Hans-Günter Heumann PIANO KIDS. Die Klavierschule für Kinder. Band 1 ED 8301

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Hans-Günter Heumann PIANO KIDS. Die Klavierschule für Kinder. Band 1 ED 8301"

Transkript

1 Hns-Günter Heumnn PIANO KIDS Die Klviershule für Kinder mit SPASS UND AKTION Bnd ED 80

2 GROSSE KLAVIERSPIELER hen uh klein ngefngen Seite 5 Ih he mein erstes Klvier stük, ein Menuett, mit fünf Jhren kompo - niert und wurde ls Wunderkind ezeihnet. Mit vier Jhren he ih shon Klvier geüt, uf einem Stuhl stehend, d ih noh niht n die Tsten hernreihen konnte. Mit neun Jhren g ih mein erstes Konzert, in dem ih ls Klviervirtuose gefeiert wurde. Bevor ih Klvier unterriht ekm, spielte ih mit meiner Shwester Ludwik shon vierhändig.

3 SPIEL NACH NOTEN Musik ist eine Sprhe. Diese Sprhe wird von llen Menshen der Welt verstnden. Ds wihtigste Mittel zur Aufzeihnung dieser Sprhe ist die Note. Tonwiederholungen zähle: RHYTHMUS Seite 5-7 Die Musik esteht us der Anordnung von kurzen und lngen Tönen. Die Komintion dieser Töne nennt mn Rhythmus. Auh die Sprhe ht einen Rhythmus: mnhe Wörter sind kurz, mnhe lng. VIERTELNOTE HALBE NOTE GANZE NOTE Seite 4 oder Einshlgnote Eine Viertelnote erhält einen Grundshlg. oder Zweishlgnote Eine hle Note erhält zwei Grundshläge. oder Viershlgnote Eine gnze Note erhält vier Grundshläge. 7 zähle: zähle: - 2 zähle:

4 QUINTE = Astnd von 5 Tönen Seite 8/9 Seite 40 FREUDE, SCHÖNER GÖTTERFUNKEN 5 Text: Friedrih Shiller ( ) Musik: Ludwig vn Beethoven ( ) Arr.: Hns-Günter Heumnn Freu de, shöner Göt ter fun ken, Toh ter us E ly si um, wir e tre ten feu er trun ken, Himm li she, dein Hei lig tum! 5 2 Brü der, wo dein snf ter Flü gel weilt. 50

5 . Welhe Note ht ein Fähnhen? Viertelnote Hle Note Ahtelnote 2. Wie nennt mn den Astnd von Tönen? Quinte Terz Sekunde Teste Dein Wissen mit dem... KLAVIER QUIZ. Wie sieht ds Wiederholungszeihen us? 4. Mit welhem Tkt zusmmen ergit der Auftkt einen vollständigen Tkt?. Tkt Shlußtkt vorletzten Tkt 5. Welhes Zeihen edeutet llmählih luter werden? 6. Auf welher Aildung ist ds Intervll Quinte? 7. Welhes ist die ndere Shreiweise für den 4 4-Tkt? 5 Antworten:, 2,, 4, 5, 6, 7

6 Diese neue Klviershule will solides musiklishes Wissen und Können vermitteln Freude n der Musik weken ttrktive, moderne Spielstüke us den Bereihen Volksund Kinderlied, Folklore, Klssik und Pop nieten lngweilige und trokene Üungen vermeiden Musiktheorie verständlih und spielerish vermitteln zum eigenen Improvisieren nregen Zu jedem Bnd der Klviershule git es ein Aktionsuh, in dem lle Themen us der Shule in spielerisher, fntsievoller Form ufgereitet und vertieft werden. Klviershule: Aktionsüher: Pino Kids ED 80 Aktionsuh ED 80-0 Pino Kids 2 ED 802 Aktionsuh 2 ED Pino Kids ED 80 Aktionsuh ED 80-0 Begleitende Spielhefte: Pino Kids im Duett Vierhändige Stüke, die Spß mhen (mit CD) ED 8886 (einsetzr Mitte des 2. Bndes) Pino Kids Finger Fun Etüden, die Spß mhen ED 800 (einsetzr Mitte des. Bndes) Pino Kids in Conert Vorspielstüke, die Spß mhen (mit CD) ED 8440 (einsetzr im Anshluß n die dreiändige Klviershule) Zu Pino Kids gehört: AKTIONSBUCH Spiel Spß Info ED 80-0 Die kretive Ergänzung zur Klviershule mit vielen Spielen und Super-Ideen! Die Themen: Wissenswertes üer ds Klvier Notenshreien Die Kltsheke Musiklishe Knoeleien Suhild Kreuzworträtsel Musikwitze Trnsponieren Notenwerte/Pusen Improvisieren Komponieren... und vieles mehr! Ds 48 Seiten strke Heft enthält ußerdem: Bstelogen für Fensterilder Spielkrten zum Notenlernen Musiklishe Wissenskärthen Noten-Shreiheft Pino Kids Clssi Fun Klssishe Stüke, die Spß mhen (mit CD) ED 8946 (einsetzr Bnd ) Pino Kids Pop Fun Jzz-, Pop-, Rok- und Folkstüke, die Spß mhen ED 929 (einsetzr Mitte des 2. Bndes) ISMN ED 80 ISBN ED 80

Hans-Günter Heumann PIANO KIDS. Die Klavierschule für Kinder. Band 3 ED 8303

Hans-Günter Heumann PIANO KIDS. Die Klavierschule für Kinder. Band 3 ED 8303 Hans-Günter Heumann PIANO KIDS Die Klavierschule für Kinder mit SPASS UND AKTION Band 3 ED 8303 DOPPELGRIFFE IN TERZEN M. M. = 26 2 3 3 ALLEGRETTO op. 823 Nr. 22 4 Carl Czerny (79-87) 3 2 2 4 3 2 996 Schott

Mehr

Ode an die Freude Text: Friedrich Schiller ( ) Melodie: aus 9. Sinfonie, 4. Satz Ludwig van Beethoven ( ) œ J. fi & œ n. J œ œ. œ œ.

