Physik 4 Praktikum Auswertung Wä rmepumpe

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Physik 4 Praktikum Auswertung Wä rmepumpe"

Transkript

1 Physik 4 Praktikum Auswertung Wä rmepumpe Von J.W., I.G Seite 1. Kurzfassung Theorie Durchführung Geräteliste & Versuchsaufbau Versuchsablauf Auswertung Messergebnisse Abschätzung Messungenauigkeiten Teil A Diagramm Ausgetauschte Wärmemenge Q W und Q K nach 30min Maximale Leistungszahl & Erforderliche Arbeit Teil B Energiestrom Leistungszahl Liefergrad Diskussion Beantwortung gestellter Fragen Literaturverzeichnis Anhang... Seite 1

2 1. Kurzfassung Durch das Experiment soll qualitativ die Funktion eines thermodynamischen Kreisprozesses anhand einer Wärmepumpe gezeigt werden. 2. Theorie Eine Wärmepumpe entspricht einer Kältemaschine, wobei (abgegebene Wärmeenergie) bei der Wärmepumpe und (aufgenommene Wärmeenergie) bei der Kältemaschine die Nutzwärme darstellt. Im Prinzip soll aus einem Wärmereservoir (im Experiment Verdampfer), mit mechanischer Arbeit W, Wärme in ein anderes Wärmereservoir (im Experiment Kondensator) überführt werden. Würde man das System unbeeinflusst lassen, so gleichen sich die Temperatur in beiden Reservoirs mit der Zeit an. Durch den Einsatz mechanischer Arbeit in Form eines Kompressors kann Wärme von einem in das andere Reservoir transportiert werden. Es wird folglich Wärme von einem kälteren in ein wärmeres Reservoir übertragen. Hierzu ist ein thermodynamischer Kreisprozess notwendig, in dem ein Arbeitsmedium (z.b. R134a) eine festgelegte zyklische Zustandsänderung erfährt, wodurch Wärme- und Mechanische Energie transportiert/ausgetauscht werden kann. Folgende Zustandsänderungen sind erforderlich: Verdichten (Komprimieren durch mechanische Arbeit) Erwärmen (Aufnahme von Wärmeenergie) Ausdehnen (Expandieren durch Abgabe mechanischer Energie) Abkühlen (Abgabe von Wärmeenergie) Abbildung 1 Ablauf eines Kreisprozesses Für die Wärmepumpe stellt sich der Kreislauf wie folgt dar. Kompression des gasförmigen Arbeitsmittels durch Aufnahme mechanischer Energie. Kondensation durch Abgabe von Wärmeenergie (bei gleicher Temperatur) Expansion (Entspannung bei gleichzeitigem Abkühlen) Verdampfen unter Wärmeaufnahme Abbildung 2 Kreisprozess einer Wärmepumpe Die Zustandsgrößen sind nicht unabhängig voneinander und lassen sich für ideale Gase mit der Zustandsgleichung von Clapeyron (oder Allgemeine Gasgleichung) beschreiben. absoluter Druck spezifisches Volumen (auf die Masse bezogen) Teilchenzahldichte spezifische Gaskonstante absolute Temperatur (in Kelvin) ( 1 ) Seite 2

3 Für reale Gase gilt diese Zustandsgleichung näherungsweise nur unter besonderen Bedingungen (niedriger Druck, großem Volumen). Hier verwendet man stattdessen kalorische Zustandsgleichungen, welche wir hier vernachlässigen. Für Zustandsänderungen, bei denen eine Größe konstant bleibt, gibt es spezielle Bezeichnungen. 3. Durchführung 3.1. Geräteliste & Versuchsaufbau Abbildung 3 - Sonderfälle der Zustandsgleichung 1x Kompressor 2x Wärmetauscher (Spiralkörper) 2x Behälter (Wärmereservoirs) 2x Manometer 1x Expansionsventil 6x Digitalthermometer 1x Stoppuhr 5l Betriebsleitungswasser Sonstiges (siehe Schematische Darstellung) 3.2. Versuchsablauf Abbildung 4 - Schematische Darstellung des Versuchsaufbaus Die Behälter (Kondensator und Verdampfer) werden mit je 2,5l Wasser befüllt, sodass die Verdampfer- bzw. Kondensatorspule vollständig mit Wasser bedeckt sind. Anschließend wird die Messelektronik eingeschaltet und der aktuelle Zustand der Temperaturen, sowie des Drucks notiert. Der Kompressor wird eingeschaltet und mithilfe der Stoppuhr, werden nun im Abstand von 2min für den Zeitraum von 30min folgende Messwerte aufgezeichnet: Druck Kondensator Temperatur Kondensator Temperatur Eingang Kondensator Temperatur Ausgang Kondensator Druck Verdampfer Temperatur Verdampfer Temperatur Eingang Verdampfer Temperatur Ausgang Verdampfer Leistungsaufnahme Kompressor Seite 3

