in Fahrzeuge Alarmanlagen ein. Die Werkstatt verfügt über 11 Stellplätze,

Mehr

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht 43 Signifikanztests Beispiel zum Gauß-Test Bei einer Serienfertigung eines bestimmten Typs von Messgeräten werden vor der Auslieferung eines jeden Gerätes 10 Kontrollmessungen durchgeführt um festzustellen,

Mehr

1 Von Test zu Test. 2 Arbeitsblatt

1 Von Test zu Test. 2 Arbeitsblatt 1 Von Test zu Test 2 Arbeitsblatt 1. Ein FDP-Kandidat behauptet, dass 10% oder mehr Wahlberechtigten seines Stimmkreises FDP wählen würden. Zur Überprüfung befragt die Partei 200 Wahlberechtigte des Stimmkreises.

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Kugelschreiber-Aufgabe Bayern LK 1986

Kugelschreiber-Aufgabe Bayern LK 1986 Kugelschreiber-Aufgabe Bayern LK 1986 1. Eine Firma stellt Kugelschreiber her. Sie werden in Packungen zu je 20 Stück geliefert. Ein Händler prüft aus jeder Packung nacheinander zwei Kugelschreiber (ohne

Mehr

TESTEN VON HYPOTHESEN

TESTEN VON HYPOTHESEN TESTEN VON HYPOTHESEN 1. Beispiel: Kann ein neugeborenes Küken Körner erkennen oder lernt es dies erst durch Erfahrung? Um diese Frage zu entscheiden, wird folgendes Experiment geplant: Sobald das Küken

Mehr

Hypothesen über die Grundgesamtheit. Aufgabenstellung der Testtheorie Hypothesen (Annahmen, Vermutungen oder

Hypothesen über die Grundgesamtheit. Aufgabenstellung der Testtheorie Hypothesen (Annahmen, Vermutungen oder Hypothesen über die Grundgesamtheit Aufgabenstellung der Testtheorie Hypothesen (Annahmen, Vermutungen oder Behauptungen) über die unbekannte Grundgesamtheit anhand einer Stichprobe als richtig oder falsch

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0 1.4 Der Binomialtest Mit dem Binomialtest kann eine Hypothese bezüglich der Wahrscheinlichkeit für das Auftreten einer Kategorie einer dichotomen (es kommen nur zwei Ausprägungen vor, z.b. 0 und 1) Zufallsvariablen

Mehr

Musterlösung. Abitur Mathematik Bayern G Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Stochastik II

Musterlösung. Abitur Mathematik Bayern G Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Stochastik II Abitur Mathematik: Bayern 2012 Aufgabe 1 a) VIERFELDERTAFEL P(R ) = 88 % und P(V) = 18 % stehen in der Aufgabenstellung. 60 % in der Angabe stehen für die bedingte Wahrscheinlichkeit P R (V). P(R V) =

Mehr

Lösungen zum Aufgabenblatt 14

Lösungen zum Aufgabenblatt 14 Lösungen zum Aufgabenblatt 14 61. Das Gewicht von Brötchen (gemessen in g) sei zufallsabhängig und werde durch eine normalverteilte Zufallsgröße X N(µ, 2 ) beschrieben, deren Varianz 2 = 49 g 2 bekannt

Mehr

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Abgaben: 92 / 234 Maximal erreichte Punktzahl: 7 Minimal erreichte Punktzahl: 1 Durchschnitt: 4 Frage 1 (Diese Frage haben ca. 0% nicht beantwortet.)

Mehr

9 Prinzipien der statistischen Hypothesenprüfung

9 Prinzipien der statistischen Hypothesenprüfung 9 Prinzipien der statistischen Hypothesenprüfung Prinzipien der statistischen Hypothesenprüfung Bei der Schätzung eines Populationsparamters soll dessen Wert aus Stichprobendaten erschlossen werden. Wenn

Mehr

2) Ihr Chef schlägt vor, dass die Firma nicht Lieferant werden soll, wenn

2) Ihr Chef schlägt vor, dass die Firma nicht Lieferant werden soll, wenn Aufgabe Stochastik Mathe Grundkurs Signifikanztests Ein Hersteller von Schrauben behauptet, dass mindestens 90% seiner Schrauben rostfrei sind, wenn sie fünf Jahre lang im Außenbereich eingesetzt werden.