Ode an die Freude Text: Friedrich Schiller ( ) Melodie: aus 9. Sinfonie, 4. Satz Ludwig van Beethoven ( ) œ J. fi & œ n. J œ œ. œ œ. Kl B / K Sopra Alt Teor Bass 1 2 Kleie Besetzug oder Kiderhor Ode a die Freude Text: Friedrih Shiller (1759-1805) Melodie: aus 9 Sifoie, 4 Satz Ludwig va Beethove (1770-1827) Freu - Freu - Freu - Freu

Mehr

Lesen. Fit in Deutsch.2. circa 30 Minuten. Dieser Test hat drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel aus der Zeitung.

Lesen. Fit in Deutsch.2. circa 30 Minuten. Dieser Test hat drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel aus der Zeitung. Fit in Deutsh.2 Üungsstz 01 Kndidtenlätter ir 30 Minuten Dieser Test ht drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel us der Zeitung. Zu jedem Text git es Aufgen. Shreie m

Mehr

Prüfungsteil Schriftliche Kommunikation (SK)

Prüfungsteil Schriftliche Kommunikation (SK) SK Üerlik und Anforderungen Üerlik und Anforderungen Prüfungsteil Shriftlihe Kommuniktion (SK) Üerlik und Anforderungen Worum geht es? In diesem Prüfungsteil sollst du einen Beitrg zu einem estimmten Them

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

1 Aktivität 1 Sehen ohne Ton (Track 1 bis Und eine Schokolade. )

1 Aktivität 1 Sehen ohne Ton (Track 1 bis Und eine Schokolade. ) Shritte 1/2 interntionl Hinweise für die Kursleiter Film 3:»Die Josuhe«Mteril zu Film 3 Die Josuhe : Film 3,. 05:00 Min. Zustzmteril: Mein Beruf,. 01:30 Min., 5 kurze Sttements zum Them 5 Areitslätter

Mehr

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck 10 1 Grundlgen der Shulgeometrie 13 Ds Dreiek In diesem shnitt findet lles in der ffinen Stndrdeene 2 = R 2 sttt Drei Punkte, und, die niht uf einer Gerden liegen, ilden ein Dreiek Die Punkte,, nennt mn

Mehr

Übungssatz 01 FIT IN DEUTSCH 1. Kandidatenblätter/Prüferblätter ISBN: FIT1_ÜS01_Kandidaten-/Prueferblaetter_Oktober_2005

Übungssatz 01 FIT IN DEUTSCH 1. Kandidatenblätter/Prüferblätter ISBN: FIT1_ÜS01_Kandidaten-/Prueferblaetter_Oktober_2005 FIT IN DEUTSCH 1 Üungsstz 01 Kndidtenlätter/Prüferlätter KASTNER AG ds medienhus FIT1_ÜS01_Kndidten-/Prueferletter_Oktoer_2005 ISBN: 3-938744-76-6 Fit in Deutsh.1 Üungsstz 01 Teil 1 Du hörst drei Nhrihten

Mehr

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch ?37??38? Der Tigershwnz knn ls Stimmungsrometer gesehen werden. Tiger sind wssersheu.?39??40? Ds Gerüll der Tigermännhen soll die Weihen nloken. Die Anzhl der Südhinesishen Tiger eträgt nur mehr ) 2 )

Mehr

SPRACHFERIEN KÜNZELSAU 2008

SPRACHFERIEN KÜNZELSAU 2008 SPRACHFERIEN KÜNZELSAU 2008 (Mittelstufe) CODENUMMER: I. Lesen Sie den Text. Entsheiden Sie, welhe der Antworten ( ) psst. Es git jeweils nur eine rihtige Lösung. GEMEINSAM FÚR SPRACHE UND KULTUR Ashenputtel,

Mehr

Lektion 1...4 Lektion 2...9 Lektion 3...14 Lektion 4...19 Lektion 5...24 Lektion 6...29 Lektion 7...34

Lektion 1...4 Lektion 2...9 Lektion 3...14 Lektion 4...19 Lektion 5...24 Lektion 6...29 Lektion 7...34 Inhlt Shritte plus 5 Lektion 1...4 Lektion 2...9 Lektion 3...14 Lektion 4...19 Lektion 5...24 Lektion 6...29 Lektion 7...34 Shritte plus 6 Lektion 8...39 Lektion 9...44 Lektion 10...49 Lektion 11...54

Mehr

2 Kinobesuch GRAMMATIK. perfekt. Im September LEICHT. wann die Vorstellung beginnt. Schreiben Sie Sätze! Beginnen Sie mit den grün markierten Wörtern!