4

5

6 Ausgetauschte Wärmemenge Q W und Q K nach 30min V 1 = V 2 = 2500ml 2500g = m = 4,19 (spezifische Wärmekapazität von Wasser) = Endtemperatur Kondensator bei t = 30min = Anfangstemperatur Kondensator bei t = 0min = Endtemperatur Verdampfer bei t = 30min = Anfangstemperatur Verdampfer bei t = 0min ( 2 ) ( 3 ) Mit den gewählten Messunsicherheiten sowie ergibt sich für die Fehlerfortpflanzung: ( 4 ) Die Berechnung erfolgt analog für Q K mit T KE = 6,1 C und T KA = 18,0 C ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 ) ( 11 ) ( 12 ) ( 13 ) [ ] ( 14 ) ( 15 ) ( 16 ) Seite 6

7

8

9 4.4. Teil B für t = 30min ( 25 ) Die Leistungszahl ist größer 1, da die vom Verdampferreservoir zur Verfügung gestellte Wärmeenergie nicht berücksichtigt wird und somit gratis hinzukommt Energiestrom Energiestrom ( 26 ) Kondensatorwärmestrom ( 27 ) ( 28 ) Annahme für Unsicherheiten: ( 29 ) ( 30 ) ( 31 ) [ ] ( 32 ) ( ) ( 33 ) ( 34 ) ( 35 ) Seite 9

10 Analog der Verdampferwärmestrom ( 36 ) ( 37 ) ( 38 ) ( 39 ) [ ] ( 40 ) ( ) ( 41 ) ( 42 ) ( 43 ) Aus Kondensatorwärmestrom und Verdampferwärmestrom ergibt sich eine Differenz von ( 44 ) ( 45 ) ( ) ( 46 ) ( ) ( 47 ) ( 48 ) Aus ( 49 ) lässt sich folgern, dass dies die Wärmeenergie W ist, welche der Kompressor dem Wärmereservoir zuführt. Dies entspricht einem Output von 79%. Seite 10

11 Kompressorleistung P Da diese Leistung zeitabhängig schwankt, nehmen wir das arithmetischen Mittel. Als Unsicherheit für die Leistungsangabe nehmen wir die Standardabweichung Leistungszahl ( 50 ) ( 51 ) ( 52 ) ( 53 ) ( 54 ) ( 55 ) Die Leistungszahl liegt mit 1,42 deutlich unter dem theoretischen Maximum, welcher selbst nach 30min noch bei zu verorten ist. Literaturwerte wären für einen Kühlschrankkompressor bei 5 bis 6. 1 Die niedrige Leistungszahl lässt sich mit der qualitativen Eigenschaft des Experimentes und dem Alter des Kompressors erklären. 1 Literaturwert ( 1 ) siehe Literaturverzeichnis Seite 11

12 Liefergrad Als Liefergrad des Kompressors wird das Verhältnis des realen Hubvolumens V zu dem geometrischen Hubvolumen V g bezeichnet. ( 56 ) spezifisches Volumen des Dampfes ( 57 ) Aus dem Mollier-Diagramm lassen sich die notwendigen Enthalpien und das spezifische Dampfvolumen ablesen. Abbildung 8 - Mollier Diagramm ( 58 ) Als Ablesefehler wird und geschätzt ( 59 ) Druck auf Verdampferseite bei t= 30min: Druck auf Kondensatorseite bei t= 30min: Hubvolumen: Drehfrequenz: = 0,161MPa = 1,26MPa Seite 12

13 Volumenstrom ( ) ( 60 ) ( 61 ) Fehler auf den Volumenstrom ( ( 62 ) ) ( 63 ) ( ( ) ) ( 64 ) ( 65 ) ( 66 ) Geometrischen Volumenstrom ( 67 ) Geschätzte Unsicherheiten ; ( 68 ) ( 69 ) ( 70 ) ( 71 ) Seite 13

14 Liefergrad ( 72 ) ( 73 ) ( ) ( 74 ) ( 75 ) ( 76 ) 4.5. Diskussion Insgesamt konnten mit dem Experiment die gestellten Ziele, ein qualitatives Nachvollziehen eines thermodynamischen Kreisprozesses anhand einer Wärmepumpe, erreicht werden. Die Messwerte entsprechen den Erwartungen, wenn auch ein leichter Ausreißer am Ende der Reihe aufgezeichnet wurde. Die verwendete Theorie beschreibt die real gemessen Vorgänge ausreichend, auch wenn die berechnete Leistungszahl sehr niedrig ausfällt, so ist sie doch kontinuierlich größer 0. Der Liefergrad beschreibt die Qualität des Kompressionsvorganges, welcher ebenfalls mit 20% sehr gering ausfällt. Die im Skript beschriebenen Effekte zum realen Kreisprozess können nachvollzogen werden, so z.b. die nicht-isentrope Verdichtung im Kompressor, welche nur mit 79% abläuft, der Rest wird als Wärme an die Umgebung abgegeben. (Der Kompressor wird warm). Mögliche Fehlerquellen Das Ablesen der Messwerte unterlag aufgrund ihrer großen Anzahl einer gewissen Ungenauigkeit. Zusätzlich konnten noch Parallaxefehler bei den Manometern auftreten. Die Wassermenge konnte nicht präziser angegeben werden, aber entsprechende Behälter nicht vorgesehen waren. Das Messsystem hatte zudem einige Schwachstellen, wie die unisolierten Rohre, oder die Behälter für die Wärmereservoirs, welche als inhomogen verteilt angenommen werden könne. Auch die direkte Nähe zueinander bedingt eine gewisse Beeinflussung. Schlussendlich ist aber zu betonen, dass es ein qualitatives Experiment sein sollte und unter diesem Aspekt erfolgreich durchgeführt werden konnte. Seite 14