Mehr

Kapitel 13. Grundbegriffe statistischer Tests

Kapitel 13. Grundbegriffe statistischer Tests Kapitel 13 Grundbegriffe statistischer Tests Oft hat man eine Vermutung über die Verteilung einer Zufallsvariablen X. Diese Vermutung formuliert man als Hypothese H 0.Sokönnte man daran interessiert sein

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Hypothesentesten, Fehlerarten und Güte 2 Literatur Kreyszig: Statistische Methoden und ihre Anwendungen, 7.

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 15 Statistische Testverfahren 15.1. Arten statistischer Test Klassifikation von Stichproben-Tests Einstichproben-Test Zweistichproben-Test - nach der Anzahl der Stichproben - in Abhängigkeit von

Mehr

Macht des statistischen Tests (power)

Macht des statistischen Tests (power) Macht des statistischen Tests (power) Realer Treatment ja Ergebnis der Studie H 0 verworfen statistisch signifikant O.K. Macht H 0 beibehalten statistisch nicht signifikant -Fehler Effekt nein -Fehler

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 7 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 7 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite 1 von 9 Unterlagen für die Lehrkraft Abiturprüfung 2010 Mathematik, Leistungskurs 1. Aufgabenart Stochastik mit Alternative 1 (ein- und zweiseitiger Hypothesentest) 2. Aufgabenstellung siehe Prüfungsaufgabe

Mehr

GRUNDPRINZIPIEN statistischen Testens

GRUNDPRINZIPIEN statistischen Testens Fragestellungen beim Testen GRUNDPRINZIPIEN statistischen Testens. Vergleiche Unterscheidet sich die Stichprobenbeobachtung von einer vorher spezifizierten Erwartung ( Hypothese ) mit ausreichender Sicherheit?

Mehr

Testen von Hypothesen

Testen von Hypothesen Testen von Hypothesen Mathematik-Didaktik B Stochastik im Unterricht Referenten: Alexander Hochstein Christian Herrmann Friedrich- Schiller Universität Jena Jena, d. 11.11.2008 Gliederung 1. Einleitung

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung Bernoulli-Kette, und hypergeometrische Verteilung: F. 2. 32 Spielgeräte: Von Wahrscheinlichkeiten bis Die folgende Stationenarbeit dient dazu, die Begriffe der Oberstufenstochastik (Wahrscheinlichkeit;

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. Oktober 2017 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 1 Version:

Mehr

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft 3. Das Prüfen von Hypothesen Hypothese?! Stichprobe 3.1. Signifikanztests in der Wirtschaft Prüfung, ob eine (theoretische) Hypothese über die Verteilung eines Merkmals X und ihre Parameter mit einer (empirischen)

Mehr

0, t 0,5

0, t 0,5 XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller

Mehr

Statistiktutorium (Kurs Frau Jacobsen)

Statistiktutorium (Kurs Frau Jacobsen) Statistiktutorium (Kurs Frau Jacobsen) von Timo Beddig 1 Grundbegriffe p = Punktschätzer, d.h. der Mittelwert aus der Stichprobe, auf Basis dessen ein angenäherter Wert für den unbekannten Parameter der

Mehr

Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer

Mehr

Lernkarten. Stochastik. 4 Seiten

Lernkarten. Stochastik. 4 Seiten Lernkarten Stochastik 4 Seiten Zum Ausdrucken muss man jeweils eine Vorderseite drucken, dann das Blatt wenden, nochmals einlegen und die Rückseite drucken. Am besten druckt man die Karten auf festem Papier

Mehr

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 4.1 4. Statistische Entscheidungsverfahren Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Beispiel:

Mehr

Kapitel III: Einführung in die schließende Statistik

Kapitel III: Einführung in die schließende Statistik Kapitel III: Einführung in die schließende Statistik Das zweite Kapitel beschäftigte sich mit den Methoden der beschreibenden Statistik. Im Mittelpunkt der kommenden Kapitel stehen Verfahren der schließenden