2 Kinobesuch GRAMMATIK. perfekt. Im September LEICHT. wann die Vorstellung beginnt. Schreiben Sie Sätze! Beginnen Sie mit den grün markierten Wörtern! DEUTSCH GRAMMATIK VERBPOSITION S. 0 Im Septemer LEICHT Shreien Sie Sätze! Beginnen Sie mit den grün mrkierten Wörtern! der Herst / m. Septemer / eginnt ds Oktoerfest / in Münhen / findet sttt die Österreiher

Mehr

1 GeschäftsdiaGramme. Abbildung 1.1: Übersicht zu unterschiedlichen Grafi ktypen. 2.1.4 Unify objects: graphs e.g. org graphs, networks, and maps

1 GeschäftsdiaGramme. Abbildung 1.1: Übersicht zu unterschiedlichen Grafi ktypen. 2.1.4 Unify objects: graphs e.g. org graphs, networks, and maps 1 GeshäftsdiGrmme Wenn mn eine deutshe Üersetzung des Begriffes usiness hrts suht, so ist mn mit dem Wort Geshäftsdigrmme gnz gut edient. Wir verstehen unter einem Geshäftsdigrmm die Visulisierung von

Mehr

Kleines Deutschlandquiz

Kleines Deutschlandquiz Kleines Deutshlndquiz 0 Stimmen diese Aussgen üer Deutshlnd? Kreuzen Sie n. d e f g h i j k l Die Bundesrepulik Deutshlnd esteht us 6 Bundesländern. Jedes Bundeslnd ht einen eigenen Bundesknzler / eine

Mehr

ZDfB_Ü01_LV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter LESEVERSTEHEN ZEIT: 40 MINUTEN

ZDfB_Ü01_LV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter LESEVERSTEHEN ZEIT: 40 MINUTEN Felix Brndl Münhen ZDfB_Ü01_LV_06 120206 ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01 Kndidtenlätter ZEIT: 40 MINUTEN Zertifikt Deutsh für den Beruf Üungsstz 01 Aufge 1 Bitte lesen Sie den folgenden

Mehr

Ein Winkel zwischen 0 und 90 heißt spitzer Winkel, ein Winkel zwischen 90 und 180 heißt stumpfer Winkel.

Ein Winkel zwischen 0 und 90 heißt spitzer Winkel, ein Winkel zwischen 90 und 180 heißt stumpfer Winkel. Geometrie 1 3 Winkelsummen Der von zwei Nhrseiten eines Vieleks geildete Winkel heißt Innenwinkel. Die Summe der Innenwinkel eines Dreieks eträgt 180. + + = 180 Die Summe der Innenwinkel eines Viereks

Mehr

Fragebogen 1 zur Arbeitsmappe Durch Zusatzempfehlung zu mehr Kundenzufriedenheit

Fragebogen 1 zur Arbeitsmappe Durch Zusatzempfehlung zu mehr Kundenzufriedenheit Teilnehmer/Apotheke/Ort (Zus/1) Frgeogen 1 zur Areitsmppe Durh Zustzempfehlung zu mehr Kunenzufrieenheit Bitte kreuzen Sie jeweils ie rihtige(n) Antwort(en) in en Felern is n! 1. Worin esteht ie Beeutung

Mehr

Fragebogen E. Lothar Natter. Effizienzcoaching. Unternehmer und Führungskräfte. Firma: Straße: PLZ: Ort: Telefax: Telefon: www:

Fragebogen E. Lothar Natter. Effizienzcoaching. Unternehmer und Führungskräfte. Firma: Straße: PLZ: Ort: Telefax: Telefon: www: Frgeogen E Lothr Ntter Effizienznlyse für Selstständige, Unternehmer und Führungskräfte Effizienzohing Firm: Strße: PLZ: Ort: Telefon: Telefx: E-Mil: www: Dtum: Shereiter: Untershrift: Pseudonym für die

Mehr

ÜBUNGSSATZ 01 ZERTIFIKAT DEUTSCH FÜR DEN BERUF. Kandidatenblätter STRUKTUREN UND WORTSCHATZ ZEIT: 30 MINUTEN. ZDfB_Ü01_SW_06 120206

ÜBUNGSSATZ 01 ZERTIFIKAT DEUTSCH FÜR DEN BERUF. Kandidatenblätter STRUKTUREN UND WORTSCHATZ ZEIT: 30 MINUTEN. ZDfB_Ü01_SW_06 120206 Felix Brndl Münhen ZDfB_Ü01_SW_06 120206 ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01 Kndidtenlätter ZEIT: 30 MINUTEN Zertifikt Deutsh für den Beruf Üungsstz 01 Aufge 1 Lesen Sie den folgenden Text zuerst

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

Grundwissenkatalog / g8 Geometrie / 7. Jahrgangsstufe

Grundwissenkatalog / g8 Geometrie / 7. Jahrgangsstufe Grundwissenktlog / g8 Geometrie /. Jhrgngsstufe Die folgende ufstellung enthält mthemtishe Grundfertigkeiten, die ein Shüler nh der. Jhrgngsstufe eherrshen sollte. Dieses Wissen wird in den folgenden Jhren

Mehr

Übungssatz 01 FIT IN DEUTSCH 2. Kandidatenblätter/Prüferblätter ISBN: 3-938744-79-0. FIT2_ÜS01_Kandidaten-/Prueferblaetter_Juli_2005

Übungssatz 01 FIT IN DEUTSCH 2. Kandidatenblätter/Prüferblätter ISBN: 3-938744-79-0. FIT2_ÜS01_Kandidaten-/Prueferblaetter_Juli_2005 KASTNER AG ds medienhus FIT2_ÜS01_Kndidten-/Prueferletter_Juli_2005 FIT IN DEUTSCH 2 Kndidtenlätter/Prüferlätter ISBN: 3-938744-79-0 Inhlt Vorwort 3 Kndidtenlätter Hören 5 Lesen 13 Shreien 21 Sprehen 25

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Facharbeit über den Beweis der Existenz der Euler schen Gerade in ebenen Dreiecken.