15 5. Beantwortung gestellter Fragen Literaturverzeichnis Abbildung 1 FH Aachen Praktikumsanleitung Physik 4 Teil A - Wärmepumpe S. 13 Abbildung 2 FH Aachen Praktikumsanleitung Physik 4 Teil A - Wärmepumpe S. 19 Abbildung 3 FH Aachen Praktikumsanleitung Physik 4 Teil A - Wärmepumpe S. 15 Abbildung 4 FH Aachen Praktikumsanleitung Physik 4 Teil A - Wärmepumpe S. 7 Abbildung 5 Diagramm aus den Messwerten von Seite 3 (Tabelle 1) Abbildung 6 Diagramm aus den berechneten Messwerten von Seite 7 (Tabelle 2) Abbildung 7 Diagramm aus den berechneten Messwerten von Seite 7 (Tabelle 2) Abbildung 8 Zur Verfügung gestelltes Mollier Diagramm mit eingezeichneten Messwerten Tabelle 1 Tabelle 2 gemessene Werte (siehe Protokollanhang) berechnete Werte Formel (1) Physik; Paul A. Tipler, Gene Mosca; 2. Deutsche Auflage; Springer-Verlag Berlin Heidelberg 2007; ISBN S. 539 Formel (2) FH Aachen Praktikumsanleitung Physik 4 Teil A - Wärmepumpe S. 29 Formel (4) FH Aachen Einführungsveranstaltung_SoSe2014 S. 29 Formel (10) FH Aachen Praktikumsanleitung Physik 4 Teil A - Wärmepumpe S. 29 Formel (17) FH Aachen Praktikumsanleitung Physik 4 Teil A - Wärmepumpe S. 29 Formel (18) FH Aachen Praktikumsanleitung Physik 4 Teil A - Wärmepumpe S. 29 Formel (19) FH Aachen Praktikumsanleitung Physik 4 Teil A - Wärmepumpe S. 29 Formel (20) FH Aachen Praktikumsanleitung Physik 4 Teil A - Wärmepumpe S. 29 Formel (24) FH Aachen Praktikumsanleitung Physik 4 Teil A - Wärmepumpe S. 33 Formel (25) FH Aachen Praktikumsanleitung Physik 4 Teil A - Wärmepumpe S. 25 Formel ( 49 ) FH Aachen Praktikumsanleitung Physik 4 Teil A - Wärmepumpe S. 1 Formel (50) FH Aachen Praktikumsanleitung Physik 4 Teil A - Wärmepumpe S. 33 Formel (56) FH Aachen Praktikumsanleitung Physik 4 Teil A - Wärmepumpe S. 33 Formel (57) FH Aachen Praktikumsanleitung Physik 4 Teil A - Wärmepumpe S. 33 Formel (67) FH Aachen Praktikumsanleitung Physik 4 Teil A - Wärmepumpe S. 34 Literaturwert ( 1 ) Physik; Paul A. Tipler, Gene Mosca; 2. Deutsche Auflage; Springer-Verlag Berlin Heidelberg 2007; ISBN S. 592 Seite 15

Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan

Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Zustandsgleichung....... 2 2.2. Koexistenzgebiet........ 3 2.3. Kritischer

Mehr

Praktikum - Wärmepumpe

Praktikum - Wärmepumpe Praktikum - Wärmepumpe chris@university-material.de, Arthur Halama Inhaltsverzeichnis 1 Theorie 2 2 Durchführung 2 2.1 Prinzip............................................ 2 2.2 Messung...........................................

Mehr

Physik 4 Praktikum Auswertung Hall-Effekt

Physik 4 Praktikum Auswertung Hall-Effekt Physik 4 Praktikum Auswertung Hall-Effekt Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Elektrischer Strom in Halbleitern..... 2 2.2. Hall-Effekt......... 3 3. Durchführung.........

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Institut für Energietechnik, Professur Kraftwerkstechnik. Energietechnik. Dampfkraftprozess, Dampfkraftwerk

Institut für Energietechnik, Professur Kraftwerkstechnik. Energietechnik. Dampfkraftprozess, Dampfkraftwerk Institut für Energietechnik, Professur Kraftwerkstechnik Energietechnik Dampfkraftprozess, Dampfkraftwerk - Grundlagen - Dr.-Ing. Marco Klemm Professur Verbrennung, Wärme- und Stoffübertragung Folie 2

Mehr

UNIVERSITÄT BIELEFELD -

UNIVERSITÄT BIELEFELD - UNIVERSITÄT BIELEFELD - FAKULTÄT FÜR PHYSIK LEHRSTUHL FÜR SUPRAMOLEKULARE SYSTEME, ATOME UND CLUSTER PROF. DR. ARMIN GÖLZHÄUSER Versuch 2.9 Thermodynamik Die Wärmepumpe Durchgeführt am 12.04.06 BetreuerIn:

Mehr

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme 6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher mit der

Mehr

Thermodynamik Hauptsatz

Thermodynamik Hauptsatz Thermodynamik. Hauptsatz Inhalt Wärmekraftmaschinen / Kälteprozesse. Hauptsatz der Thermodynamik Reversibilität Carnot Prozess Thermodynamische Temperatur Entropie Entropiebilanzen Anergie und Exergie

Mehr

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig W 10 Wärmepumpe Aufgaben 1 Nehmen Sie die Temperatur- und Druckverläufe einer Wasser-Wasser-Wärmepumpe auf!