Mehr

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x)

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x) 7. Hypothesentests Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang X habe die unbekannte VF F X (x) Interessieren uns für einen unbekannten Parameter θ der Verteilung von X 350 Bisher:

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Statistische Tests Übersicht

Statistische Tests Übersicht Statistische Tests Übersicht Diskrete Stetige 1. Einführung und Übersicht 2. Das Einstichprobenproblem 3. Vergleich zweier unabhängiger Gruppen (unverbundene Stichproben) 4. Vergleich zweier abhängiger

Mehr

Schließende Statistik: Hypothesentests (Forts.)

Schließende Statistik: Hypothesentests (Forts.) Mathematik II für Biologen 15. Mai 2015 Testablauf (Wdh.) Definition Äquivalente Definition Interpretation verschiedener e Fehler 2. Art und Macht des Tests Allgemein im Beispiel 1 Nullhypothese H 0 k

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

6.2 Approximation der Binomialverteilung

6.2 Approximation der Binomialverteilung 56 6.2 Approximation der Binomialverteilung Im Beispiel auf den Seiten 52 53 haben wir gesehen, dass die Wahrscheinlichkeiten P 50 (k) der dort betrachteten Binomialverteilung durch die Werte der Funktion

Mehr

Erwartungswert. c Roolfs

Erwartungswert. c Roolfs Erwartungswert 2e b a 4e Der Sektor a des Glücksrads bringt einen Gewinn von 2e, der Sektor b das Doppelte. Um den fairen Einsatz zu ermitteln, ist der durchschnittlich zu erwartende Gewinn pro Spiel zu

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathemati für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 22. Dezember 2010 1 Binomialtests Einseitiger unterer Binomialtest Zweiseitiger Binomialtest Beispiel BSE Normalapproximation

Mehr

Probeklausur zu Mathematik 3 für Informatik Lösungshinweise (ohne Garantie auf Fehlefreiheit)

Probeklausur zu Mathematik 3 für Informatik Lösungshinweise (ohne Garantie auf Fehlefreiheit) Gunter Ochs 9. Juni 05 Probeklausur zu Mathematik für Informatik Lösungshinweise ohne Garantie auf Fehlefreiheit. Sei fx x x. a Bestimmen Sie den Grenzwert lim x fx. Da an der Stelle x Zähler Nenner Null

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Pantelis Christodoulides & Karin Waldherr 4. Juni 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden 1/35 Ein- und Zweiseitige Hypothesen H 0 : p =

Mehr

Lösungsvorschlag Klassenarbeit Nr.6 K

Lösungsvorschlag Klassenarbeit Nr.6 K K..6 Pflichtteil (etwa 40min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden dürfen.) Aufgabe : [P] Bestimmen

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 8.0.014 Hypothesentest II mit dem GTR CSIO fx-cg 0 1.1 us p9_stoch_ht_011_e.htm Nr. 4 Nullhypothese: H 0 : p = 0,3 lternativhypothese: H 1 : p 0,3 Signifikanzniveau:

Mehr

Testen von Hypothesen

Testen von Hypothesen Statistik 2 für SoziologInnen Testen von Hypothesen Univ.Prof. Dr. Marcus Hudec Statistik für SoziologInnen 1 Testtheorie Inhalte Themen dieses Kapitels sind: Erklären der Grundbegriffe der statistischen

Mehr

Stellen Sie den Sachverhalt durch eine geeignete Vierfeldertafel mit relativen Häufigkeiten

Stellen Sie den Sachverhalt durch eine geeignete Vierfeldertafel mit relativen Häufigkeiten Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 4: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein.