Facharbeit über den Beweis der Existenz der Euler schen Gerade in ebenen Dreiecken. Fhreit üer den Beweis der Eistenz der Euler shen Gerde in eenen Dreieken. Verfßt von Ing. Wlter Höhlhumer im Mi und ergänzt im Juli Eistenz der Euler shen Gerde Eistenz der Euler shen Gerde Eistenz der

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

Tagesablauf Arbeit Freizeit

Tagesablauf Arbeit Freizeit Tgesluf Areit Freizeit Am Morgen Ü 1 Lesen Sie A 1. Ordnen Sie Frgen und Antworten zu. 1. Steht Sr B. gern uf? A 5 oder 6 Minuten. 2. Wnn fährt die U-Bhn? B Nein, sie leit gerne noh einen Moment liegen.

Mehr

Übungssatz 02 FIT IN DEUTSCH 2. Kandidatenblätter/Prüferblätter ISBN: 3-938744-85-5. FIT2_ÜS02_Kandidaten-/Prueferblaetter_April_2006

Übungssatz 02 FIT IN DEUTSCH 2. Kandidatenblätter/Prüferblätter ISBN: 3-938744-85-5. FIT2_ÜS02_Kandidaten-/Prueferblaetter_April_2006 KASTNER AG ds medienhus FIT2_ÜS02_Kndidten-/Prueferletter_April_2006 FIT IN DEUTSCH 2 Üungsstz 02 Kndidtenlätter/Prüferlätter ISBN: 3-938744-85-5 Üungsstz 02 Inhlt Vorwort 3 Kndidtenlätter Hören 5 Lesen

Mehr

Das kleine 9er-Einmaleins mit den 10 Fingern lernen.

Das kleine 9er-Einmaleins mit den 10 Fingern lernen. Ws? Multiplizieren 9er-Finger-Einmleins Wozu? Ds kleine 9er-Einmleins mit den 10 Fingern lernen. 1. Beide Hände mit usgestrekten Fingern zeigen nh oen. 2. Die Dumen zeigen nh ußen (Hndflähen zum Gesiht).

Mehr

Ober- und Untersummen, Riemann Integrale

Ober- und Untersummen, Riemann Integrale Oer- und Untersummen, Riemnn Integrle 1. Ds Prolem des Fläheninhlts Ausgngspunkt für die Entwiklung des Integrlegriffs wren vershiedene Frgestellungen, u.. ds Prolem der Messung des Fläheninhltes eines

Mehr

a) Behauptung: Es gibt die folgenden drei stabilen Matchings:

a) Behauptung: Es gibt die folgenden drei stabilen Matchings: Musterlösung - ufgenltt 1 ufge 1 ) ehuptung: Es git ie folgenen rei stilen Mthings: ies knn mn ntürlih für ein so kleines eispiel urh etrhten ller möglihen 3! = 6 Mthings eweisen. Mn knn er uh strukturierter

Mehr

DEMO. Dreiecke: Geometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Konstruktionen. Kongruente Dreiecke. Datei Nr

DEMO. Dreiecke: Geometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Konstruktionen. Kongruente Dreiecke. Datei Nr Geometrie Dreieke: Konstruktionen Kongruente Dreieke Dtei Nr. 11111 DEM Friedrih ukel Stnd: 19. Juni 2017 INTERNETILITHEK FÜR SHULMTHEMTIK www.mthe-d.shule 11111 Dreieke 1 Kongruenz 2 Inhlt 1. Konstruktion

Mehr

Brüche gleichnamig machen

Brüche gleichnamig machen Brüche gleichnmig mchen L Ds Erweitern von Brüchen (siehe L ) ist lediglich ein Instrument, ds vorwiegend eingesetzt wird, um Brüche mit unterschiedlichem Divisor gleichnmig zu mchen. Brüche gleichnmig

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

Mäxchen ein Würfelspiel

Mäxchen ein Würfelspiel Mäxhen ein Würfelspiel A A1 Betrhten Sie ds Foto. Ws mhen die Personen? 2 + 5 Fünfundzwnzig..., hlt, nein: zweiundfünfzig. 3 + 2 Dreier Psh Ds glue ih niht. Ds will ih sehen. Ertppt! Du hst j nur eine

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Ja, klar! Das weiß ich.

Ja, klar! Das weiß ich. J, klr! Ds weiß ih. Einstieg ins Modul 1: Wir und die nderen Areit mit den Aildungen S. XXX Lösung: 1G; 2K; 3C; 4E; 5F; 6H; 7B; 8D; 9I; 10J; 11L; 12A Einführung der Begriffe Sprehen, Shreien, Lesen und

Mehr

01 Proportion Verhältnis Maßstab

01 Proportion Verhältnis Maßstab 5 Ähnlihkeit und Strhlensätze LS 01.M1 01 Proportion Verhältnis Mßst 1 Lies die folgende Informtion sorgfältig. Mrkiere wihtige egriffe und Formeln. ) Proportionle Zuordnung ei einer proportionlen Zuordnung

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2013 Montg 15.4 $Id: dreiek.tex,v 1.5 2013/04/15 09:12:15 hk Exp hk $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