Mehr

ST Der Stirling-Motor als Wärmekraftmaschine

ST Der Stirling-Motor als Wärmekraftmaschine ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische

Mehr

Formel X Leistungskurs Physik 2001/2002

Formel X Leistungskurs Physik 2001/2002 Versuchsaufbau: Messkolben Schlauch PI Barometer TI 1 U-Rohr-Manometer Wasser 500 ml Luft Pyknometer 2 Bild 1: Versuchsaufbau Wasserbad mit Thermostat Gegeben: - Länge der Schläuche insgesamt: 61,5 cm

Mehr

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe Die Stichworte: Thermische Maschinen; 1. und. Hauptsatz; Wirkungsgrad und Leistungsziffer 1 Einführung und Themenstellung Mit einer wird - entgegen der natürlichen Richtung eines Wärmestroms - Wärme von

Mehr

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger Thermodynamik Grundlagen und technische Anwendungen Band 1: Einstoffsysteme 16., vollständig neu bearbeitete Auflage Mit 195 Abbildungen und

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Versuch 26: Stirling-Motor UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Elektrotechnik und Informationstechnik Institut für Physik Oktober 2015 2 Versuch 26 Stirling-Motor Der

Mehr

Versuch W11 für Nebenfächler Wärmepumpe

Versuch W11 für Nebenfächler Wärmepumpe Versuch W11 für Nebenfächler Wärmepumpe I. Physikalisches Institut, Raum 104 Stand: 3. April 2014 generelle Bemerkungen bitte Versuchspartner angeben bitte Versuchsbetreuer angeben bitte nur handschriftliche

Mehr

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti Thermodynamik I PVK - Tag 2 Nicolas Lanzetti Nicolas Lanzetti 05.01.2016 1 Heutige Themen Carnot; Wirkungsgrad/Leistungsziffer; Entropie; Erzeugte Entropie; Isentroper Wirkungsgrad; Isentrope Prozesse

Mehr

Thermodynamik I Klausur 1

Thermodynamik I Klausur 1 Aufgabenteil / 100 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden. Nicht nachvollziehbare

Mehr

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3 Inhaltsverzeichnis Formelzeichen...XIII 1 Einleitung...1 2 Einheiten physikalischer Größen...3 3 Systeme...6 3.1 Definition von Systemen...6 3.2 Systemarten...7 3.2.1 Geschlossenes System...7 3.2.2 Offenes

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 200 Abbildungen und 7 Tabellen Springer Inhaltsverzeichnis Liste der Formelzeichen XV 1 Grundlagen der Technischen Thermodynamik 1 1.1 Gegenstand und Untersuchungsmethodik

Mehr

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1 II. Wärmelehre II.2. Die auptsätze der Wärmelehre Physik für Mediziner 1 1. auptsatz der Wärmelehre Formulierung des Energieerhaltungssatzes unter Einschluss der Wärmenergie: die Zunahme der Inneren Energie

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2014 Kapitel 5 Prof. Dr.-Ing. Heinz Pitsch Kapitel 5: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

4 Hauptsätze der Thermodynamik

4 Hauptsätze der Thermodynamik I Wärmelehre -21-4 Hauptsätze der hermodynamik 4.1 Energieformen und Energieumwandlung Innere Energie U Die innere Energie U eines Körpers oder eines Systems ist die gesamte Energie die darin steckt. Es

Mehr

Physikalisch-chemische Grundlagen der Verfahrenstechnik

Physikalisch-chemische Grundlagen der Verfahrenstechnik Physikalisch-chemische Grundlagen der Verfahrenstechnik Günter Tovar, Thomas Hirth, Institut für Grenzflächenverfahrenstechnik guenter.tovar@igvt.uni-stuttgart.de Physikalisch-chemische Grundlagen der

Mehr

Heissluftmotor ******

Heissluftmotor ****** luftmotor 8.3.302 luftmotor ****** 1 Motivation Ein luft- bzw. Stirlingmotor erzeugt mechanische Arbeit. Dies funktioniert sowohl mit einer Beheizung als auch mit einem Kältebad. Durch Umkehrung der Laufrichtung

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Thermodynamik des Kraftfahrzeugs Bearbeitet von Cornel Stan 1. Auflage 2012. Buch. xxiv, 598 S. Hardcover ISBN 978 3 642 27629 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 1087 g Weitere Fachgebiete > Technik

Mehr

Thermodynamik I - Übung 6. Nicolas Lanzetti

Thermodynamik I - Übung 6. Nicolas Lanzetti Thermodynamik I - Übung 6 Nicolas Lanzetti Nicolas Lanzetti 06.11.2015 1 Heutige Themen Zusammenfassung letzter Woche; Zweiter Hauptsatz der Thermodynamik; Halboffene Systeme; Reversible und irreversible

Mehr

Versuch 6: Spezifische Wärme der Luft und Gasthermometer

Versuch 6: Spezifische Wärme der Luft und Gasthermometer Versuch 6: Spezifische Wärme der Luft und Gasthermometer Inhaltsverzeichnis 1 Einführung 3 2 Theorie 3 2.1 Temperatur................................... 3 2.2 Die Allgemeine Gasgleichung..........................