Mehr

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese: 2.4.1 Grundprinzipien statistischer Hypothesentests Hypothese: Behauptung einer Tatsache, deren Überprüfung noch aussteht (Leutner in: Endruweit, Trommsdorff: Wörterbuch der Soziologie, 1989). Statistischer

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2011 Mathematik 12 Nichttechnik - S II - Lösung

mathphys-online Abschlussprüfung Berufliche Oberschule 2011 Mathematik 12 Nichttechnik - S II - Lösung Abschlussprüfung Berufliche Oberschule 2011 Mathematik 12 Nichttechnik - S II - Lösung Teilaufgabe 1.0 Ein Händler für Baby- und Keinkinderspielwaren hat in seinem Sortiment unter anderem Spielzeug aus

Mehr

Würfel-Aufgabe Bayern LK 2006

Würfel-Aufgabe Bayern LK 2006 Würfel-Aufgabe Bayern LK 2006 Die Firma VEGAS hat ein neues Gesellschaftsspiel entwickelt, bei dem neben Laplace-Würfeln auch spezielle Vegas-Würfel verwendet werden, die sich äußerlich von den Laplace-Würfeln

Mehr

Mathematik 12. Jahrgangsstufe - Hausaufgaben

Mathematik 12. Jahrgangsstufe - Hausaufgaben Mathematik 2. Jahrgangsstufe - Hausaufgaben Inhaltsverzeichnis Wahrscheinlichkeitsrechnung 2. Wahrscheinlichkeitsrechnung.......................... 2.. Binomialkoeffizienten Berechnen....................

Mehr

1. Einführung in die induktive Statistik

1. Einführung in die induktive Statistik Wichtige Begriffe 1. Einführung in die induktive Statistik Grundgesamtheit: Statistische Masse, die zu untersuchen ist, bzw. über die Aussagen getroffen werden soll Stichprobe: Teil einer statistischen

Mehr

Formelsammlung Stochastik

Formelsammlung Stochastik Formelsammlung Stochastik http://www.fersch.de Klemens Fersch 14. Mai 201 Inhaltsverzeichnis 5 Stochastik 3 5.1 Statistik....................................................... 3 5.1.1 Mittelwert - Median

Mehr

Kinga Szűcs Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Abteilung Didaktik

Kinga Szűcs Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Abteilung Didaktik Beurteilende Statistik im Mathematikunterricht Kinga Szűcs Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Abteilung Didaktik 20.11.2014 Gliederung Anliegen der beurteilenden

Mehr

4. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017

4. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017 4. Lösung weitere Übungsaufgaben Statistik II WiSe 016/017 1. Aufgabe: Eine sächsische Molkerei füllt Milch in Tetrapacks ab. Es wird vermutet, dass die Füllmenge normalverteilt ist mit einem Erwartungswert

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments,

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments, . Binomialverteilung ==================================================================.1 Bernoulli-Experimente und Bernoullikette -----------------------------------------------------------------------------------------------------------------

Mehr

9. Übungsblatt zur Vorlesung Schließende Statistik WS 2000/2001

9. Übungsblatt zur Vorlesung Schließende Statistik WS 2000/2001 Universität des Saarlandes Lehrstuhl für Statistik und Ökonometrie Prof. Dr. Volker Steinmetz Dipl. Math. Christoph Stahl 9. Übungsblatt zur Vorlesung Schließende Statistik WS 000/00 Aufgabe 54 Siggi Spieler

Mehr

Konkretes Durchführen einer Inferenzstatistik

Konkretes Durchführen einer Inferenzstatistik Konkretes Durchführen einer Inferenzstatistik Die Frage ist, welche inferenzstatistischen Schlüsse bei einer kontinuierlichen Variablen - Beispiel: Reaktionszeit gemessen in ms - von der Stichprobe auf

Mehr

Es wird aus einer Urne mit N Kugeln gezogen, die mit den Zahlen 1,..., N durchnummiert sind. (N n)! n! = N! (N n)!n! =

Es wird aus einer Urne mit N Kugeln gezogen, die mit den Zahlen 1,..., N durchnummiert sind. (N n)! n! = N! (N n)!n! = Übungsblatt Höhere Mathematik - Weihenstephan SoSe 00 Michael Höhle, Hannes Petermeier, Cornelia Eder Übung: 5.6.00 Die Aufgaben -3 werden in der Übung am Donnerstag (5.6. besprochen. Die Aufgaben -6 sollen

Mehr