Kapitel 6 E-Mails schreiben und organisieren

Kapitel 6 E-Mails schreiben und organisieren Kpitel 6 E-Mils shreien und orgnisieren Die Kommuniktion vi E-Mil ist heute essenziell. Und Ihr M ist estens gerüstet für den Empfng, ds Verfssen und die Orgnistion von E-Mils. Wie Sie effektiv mit dem

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid)

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid) Unterrihtsmterilien in digitler und in gedrukter Form uszug us: Lernzirkel / Sttionenlernen: Höhensätze (Pythgors und Euklid) Ds komplette Mteril finden Sie hier: Downlod ei Shool-Soutde SHOOL-SOUT Lernzirkel

Mehr

Rock? Passt der. Personen beschreiben

Rock? Passt der. Personen beschreiben 10 Psst der Rok? Personen eshreien Denken Sie n drei Personen. Ws ist für die Personen typish? Mhen Sie Notizen. Ws gefällt Ihnen ( )? Ws finden Sie niht so gut ( )? Wie sieht die Person us? jung / lt

Mehr

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt.

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt. Vektorlger Vektorlger Vektoren sind Grössen, die einen Betrg sowie eine Rihtung im Rum hen. Im Gegenstz zu den Vektoren estehen Sklre nur us einer Grösse ls Zhl. In Bühern wird nsttt v oft v geshrieen.

Mehr

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist Höhere Mthemtik Mehrfhintegrle sind Integrle üer eiete R n Zweifhintegrle treten B ei der Berehnung des Fläheninhltes und von Flähenträgheitsmomenten uf Dreifhintegrle kommen ei der Berehnung des Volumeninhltes

Mehr

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 :

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 : Hns Wlser, [20080409] Eine Visulisierung des Kosinusstzes 1 Worum es geht Es wird eine zum Pythgors-Piktogrmm nloge Figur für niht rehtwinklige Dreieke esprohen. Dei werden ähnlihe gleihshenklige Dreieke

Mehr

Kleiner Führer durch die alte Hauptstadt des römischen Helvetiens

Kleiner Führer durch die alte Hauptstadt des römischen Helvetiens Ein Tg in Kleiner Führer durh die lte Huptstdt des römishen Helvetiens 3. 4. Shuljhr (Shüler/innen. 8 Jhren) Ih in Cmillus, und wer ist Du? 2011 1 Ein Tg in Geruhsnweisung Ih in ein Römer us Aventium.

Mehr

Grundwissen 6. Klasse

Grundwissen 6. Klasse Grundwissen Mthemtik Klsse / Grundwissen Klsse Positive Brühe ) Grundegriffe z Brühe hen die Form n mit z I N0, n I N z heißt der Zähler, n der Nenner des Bruhes Bezeihnung Bedingung Beispiele Ehter Bruh

Mehr

Aussichten A1. Einstufungstest. Autorin: Sanja Mazuranic Redaktion: Renate Weber Layout: Claudia Stumpfe Satz: Regina Krawatzki, Stuttgart

Aussichten A1. Einstufungstest. Autorin: Sanja Mazuranic Redaktion: Renate Weber Layout: Claudia Stumpfe Satz: Regina Krawatzki, Stuttgart Aussihten A1 Autorin: Snj Mzurni Rektion: Rente Weer Lyout: Clui Stumpfe Stz: Regin Krwtzki, Stuttgrt Ernst Klett Sprhen GmH, Stuttgrt 2010 www.klett.e Alle Rehte vorehlten. Aussihten A1 Aussihten A1 Aufgenltt

Mehr

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1.

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1. Trigonometrie In diesem Themenereih wenden wir uns den Winkeln im rehtekigen Dreiek zu. Du hst uf deinem Tshenrehner siher shon die Tsten sin, os und tn gesehen. Doh ws edeuten sie? Ds wollen wir herusfinden.

Mehr

Die Satzgruppe des Pythagoras

Die Satzgruppe des Pythagoras 7 Die Stzgruppe des Pythgors In Klssenstufe 7 hen wir uns ei den Inhlten zur Geometrie insesondere mit Dreieken und ihren Eigenshften eshäftigt. In diesem Kpitel wirst du erkennen, dss es ei rehtwinkligen

Mehr

Verordnung über die Regionale Musikschule Wolhusen. vom 28. März 2013

Verordnung über die Regionale Musikschule Wolhusen. vom 28. März 2013 Verordnung üer die Regionle Musikshule Wolhusen Gemeinde Wolhusen Seite 2 / 10 Inhltsverzeihnis I Allgemeine Bestimmungen... 4 Art. 1 Trägershft... 4 Art. 2 Aufge und Ziel... 4 II Orgnistion... 4 Art.

Mehr

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Downlod Otto Myr Husufgen: Üen in drei Differenzierungsstufen Downloduszug us dem Originltitel: Husufgen: Üen in drei Differenzierungsstufen Dieser Downlod ist ein uszug us dem Originltitel Husufgen Mthemtik

Mehr

Mathematik Trigonometrie Einführung

Mathematik Trigonometrie Einführung Mthemtik Trigonometrie Einführung Ws edeutet ds Wort Trigonometrie und mit ws eshäftigt sih die Trigonometrie? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Ek'

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

Rund um den Satz des Pythagoras

Rund um den Satz des Pythagoras Wolfgng Shlottke Rund um den Stz des Pythgors Lernen n Sttionen und weiterführende ufgben für den Mthemtikunterriht uerverlg GmbH 3 Sroghty Pythgors rükwärts Die Umkehrung des Stzes des Pythgors (1) Du

Mehr

Transkriptionen. Lektion 1: Hallo! Ich bin Nicole... Lektion 2: Ich bin Journalistin.