Mehr

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen)

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen) Versuch Nr.53 Messung kalorischer Größen (Spezifische Wärmen) Stichworte: Wärme, innere Energie und Enthalpie als Zustandsfunktion, Wärmekapazität, spezifische Wärme, Molwärme, Regel von Dulong-Petit,

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 1: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.1Klassische Formulierungen 4.1.1Kelvin-Planck-Formulierung

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Vierte, berichtigte Auflage

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Vierte, berichtigte Auflage Hans Dieter Baehr Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Vierte, berichtigte Auflage Mit 271 Abbildungen und zahlreichen Tabellen sowie 80 Beispielen Springer-Verlag

Mehr

W10 PhysikalischesGrundpraktikum

W10 PhysikalischesGrundpraktikum W10 PhysikalischesGrundpraktikum Abteilung Wärmelehre Wärmepumpe 1 Vorbereitung 1. Wirkungsweise der Wärmepumpe 2. Zustandsänderungen (isotherm, isobar, isochor, isentrop und adiabatisch), das ideale und

Mehr

Inhaltsverzeichnis. Formelzeichen. 1 Einleitung 1. 2 Einheiten physikalischer Größen 3

Inhaltsverzeichnis. Formelzeichen. 1 Einleitung 1. 2 Einheiten physikalischer Größen 3 Formelzeichen XIII 1 Einleitung 1 2 Einheiten physikalischer Größen 3 3 Systeme 7 3.1 Definition von Systemen 7 3.2 Systemarten 8 3.2.1 Geschlossenes System 8 3.2.2 Offenes System 9 3.2.3 Adiabates System

Mehr

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher Dies

Mehr

8.4.5 Wasser sieden bei Zimmertemperatur ******

8.4.5 Wasser sieden bei Zimmertemperatur ****** 8.4.5 ****** 1 Motivation Durch Verminderung des Luftdrucks siedet Wasser bei Zimmertemperatur. 2 Experiment Abbildung 1: Ein druckfester Glaskolben ist zur Hälfte mit Wasser gefüllt, so dass die Flüsigkeit

Mehr

Technische Thermodynamik. FB Maschinenwesen. Übungsfragen Technische Thermodynamik II. University of Applied Sciences

Technische Thermodynamik. FB Maschinenwesen. Übungsfragen Technische Thermodynamik II. University of Applied Sciences University of Applied Sciences Übungsfragen Technische Thermodynamik II Prof. Dr.-Ing. habil. H.-J. Kretzschmar FB Maschinenwesen Technische Thermodynamik HOCHSCHULE ZITTAU/GÖRLITZ (FH) - University of

Mehr

2.2 Spezifische und latente Wärmen

2.2 Spezifische und latente Wärmen 1 Einleitung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 2 Wärmelehre 2.2 Spezifische und latente Wärmen Die spezifische Wärme von Wasser gibt an, wieviel Energie man zu 1 kg Wasser zuführen

Mehr

Wärmepumpe. Mag. Dipl.-Ing. Katharina Danzberger

Wärmepumpe. Mag. Dipl.-Ing. Katharina Danzberger Mag. Dipl.-Ing. Katharina Danzberger 1. Zielsetzung Im Rahmen der Übung sollen die Wärmebilanz und die Leistungszahl bzw. der COP (Coefficient Of Performance) der installierten n bestimmt und diskutiert

Mehr

Thermodynamische Hauptsätze, Kreisprozesse Übung

Thermodynamische Hauptsätze, Kreisprozesse Übung Thermodynamische Hauptsätze, Kreisprozesse Übung Marcus Jung 14.09.2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Thermodynamische Hauptsätze 3 1.1 Aufgabe 1:.................................... 3 1.2 Aufgabe

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 3 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Einführung in die Technische Thermodynamik

Einführung in die Technische Thermodynamik Arnold Frohn Einführung in die Technische Thermodynamik 2., überarbeitete Auflage Mit 139 Abbildungen und Übungen AULA-Verlag Wiesbaden INHALT 1. Grundlagen 1 1.1 Aufgabe und Methoden der Thermodynamik

Mehr

Die 4 Phasen des Carnot-Prozesses

Die 4 Phasen des Carnot-Prozesses Die 4 Phasen des Carnot-Prozesses isotherme Expansion: A B V V T k N Q ln 1 1 isotherme Kompression: adiabatische Kompression: adiabatische Expansion: 0 Q Q 0 C D V V T k N Q ln 2 2 S Q 1 1 /T1 T 1 T 2