Transkriptionen. Lektion 1: Hallo! Ich bin Nicole... Lektion 2: Ich bin Journalistin. Lektion 1: Hllo! Ih in Niole... 4 Mein Nme ist Lothr Müller. Wie itte? ih uhstiere: L O T H A R M Ü L L E R Mein Nme ist Len Egger Wie itte? Wrten Sie, ih uhstiere: L E N A E G G E R Mein Nme ist Yvonne

Mehr

Quadratische Gleichungen. Aufgabe 1: Lösen von Gleichungen ohne Lösungsformel

Quadratische Gleichungen. Aufgabe 1: Lösen von Gleichungen ohne Lösungsformel Qudrtische Gleichungen Aufge : Lösen von Gleichungen ohne Lösungsformel ) 0,8 ) 7 c) - 867 0 d) e) 9 f) - 0 g) 0 h) i) 6 0 j) Aufge : Lösen von Gleichungen durch Zerlegung in Fktoren ) 4 0 ) 4 0 c) - 4

Mehr

Die Philosophisch-historische Fakultät der Universität Bern. erlässt

Die Philosophisch-historische Fakultät der Universität Bern. erlässt Stuienpln für s Bhelor- un Mster-Stuienprogrmm Estern Europen Stuies / Osteurop-Stuien / Étues e l Europe orientle er Universität Bern in Zusmmenreit mit er Universität Friourg vom 1. August 2009 Die Philosophish-historishe

Mehr

Anschlußbeispiel 2-, 3- & 4-begriffige Signale an den Funktionsdecoder LDMiba 3D oder WDMiba von Modellbahn Digital Peter Stärz

Anschlußbeispiel 2-, 3- & 4-begriffige Signale an den Funktionsdecoder LDMiba 3D oder WDMiba von Modellbahn Digital Peter Stärz Anshlußeispiel 2-, 3- & 4-egriffige Signle n den Funktionsdeoder LDMi 3D oder WDMi von Modellhn Digitl Peter Stärz Die folgenden Beispiele sollen zeigen, wie mn Signle n die Deoder LDMi 3D (Betriesrt )

Mehr

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer! hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Lineare Gleichungssysteme mit 3 und mehr Variablen

Lineare Gleichungssysteme mit 3 und mehr Variablen Linere Gleihungssysteme mit un mehr rilen Beispiel 1 mit rilen: 11 Zunähst estimmt mn ie rile, ie mn ls Erste eliminieren will. In iesem Fll soll von hinten nh vorn vorgegngen weren,.h. zuerst soll rile

Mehr

3 Punkte, Ortsvektoren und Verbindungsvektoren. Zunächst im 2-dimensionalen: A 4 1 , C 2 4. und D 3 1 Koordinatensystem. in einem kartesischen

3 Punkte, Ortsvektoren und Verbindungsvektoren. Zunächst im 2-dimensionalen: A 4 1 , C 2 4. und D 3 1 Koordinatensystem. in einem kartesischen Punkte Ortsvektoren und Verindungsvektoren Punkte Ortsvektoren und Verindungsvektoren Zunähst im -dimensionlen: A 4 Gegeen sind die Punkte B 5 C 4 und D Koordintensystem. in einem krtesishen AB CD d Zu

Mehr

Stabile Hochzeiten wie und warum?

Stabile Hochzeiten wie und warum? Stile Hohzeiten wie un wrum? Tg er Mthemtik HU erlin 25. pril 2009 Stefn elsner TU erlin, Mthemtik felsner@mth.tu-erlin.e Ws sin stile Hohzeiten? Gegeen: Menge von ruen, M Menge von Männern, = M. Jee Person

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

Mathematik Regelheft Klasse 6

Mathematik Regelheft Klasse 6 Mthemtik Regelheft Klsse 6 Inhltsverzeihnis I Them: Teilrkeit 6.) Teiler un Vielfhe 6.) Teilrkeitsregeln 6.) Primzhlen un Primfktorzerlegung 6.) ggt 6.) kgv II Them: Winkel 6.6) Kreissklen un ihre Einteilung

Mehr

Geometrische Figuren und Körper

Geometrische Figuren und Körper STNRUFGEN Geometrishe Figuren und Körper Geometrishe Figuren und Körper Welhe Shreiweisen geen den Winkel β des neenstehenden reieks PQR rihtig wieder? β = Qrp β = rp β = PQR R β = QRP β = pq q p P r Q

Mehr

Allgemeines. Mail an muenster.de. Motivation für die Veranstaltung Übung zur Markt und Preistheorie

Allgemeines. Mail an muenster.de. Motivation für die Veranstaltung Übung zur Markt und Preistheorie Allgemeines Nme: Emil: Stefn Shrmm stefn.shrmm@wiwi.uni muenster.de Motivtion für die Vernstltung Üung zur Mrkt und Preistheorie Inhlt der Klusur Vorlesung Skrit und Üung Sehr gut vorzuereiten! Tis zur

Mehr

Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle Begründung in der Schule: Durch Punktspiegelung. Bedeutung+Winkelsumme 1

Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle Begründung in der Schule: Durch Punktspiegelung. Bedeutung+Winkelsumme 1 edeutung+winkelsumme 1 Winkelsumme Kpitel 5: Dreiekslehre 5.1 edeutung der Dreieke Durh Tringultion lssen sih Vieleke in Dreieke zerlegen ( n Ek in n- Dreieke) eweis von Sätzen mittels Sätzen üer Dreieke

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Die Fmilie der Rosengewächse - Sttionenlernen mit Selstkontrollkrten mit 4 Frseiten Ds komplette Mteril finden Sie hier: School-Scout.de

Mehr

Muss der Umfang (u) oder der Flächeninhalt (A) berechnet werden? Kreuze an! Der Umfang (u) ist die Länge des Weges um eine Fläche herum.