Mehr

Fachhochschule Flensburg. Die spezifische Wärmekapazität fester Körper

Fachhochschule Flensburg. Die spezifische Wärmekapazität fester Körper Name : Fachhochschule Flensburg Fachbereich Technik Institut für Physik und Werkstoffe Name: Versuch-Nr: W4 Die spezifische Wärmekapazität fester Körper Gliederung: Seite Einleitung 1 Berechnung 1 Versuchsbeschreibung

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 ladimir Dyakonov #0 am 4.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E43, Tel. 888-5875,

Mehr

Die Zustandsgleichung realer Gase

Die Zustandsgleichung realer Gase Die Zustandsgleichung realer Gase Grolik Benno, Kopp Joachim 2. Januar 2003 1 Grundlagen des Versuchs Der Zustand eines idealen Gases wird durch die drei elementaren Zustandsgrößen Druck p, Temperatur

Mehr

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess Inhalt 10.10 Der zweite Hauptsatz 10.10.1 Thermodynamischer Wirkungsgrad 10.10.2 Der Carnotsche Kreisprozess Für kinetische Energie der ungeordneten Bewegung gilt: Frage: Frage: Wie kann man mit U Arbeit

Mehr

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15 Physikdepartment Ferienkurs zur Experimentalphysik 4 Daniel Jost 10/09/15 Inhaltsverzeichnis Technische Universität München 1 Kurze Einführung in die Thermodynamik 1 1.1 Hauptsätze der Thermodynamik.......................

Mehr

2.2 Technische Anwendung des linksläufigen Kreisprozesses in einer Wärmepumpe

2.2 Technische Anwendung des linksläufigen Kreisprozesses in einer Wärmepumpe 2 Das System der Wärmepumpe 2.1 Allgemeines Mithilfe einer Wärmepumpe besteht die Möglicheit, Wärmeenergie für die Beheizung von Gebäuden zur Verfügung zu stellen. Dabei wird Umweltenergie (z.b. Energie

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I W21 Name: Verdampfungswärme von Wasser Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Folgende Fragen

Mehr

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer Gasthermometer 1 PHYSIKALISCHE GRUNDLAGEN durchgeführt am 21.06.2010 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer 1 Physikalische Grundlagen 1.1 Zustandgleichung des idealen Gases Ein ideales

Mehr

Wärmelehre Zustandsänderungen ideales Gases

Wärmelehre Zustandsänderungen ideales Gases Wärmelehre Zustandsänderungen ideales Gases p Gas-Gleichung 1.Hauptsatz p V = N k B T U Q W p 1 400 1 isobar 300 200 isochor isotherm 100 p 2 0 2 adiabatisch 0 1 2 3 4 5 V V 2 1 V Bemerkung: Mischung verschiedener

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

UNIVERSITÄT BIELEFELD -

UNIVERSITÄT BIELEFELD - UNIVERSITÄT BIELEFELD - FAKULTÄT FÜR PHYSIK LEHRSTUHL FÜR SUPRAMOLEKULARE SYSTEME, ATOME UND CLUSTER PROF. DR. ARMIN GÖLZHÄUSER Grundversuch Thermodynamik Ideale Gasgesetz Durchgeführt am 10.04.06 BetreuerIn:

Mehr

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse Kontrolle Physik Leistungskurs Klasse 2 7.3.207. Hauptsatz, Kreisprozesse. Als man früh aus dem Haus gegangen ist, hat man doch versehentlich die Kühlschranktür offen gelassen. Man merkt es erst, als man

Mehr

Aufgabe 1: Theorie Punkte

Aufgabe 1: Theorie Punkte Aufgabe 1: Theorie.......................................... 30 Punkte (a) (2 Punkte) In einen Mischer treten drei Ströme ein. Diese haben die Massenströme ṁ 1 = 1 kg/s, ṁ 2 = 2 kg/s und ṁ 3 = 2 kg/s.

Mehr

Bestimmung des Spannungskoeffizienten eines Gases

Bestimmung des Spannungskoeffizienten eines Gases Bestimmung des Spannungskoeffizienten eines Gases Einleitung Bei diesem Experiment wollen wir den Spannungskoeffizienten α eines Gases möglichst genau bestimmen und in Folge mit dem Spannungskoeffizienten

Mehr

Kleine Formelsammlung Technische Thermodynamik

Kleine Formelsammlung Technische Thermodynamik Kleine Formelsammlung Technische Thermodynamik von Prof. Dr.-Ing. habil. Hans-Joachim Kretzschmar und Prof. Dr.-Ing. Ingo Kraft unter Mitarbeit von Dr.-Ing. Ines Stöcker 3., erweiterte Auflage Fachbuchverlag

Mehr

Grundpraktikum T7 spezifische Wärmekapazität idealer Gase

Grundpraktikum T7 spezifische Wärmekapazität idealer Gase Grundpraktikum T7 spezifische Wärmekapazität idealer Gase Julien Kluge 11. Mai 2015 Student: Julien Kluge (564513) Partner: Emily Albert (564536) Betreuer: Maximilian Kockert Raum: 215 Messplatz: 2 (Clément-Desormes

Mehr

Prozesstechnik-Übung Wintersemester Es ist das Phasendiagramm des Systems Naphthalin/Biphenyl durch thermische Analyse zu bestimmen.

Prozesstechnik-Übung Wintersemester Es ist das Phasendiagramm des Systems Naphthalin/Biphenyl durch thermische Analyse zu bestimmen. Prozesstechnik-Übung Wintersemester 2008-2009 Thermische Analyse 1 Versuchsziel Es ist das Phasendiagramm des Systems Naphthalin/Biphenyl durch thermische Analyse zu bestimmen. 2 Theoretische Grundlagen

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

Stirling-Maschine (STI)

Stirling-Maschine (STI) TUM Anfängerpraktikum für Physiker II Wintersemester 26/27 Stirling-Maschine (STI) Inhaltsverzeichnis 5. Dezember 26 1. Einleitung...2 2. Thermodynamische Kreisprozesse...2 3. Versuchsdurchführung...3

Mehr

4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik. Thermischer Wirkungsgrad einer Arbeitsmaschine:

4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik. Thermischer Wirkungsgrad einer Arbeitsmaschine: 4. Zweiter Hauptsatz der Thermodynamik 4.1. Klassische Formulierungen 4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik Thermischer Wirkungsgrad einer Arbeitsmaschine: Beispiel Ottomotor

Mehr

Grundlagen der Wärmelehre

Grundlagen der Wärmelehre Ausgabe 2007-09 Grundlagen der Wärmelehre (Erläuterungen) Die Wärmelehre ist das Teilgebiet der Physik, in dem Zustandsänderungen von Körpern infolge Zufuhr oder Abgabe von Wärmeenergie und in dem Energieumwandlungen,

Mehr

(ohne Übergang der Wärme)

(ohne Übergang der Wärme) Adiabatische Zustandsänderungen Adiabatische Zustandsänderungen δq= 0 (ohne Übergang der Wärme) Adiabatischer Prozess (Q = const) Adiabatisch = ohne Wärmeaustausch, Temperatur ändert sich bei Expansion/Kompression

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch Thermodynamik Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch Thermodynamik 1 Einleitung 2 Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5

Mehr

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 02. März 2011 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Versuch 14: Dampfdruckkurve - Messung der Dampfdruckkurven leicht verdampfbarer Flüssigkeiten -

Versuch 14: Dampfdruckkurve - Messung der Dampfdruckkurven leicht verdampfbarer Flüssigkeiten - 1 ersuch 14: Dampfdruckkurve - Messung der Dampfdruckkurven leicht verdampfbarer Flüssigkeiten - 1. Theorie Befindet sich eine Flüssigkeit in einem abgeschlossenen Gefäß, so stellt sich zwischen der Gasphase

Mehr

1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure

1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure 1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure In diesem Versuch soll der Satz von Hess (die umgesetzte Wärmemenge ist bei einer chemischen Reaktion unabhängig vom Weg)

Mehr

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!!

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!! Aufgabe (60 Punkte, TTS & TTD) Bitte alles LESBAR verfassen!!!. In welcher Weise ändern sich intensive und extensive Zustandsgrößen bei der Zerlegung eines Systems in Teilsysteme?. Welche Werte hat der

Mehr

Rolf Seidel/Hugo Noack. Der Kältemonteur. Handbuch für die Praxis. 8., überarbeitete Auflage. C. F. Müller Verlag, Heidelberg

Rolf Seidel/Hugo Noack. Der Kältemonteur. Handbuch für die Praxis. 8., überarbeitete Auflage. C. F. Müller Verlag, Heidelberg Rolf Seidel/Hugo Noack Der Kältemonteur Handbuch für die Praxis 8., überarbeitete Auflage C. F. Müller Verlag, Heidelberg Inhaltsverzeichnis CECOMAF-Terminologie 1 1 Physikalisches Fachwissen 11 1.1 Temperatur

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

Adiabatische Expansion. p. 30

Adiabatische Expansion. p. 30 Adiabatische Expansion p. 30 Isotherme Kompression p. 31 Adiabatische Kompression p. 32 PV Diagramm und Arbeit im Carnotzyklus 1. Isotherme Expansion 2. Adiabatisch Expansion 3. Isotherme Kompression 4.

Mehr

Physikalisches Anfaengerpraktikum. Zustandsgleichung idealer Gase und kritischer Punkt

Physikalisches Anfaengerpraktikum. Zustandsgleichung idealer Gase und kritischer Punkt Physikalisches Anfaengerpraktikum Zustandsgleichung idealer Gase und kritischer Punkt Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Freitag, 18. März 005 email: Marcel.Engelhardt@mytum.de

Mehr

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei

Mehr

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: / V1 = 2,7 Liter

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: / V1 = 2,7 Liter Schriftliche Prüfung aus VO Kraftwerke am 19.04.2016 KW 04/2016 Name/Vorname: / Matr.-Nr./Knz.: / 1. Stirlingmotor (25 Punkte) Ein Stirlingmotor soll zur Stromerzeugung in einem 50 Hz Netz eingesetzt werden.

Mehr

Lösungen Serie 16: Kalorimetrie

Lösungen Serie 16: Kalorimetrie en Serie 16: Kalorimetrie Aufgabe 16.1 A Sie wollen in einem Kochtopf ( =0.6, =0.4 ( =4.182 k K gegeben: =0.6 =0.4 k K ) einen halben Liter Wasser ) von 10 auf 40 erwärmen. Welche Wärmemenge ist dazu notwendig?