Muss der Umfang (u) oder der Flächeninhalt (A) berechnet werden? Kreuze an! Der Umfang (u) ist die Länge des Weges um eine Fläche herum. 9 Rettungsring Umfng und Fläheninhlt von Figuren Begriffe: Umfng und Fläheninhlt 1 Muss der Umfng (u) oder der Fläheninhlt () erehnet werden? Kreuze n! u B C D E F G H Zun eines Grundstüks Rsenflähe eines

Mehr

BALANCE PSYCHOLOGIE O FITNESS O GESUNDHEIT UNSERE EXPERTIN

BALANCE PSYCHOLOGIE O FITNESS O GESUNDHEIT UNSERE EXPERTIN BALANCE PSYCHOLOGIE O FITNESS O GESUNDHEIT UNSERE EXPERTIN Die Personl Trinerin Cludi Ludeley, 37, triniert in Frnkfurt Kleingruppen und Einzelpersonen. Für BRIGITTE ht sie ds Big-Five -Workout entwikelt.

Mehr

Denn im Unterschied zu "müssen" und "dürfen erfordert "brauchen" nach wie vor den Infinitiv mit "zu".

Denn im Unterschied zu müssen und dürfen erfordert brauchen nach wie vor den Infinitiv mit zu. Deutsh-Quiz 01 Wenn etws ds Gleihe ist, ist es noh lnge niht dssele. Welher der folgenden Sätze ist niht korrekt? ) Mrth ht keinen eigenen Lippenstift. Sie enutzt denselen wie ihre Mutter ) Florin und

Mehr

McAfee Data Loss Prevention Prevent

McAfee Data Loss Prevention Prevent Shnellstrthnduh Revision B MAfee Dt Loss Prevention Prevent Version 10.x In diesem Shnellstrthnduh erhlten Sie eine llgemeine Üersiht üer die Einrihtung einer MAfee Dt Loss Prevention Prevent (MAfee DLP

Mehr

Mathematik 17 Bruchrechnen 00 Name: Vorname: Datum: Lernziele:

Mathematik 17 Bruchrechnen 00 Name: Vorname: Datum: Lernziele: Mthemtik 7 Bruhrehnen 00 Nme: Vornme: Dtum: Lernziele: Nr. Lernziel A Ih knn ie vier Grunopertionen (Aition, Subtrktion, Multipliktion un Division) uf Aufgben mit Brühen nwenen. B Ih knn ie vier Grunopertionen

Mehr

a q 0 q 1 a M q 1 q 3 q 2

a q 0 q 1 a M q 1 q 3 q 2 Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 4 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Algorithmentheorie. 15 Suchen in Texten (1)

Algorithmentheorie. 15 Suchen in Texten (1) Algorithmentheorie 15 Suhen in Texten (1) Prof. Dr. S. Alers Suhe in Texten Vershiedene Szenrien: Sttishe Texte Literturdtennken Biliothekssysteme Gen-Dtennken WWW-Verzeihnisse Dynmishe Texte Texteditoren

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Wohe 7 19. Mi 2014 Inhlt der heutigen Vorlesung Alternierende Automten Definition Verindung zu regulären Sprhen Komplementtion Engel und Teufel Ws ist eine nihtdeterministishe

Mehr

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1)

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1) teilung Informtik, Fh Progrmmieren 1 Einführung Dten liegen oft ls niht einfh serier- und identifizierre Dtensätze vor. Stttdessen reräsentieren sie lnge Zeihenketten, z.b. Text-, Bild-, Tondten. Mn untersheidet

Mehr

Top-Aevo Prüfungsbuch

Top-Aevo Prüfungsbuch Top-Aevo Prüfungsbuh Testufgben zur Ausbildereignungsprüfung (AEVO) 250 progrmmierte Testufgben (Multiple Choie) 1 Unterweisungsentwurf / 1 Präsenttion 40 möglihe Frgen nh einer Unterweisung Top-Aevo.de

Mehr

Straf-Taten sind kriminelle Handlungen und Gewalt-Taten.

Straf-Taten sind kriminelle Handlungen und Gewalt-Taten. Liebe Düsseldorfer und Düsseldorferinnen. Die Stadt-Verwaltung Düsseldorf bittet alle Düsseldorfer Bürger um ihre Mithilfe. Bitte füllen Sie den Fragebogen aus. Shiken Sie den ausgefüllten Fragebogen an

Mehr

Fragen zu Werte- und Orientierungswissen. Modelltests B1

Fragen zu Werte- und Orientierungswissen. Modelltests B1 Frgen zu Werte- und Orientierungswissen Modelltests B1 WERTE- UND ORIENTIERUNGSWISSEN SPRACHNIVEAU B1 MODELLTEST 1 Sie sehen insgesmt 18 Frgen. Die Frgen 1-9 hen 2 Antwortmöglichkeiten ( und ). Die Frgen

Mehr

Transkriptionen. Lektion 1 Übung 23 Welche Zahl hören Sie? Kreuzen Sie an. a b c

Transkriptionen. Lektion 1 Übung 23 Welche Zahl hören Sie? Kreuzen Sie an. a b c Trnskriptionen Lektion 1 Üung 4 Hören Sie ie Diloge un ornen Sie zu. Guten Tg, Herr Gomez. Guten Tg, Herr Meinhrt. Wie geht es Ihnen? Guten Morgen! Guten Morgen, s ist er ein shöner Tg heute! Hllo, lles

Mehr

Es schneit sehr stark. Deshalb haben alle Züge Verspätung.