Mehr

3.2 Gasthermometer 203

3.2 Gasthermometer 203 3.2 Gasthermometer 203 3.2. Gasthermometer Ziel Verifizierung von Zusammenhängen, die durch die ideale Gasgleichung beschrieben werden (isotherme und isochore Zustandsänderung), Bestimmung des absoluten

Mehr

Aufheizgeschwindigkeit

Aufheizgeschwindigkeit 4. Fassung Protokoll Aufheizgeschwindigkeit Gruppe 29 Guido Petri, Matrikelnummer 364477 Rami Michael Saoudi, Matrikelnummer 356563 1 Aufheizgeschwindigkeit Gruppe 29 Inhaltsverzeichnis Aufgabenstellung...2

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr

Kleine Formelsammlung Technische Thermodynamik

Kleine Formelsammlung Technische Thermodynamik Kleine Formelsammlung Technische Thermodynamik von Prof. Dr.-Ing. habil. Hans-Joachim Kretzschmar und Prof. Dr.-Ing. Ingo Kraft unter Mitarbeit von Dr.-Ing. Ines Stöcker 2., aktualisierte Auflage Fachbuchverlag

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Temperatur Der nullte Hauptsatz der Thermodynamik: Thermoskop und Thermometer Kelvin, Celsius- und der Fahrenheit-Skala Wärmeausdehnung

Mehr

d) Das ideale Gas makroskopisch

d) Das ideale Gas makroskopisch d) Das ideale Gas makroskopisch Beschreibung mit Zustandsgrößen p, V, T Brauchen trotzdem n, R dazu Immer auch Mikroskopische Argumente dazunehmen Annahmen aus mikroskopischer Betrachtung: Moleküle sind

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Ü 11.1 Nachrechnung eines Otto-ergleichsprozesses (1) Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Anfangstemperatur T 1 288 K Anfangsdruck p 1 1.013 bar Maximaltemperatur

Mehr

II. Thermodynamische Energiebilanzen

II. Thermodynamische Energiebilanzen II. Thermodynamische Energiebilanzen 1. Allgemeine Energiebilanz Beispiel: gekühlter Verdichter stationärer Betrieb über Systemgrenzen Alle Energieströme werden bezogen auf Massenstrom 1 Energieformen:

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 17. 21. Mai 2010 Physik für Bauingenieure Übungsblatt 5 Gruppenübungen 1. Wärmepumpe Eine Wärmepumpe hat eine Leistungszahl

Mehr

Prüfung: Thermodynamik II (Prof. Adam)

Prüfung: Thermodynamik II (Prof. Adam) Prüfung: Thermodynamik II (Prof. Adam) 18.09.2008 Erreichbare Gesamtpunktzahl: 48 Punkte Aufgabe 1 (30 Punkte): In einem Heizkraftwerk (siehe Skizze) wird dem Arbeitsmedium Wasser im Dampferzeuger 75 MW

Mehr

Betriebsoptimierung von Kältemaschinen

Betriebsoptimierung von Kältemaschinen Betriebsoptimierung von Kältemaschinen 1 Einsatz von Kältemittel 2 Einsatz von Kältemittel 3 Funktionsweise einer Wärmepumpe / Kältemaschine 4 Grundzüge des h, log p Diagramm 5 1-2 Isentrope Verdichtung

Mehr

Für die spätere konkrete Nutzung sollte auf das h,x-diagramm in der hinteren Einstecktasche

Für die spätere konkrete Nutzung sollte auf das h,x-diagramm in der hinteren Einstecktasche Zustandsänderungen Für die Praxis sind Zustandsänderungen, d. h. die Veränderung der Temperatur und/oder des Feuchtegehalts durch Heizen, Kühlen, Be- und/oder Enteuchten von Bedeutung. Diese Änderungen

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch Thermodynamik Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch Thermodynamik Einleitung Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5 Kinetische

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 12. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 12. 07. 2007 Klausur Die Klausur

Mehr

Untersuchungen zum Betriebsfeld eines Kolbenkompressors

Untersuchungen zum Betriebsfeld eines Kolbenkompressors Fachbereich Maschinenbau Fachgebiet Kraft- u. Arbeitsmaschinen Fachgebietsleiter Prof. Dr.-Ing. B. Spessert März 06 Praktikum Kraft- und Arbeitsmaschinen Versuch 4 Untersuchungen zum Betriebsfeld eines

Mehr

Zweiter Hauptsatz der Thermodynamik

Zweiter Hauptsatz der Thermodynamik Thermodynamik I Kapitel 4 Zweiter Hauptsatz der Thermodynamik Prof. Dr.-Ing. Heinz Pitsch Kapitel 4: Ü bersicht 4 Zweiter Hauptsatz der Thermodynamik 4.1 Klassische Formulierungen 4.1.1 Kelvin-Planck-Formulierung

Mehr

Hauptsatz der Thermodynamik

Hauptsatz der Thermodynamik 0.7. Hauptsatz der Thermodynamik Die einem System von außen zugeführte Wärmemenge Q führt zu Erhöhung U der inneren Energie U und damit Erhöhung T der Temperatur T Expansion des olumens gegen den äußeren

Mehr