Es schneit sehr stark. Deshalb haben alle Züge Verspätung. Grmmtik 1 Sehen Sie ds Bild n und ergänzen Sie. Der Briefträger geht... den Gehweg... entlng. Wolfi fährt mit seinem Fhrrd Briefträger. Die Ktze läuft Strße. d Fru Löl geht E Reinigung. e Fru Müller shut

Mehr

ISAC. Computer Algebra für Brüche --- angepasst an Ausbildungszwecke

ISAC. Computer Algebra für Brüche --- angepasst an Ausbildungszwecke ISAC Computer Alger für Brühe --- ngepsst n Ausildungszweke Stefn Krnel skrnel@ist.tugrz.t Institut für Mthemtik TU Grz Österreih July 0 00 Astrt Rehnen mit Brühen ist ein grundlegender Teil des Mthemtikunterrihts.

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

Tim n Übu~gen. Timing 1

Tim n Übu~gen. Timing 1 Tim n Üu~gen Es folgen einige Üungen zum Veressern des Timings Sie sollten täglih geüt werden und es sollen eigene Wege und Variationen dazu erfunden werden Hierei ist wihtig, daß Sie ei allen Timing Üungen

Mehr

Mobile radiographische Untersuchung von Holz und Bäumen

Mobile radiographische Untersuchung von Holz und Bäumen Moile rdiogrphishe Untersuhung von Holz und Bäumen K. Osterloh, A. Hsenst, U. Ewert, M. Kruse, J. Goeels Bundesnstlt für Mterilforshung und -prüfung (BAM), Berlin Zusmmenfssung Sowohl im Buholz ls uh in

Mehr

Spiele und logische Komplexitätsklassen

Spiele und logische Komplexitätsklassen Spiele und logische Komplexitätsklssen Mrtin Horsch 26. Jnur 2006 Inhlt des Seminrvortrges Ehrenfeucht-Frïssé-Spiel mit k Mrken Formeln mit k Vrilen und logische Komplexitätsklssen k-vrileneigenschft logischer

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 5-04 1 10 mthuh 1 LU reitsheft + weitere ufgen «Grundnforderungen» Symmetrien 301 Zeihne Grossuhsten des lphets, sortiert nh vier Typen: hsensymmetrish punktsymmetrish hsen- und punktsymmetrish weder hsen-

Mehr

Änderungen in Zweitauflagen von Buch, Arbeits- und Theorieheft und Begleitordner

Änderungen in Zweitauflagen von Buch, Arbeits- und Theorieheft und Begleitordner Änderungen in Zweituflgen von uh, reits- und Theorieheft und egleitordner lle uflgen des Shüleruhes, des reits- und Theorieheftes und des egleitordners lssen sih prolemlos neeneinnder verwenden. Shüleruh

Mehr

TECHNISCHER BERICHT. 2. Übungsprogramm: Sphärische Geometrie 1. AUFGABENSTELLUNG:...3

TECHNISCHER BERICHT. 2. Übungsprogramm: Sphärische Geometrie 1. AUFGABENSTELLUNG:...3 Gnder Dniel 00099 GEOMATHEMATIK SS 00 TECHISCHER BERICHT. Üungprogrmm: Sphärihe Geometrie. AUFGABESTELLUG:.... LÖSUGSWEG:.... Skizze:.... Umrehnung der phärihen Ditnzen in Winkel:.... Berehnung ller fehlerfreien

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

Falls es regnet, nehme ich den Schirm mit. b gewinnen (du) zum Essen einladen (ich):

Falls es regnet, nehme ich den Schirm mit. b gewinnen (du) zum Essen einladen (ich): Lektion 8: Unter Freunen 8 A Du sollst jetzt Shh spielen! A2 Wieerholung 1 Sätze, Sätze, Neensätze Nh welhen Konjunktionen steht s Ver m Ene es Stzes? Unterstreihen Sie. trotzem wenn eshl weil ss er ls

Mehr

ANATOMIE-QUIZ KÖRPER-QUIZ

ANATOMIE-QUIZ KÖRPER-QUIZ ANATOMIE-QUIZ KÖRPER-QUIZ 1 Viel Spß eim Rätseln! Dein Körper esteht us vielen Orgnen, die in gnz esonderer Weise zusmmenreiten. Die meisten Orgne kennst du ereits, sie hen eine estimmte Form und einen

Mehr

Numerische Quadratur nach Archimedes

Numerische Quadratur nach Archimedes Huptseminr Oktläume und hierrchische Bsen Numerische Qudrtur nch Archimedes Forschungs- und Lehreinheit Inormtik V Ingenieurnwendungen in der Inormtik numerische Progrmmierung uruer Christin den 05.06.003

Mehr

Das geteilte Quadrat

Das geteilte Quadrat 1 Ds geteilte Qudrt Puzzles from round the world by Dik Hess 19. Juli 001 Gegeben sei ein Qudrt mit der Seitenlänge. Ds Qudrt soll in zwei untershiedlihe Rehteke geteilt werden, wobei ds kleine Rehtek

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr