Polynome im Einsatz: Bézier-Kurven im CAD

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Polynome im Einsatz: Bézier-Kurven im CAD"

Transkript

1 Polynome im Einsatz: Bézier-Kurven im CAD Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 25

2 Kurven im Raum Eine Kurve im R 3 ist durch eine Abbildung x(t) c : [a, b] R 3, t y(t) z(t) gegeben. Dabei kann man sich t als Zeitparameter vorstellen, so dass die Kurve c im Zeitraum von t = a bis t = b abgelaufen wird. 2 / 25

3 Kurven im Raum c(b) z x c(t) y c(a) 3 / 25

4 Tangenten Die Tangente einer Raumkurve c im Punkt c(t 0 ) ist die Gerade, die durch den Punkt c(t 0 ) in Richtung der Ableitung c nach dem Zeitparameter t zum Zeitpunkt t 0 verläuft: x (t 0 ) c (t 0 ) = y (t 0 ) z (t 0 ) Die Ableitung c (t 0 ) selbst ist ein Richtungsvektor, den man sich am Punkt c(t 0 ) befestigt vorstellen kann, und die Kurve entlanggleitet, wenn t 0 variiert. Die Länge c (t 0 ) der Ableitung kann als Geschwindigkeit aufgefasst werden. 4 / 25

5 Tangenten c (t 0 ) c(t 0 ) 5 / 25

6 Kurven im CAD Gewünscht: Eine glatte Kurve b(t), deren Verlauf durch Angabe von Kontrollpunkten vorgegeben wird. b 1 b 3 b 0 b 2 6 / 25

7 Kurven im CAD Forderungen: 1 Zum Zeitpunkt t = a soll die Kurve im Startpunkt liegen: b(a) = b 0. 2 Zum Zeitpunkt t = b soll die Kurve im Endpunkt liegen: b(b) = b 3. 3 In der ersten Hälfte des Kurvenverlaufs soll die Kurve stark zu b 1 hingezogen werden. 4 In der zweiten Hälfte des Kurvenverlaufs soll die Kurve stark zu b 2 hingezogen werden. 7 / 25

8 Kurven im CAD Ansatz: Zu jedem Zeitpunkt t [a, b] soll b(t) eine gewichtete Summe der Kontrollpunkte sein: b(t) = B 0 (t)b 0 + B 1 (t)b 1 + B 2 (t)b 2 + B 3 (t)b 3 mit B 0 (t) + B 1 (t) + B 2 (t) + B 3 (t) = 1 für alle t [a, b], B i (t) 0 für t [a, b], i = 0, 1, 2, 3. 8 / 25

9 Bernstein-Polynome Als Gewichtsfunktionen bieten sich die kubischen Bernstein-Polynome B0 3, B3 1, B3 2, B3 4 an: ( ) 3 Bk 3 = X k (1 X ) 3 k k 1 B 3 0 B 3 3 B 3 1 B 3 2 0=a 1=b 9 / 25

10 Bernstein-Polynome Die Bernstein-Polynome sind geeignete Gewichtsfunktionen: Sie sind eine Partition der 1, d.h. 1 = (X + (1 X )) 3 = 3 k=0 Auf dem Intervall [0, 1] gilt stets ( ) 3 X k (1 X ) 3 k = k Bk 3 (t) 0. (Für beliebige Intervalle [a, b]: Umparametrisieren.) 3 Bk 3. k=0 10 / 25

11 Bézier-Kurven Eine kubische Bézier-Kurve b(t) hat die Bernstein-Polynome als Gewichtsfunktionen: b(t) = B 3 0 (t)b 0 + B 3 1 (t)b 1 + B 3 2 (t)b 2 + B 3 3 (t)b 3 Somit hat die Kurve die gewünschten Eigenschaften: 1 Bei t = 0 ist B0 3(0) = 1 und B3 1 (0) = B3 2 (0) = B3 3 (0) = 0, also b(0) = b 0. 2 Bei t = 1 ist B3 3(0) = 1 und B3 0 (0) = B3 1 (0) = B3 2 (0) = 0, also b(1) = b 3. 3 In der ersten Hälfte des Kurvenverlaufs ist der Wert von B 3 1 (t) am größten, die Kurve wird also zu b 1 hingezogen. 4 In der zweiten Hälfte des Kurvenverlaufs ist der Wert von B 3 2 (t) am größten, die Kurve wird also zu b 2 hingezogen. 11 / 25

12 Bézier-Kurven Die beiden französischen Ingenieure Pierre Bézier ( ) und Paul Faget de Casteljau (1930- ) entwickelten in den 1960er Jahren unabhängig voneinander die Bézier-Kurven in der Automobilindustrie (der eine für Renault, der andere für Citroën). 12 / 25

13 Bézier-Kurven Die kubischen Bernstein-Polynome bilden eine Basis des Raums der Polynome vom Grad 3. Somit können alle Kurven, die auf einem Segment mit einer polynomialen kubischen Kurve übereinstimmen, als Bézier-Kurven dargestellt werden. Für polynomiale Kurvensegmente von beliebigem Grad n kann man die Bernstein-Polynome vom Grad n verwenden: ( ) n Bk n = X k (1 X ) n k. k 13 / 25

14 de Casteljau-Algorithmus Bernstein-Polynome haben einige verblüffende algebraische Eigenschaften. Daraus lässt sich der de Casteljau-Algorithmus ableiten, mit dem eine Bézier-Kurve an der Stelle t sehr effizient ausgewertet werden kann: b 0 t b 1 t 1 b 1 0 t t b 1 t 2 b 1 1 t 1 b 2 0 t t t b 3 1 t b 1 2 t b t b(t) 14 / 25

15 de Casteljau-Algorithmus Mit dem de Casteljau-Algorithmus kann man auch Ableitungen der Kurve berechnen. Unterteilung des Kontrollpolygons zur Approximation der Kurve berechnen: b 1 b 3 b 0 b 2 15 / 25

16 Splines Eine Spline-Kurve ist eine Kurve s, die sich stückweise aus polynomialen Kurvensegmenten zusammensetzt, aber nicht global eine polynomiale Kurve sein muss. 16 / 25

17 Splines Statt stückweise durch Bézier-Kurven, kann man Splines auch als Linearkombination von B-Splines ( B für Basis) darstellen. B-Splines sind keine Polynome, aber stimmen über gewissen Intervallen mit Polynomen überein. Vorteil: Kontrollpunkte beeinflussen den Kurvenverlauf nur lokal. In der Industrie bekannt als Non-Uniform Rational B-Splines (NURBS). 17 / 25

18 Klassisches Problem: Interpolation Bei einem Interpolationsproblem werden Punkte p 1,..., p k R n vorgegeben, durch die eine Kurve gelegt werden soll ,5 0 2, In der Regel sind noch Nebenbedingungen an die Kurve gegeben. 18 / 25

19 Klassisches Problem: Interpolation Interpolation leicht durch Polynome zu lösen (es ist nur ein LGS zu lösen). Aber: Für k Punkte Polynom vom Grad k notwendig - dies kann zu schlechten Lösungen führen: ,5 0 2, Besser: Kurve stückweise aus Polynomen zusammensetzen. 19 / 25

20 Klassisches Problem: Interpolation Hermite-Interpolation: Ableitungen der Kurve in den Interpolationspunkten werden zusätzlich vorgegeben. Durch Bézier-Kurven ohne Aufwand lösbar. Ableitungen der Bézier-Kurve sind durch das Kontrollpolygon vorzugeben. 20 / 25

21 Klassisches Problem: Interpolation Spline-Interpolation: Beliebig viele Interpolationspunkte, aber Kurve nur stückweise polynomial vom Grad 3. Kurve ist Linearkombination von B-Splines. Linearkombination wird durch Lösen eines LGS bestimmt: 4 1 c 0 p c 0 p = c k 1 p 1 4 c k 1 k p k 21 / 25

22 Anwendungen Freiformkurven (und -flächen) in der Computergraphik. Laufwege für Roboter und Maschinen. Schriftsätze als Vektorgraphiken. Modellierung von 3D-Daten. Numerische Simulation physikalischer Prozesse. 22 / 25

23 Weitere Grundlagen Die Theorie der Bézier- und Spline-Kurven berührt auch folgende Bereiche der Mathematik: Differentialgeometrie. Numerische Mathematik. Projektive Geometrie. 23 / 25

24 CAD in Karlsruhe IBDS Prautzsch Institut für angewandte Geometrie und Computergraphik Vorlesung: Kurven und Flächen im CAD Vorlesung: Unterteilungsalgorithmen Vorlesung: Rationale Splines Vorlesung: Netze und Punktwolken Praktikum: Geometrisches Modellieren 24 / 25

25 G. Farin: Curves and Surfaces for CAGD (Morgan Kaufmann) H. Prautzsch, W. Boehm, M. Paluszny: Bézier and B-Spline Techniques (Springer) 25 / 25

Splines. Bézier-Kurven. Beispiel zur Approximation. Interpolation & Approximation. Schiffbau Automobilbau Architektur. f(x) f(x) =

Splines. Bézier-Kurven. Beispiel zur Approximation. Interpolation & Approximation. Schiffbau Automobilbau Architektur. f(x) f(x) = Institut für Geometrie Abteilung für Geometrie im Bauwesen und im Scientific Computing Prof. Dr. H. Pottmann Interpolation & Approximation Splines Geg: Menge von Punkten Ges: Kurve, welche die Punkte interpoliert

Mehr

Darstellung von Kurven und Flächen

Darstellung von Kurven und Flächen Darstellung von Kurven und Flächen Technische Universität Dresden Fakultät Informatik Institut für Software- und Multimediatechnik Dozent: Dr. Mascolous Referent: Gliederung / Einleitung 1 / 25 1. Kurven

Mehr

11. Darstellung von Kurven und Flächen

11. Darstellung von Kurven und Flächen H.J. Oberle Approximation WS 23/4. Darstellung von Kurven und Flächen Bézier Kurven. Unser Ziel ist es, polynomiale Kurven auf dem Rechner möglichst effizient darzustellen. Hierzu nutzen wir die Basisdarstellung

Mehr

Thema des Referats: Darstellung von Kurven und Flächen

Thema des Referats: Darstellung von Kurven und Flächen Technische Universität Dresden im WS 2004/05 Fakultät Informatik Institut für Institut für Software- und Multimediatechnik Proseminar:Computergrafik Dozent:Dr. Mascolous Referent: Patrick Brausewetter

Mehr

Kurven und Flächen. Interaktive Kontrolle und Präsentation komplexer Kurven und Flächen (=Modellierung) 3D Modellierung Prof. Dr.-Ing. H.-P.

Kurven und Flächen. Interaktive Kontrolle und Präsentation komplexer Kurven und Flächen (=Modellierung) 3D Modellierung Prof. Dr.-Ing. H.-P. Kurven und Flächen Interaktive Kontrolle und Präsentation komplexer Kurven und Flächen (=Modellierung) 154 Modellieren mit Freiformkurven und -flächen Modellierungsprozesse (Taping) in der Automobilindustrie

Mehr

Spline Morphing. Softwarepraktikum im IWR. Carl Friedrich Bolz. Carl Friedrich Bolz

Spline Morphing. Softwarepraktikum im IWR. Carl Friedrich Bolz. Carl Friedrich Bolz Spline Morphing Softwarepraktikum im IWR Einführung Motivation: Splines sind die Grundlage von jeglicher Vektorgrafik, 3D-Grafik, CAD/CAM,... Splines werden häufig zur Beschreibung von Schrift verwendet,

Mehr

gekrümmte Flächen / Freiformflächen (analog zur Kurvendarstellung)

gekrümmte Flächen / Freiformflächen (analog zur Kurvendarstellung) 7. Modelle für Flächen gekrümmte Flächen / Freiformflächen (analog zur Kurvendarstellung) man unterscheidet 2 Typen: finite Interpolationen / Approximationen: endliche Zahl von Stützstellen / Kontrollpunkten

Mehr

Prüfungsdauer: 120 Minuten

Prüfungsdauer: 120 Minuten Computergraphik und Multimediasysteme Seite 1 von 6 Klausur: Computergraphik II Probeklausur Semester: Prüfer: Prüfungsdauer: 1 Minuten Hilfsmittel: Schreibgeräte, Lineal, nichtprogrammierbarer Taschenrechner

Mehr

Kurze Geschichte der linearen Algebra

Kurze Geschichte der linearen Algebra Kurze Geschichte der linearen Algebra Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 20 Entwicklung Die Historische Entwicklung

Mehr

Approximation durch Polynome

Approximation durch Polynome durch n Anwendungen: zur Vereinfachung einer gegebenen Funktion durch einen Polynomausdruck. Dann sind übliche Rechenoperation +,,, / möglich. zur Interpolation von Daten einer Tabelle n Beispiel Trotz

Mehr

Interpolation und Approximation

Interpolation und Approximation Interpolation und Approximation Fakultät Grundlagen Mai 2006 Fakultät Grundlagen Interpolation und Approximation Übersicht 1 Problemstellung Polynominterpolation 2 Kubische Fakultät Grundlagen Interpolation

Mehr

Sie braucht weniger Speicherplatz als das Polygon und

Sie braucht weniger Speicherplatz als das Polygon und Kapitel 7 Kurven Die bisher besprochenen 2D-Objekte haben bis auf den Kreis den Nachteil, daß sie im weitesten Sinne eckig sind. Wenn ein Objekt mit runder Form verlangt wird, z.b. ein Herz, ein Schiffsrumpf,

Mehr

Computergrafik. Michael Bender, Manfred Brill. Ein anwendungsorientiertes Lehrbuch ISBN Inhaltsverzeichnis

Computergrafik. Michael Bender, Manfred Brill. Ein anwendungsorientiertes Lehrbuch ISBN Inhaltsverzeichnis Computergrafik Michael Bender, Manfred Brill Ein anwendungsorientiertes Lehrbuch ISBN 3-446-40434-1 Inhaltsverzeichnis Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-40434-1 sowie

Mehr

Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2!

Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2! Coputergrafik Inhalt Achtung! Kapitel ist relevant für CG-2! 1 2 3 4 5 6 7 8 Historie, Überblick, Beispiele Begriffe und Grundlagen Objekttransforationen Objektrepräsentation und -Modellierung Sichttransforationen

Mehr

Grundlagen der geometrischen Datenverarbeitung

Grundlagen der geometrischen Datenverarbeitung Grundlagen der geometrischen Datenverarbeitung Von Prof. Dr. rer. nat. Josef Hoschek und Dr. rer. nat. Dieter Lasser Technische Hochschule Darmstadt Mit zahlreichen Figuren B. G. Teubner Stuttgart 1989

Mehr

Institut für Geometrie und Praktische Mathematik Mathematisches Praktikum (MaPra) Sommersemester Aufgabe 5

Institut für Geometrie und Praktische Mathematik Mathematisches Praktikum (MaPra) Sommersemester Aufgabe 5 Rheinisch-Westfälische Technische Hochschule Institut für Geometrie und Praktische Mathematik Mathematisches Praktikum (MaPra) Sommersemester 01 Prof. Dr. Wolfgang Dahmen Yuanjun Zhang, M.Sc., Dipl.-Math.

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Gitterfreie Methoden. Florian Hewener. 29. Oktober 2013

Gitterfreie Methoden. Florian Hewener. 29. Oktober 2013 Gitterfreie Methoden 1D 2D Florian Hewener 29. Oktober 2013 Gliederung 1 Interpolationsprobleme Problemstellung Haar-Räume 2 Mehrdimensionale Polynominterpolation 3 Splines Kubische Splines und natürliche

Mehr

6. Polynom-Interpolation

6. Polynom-Interpolation 6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für

Mehr

Darstellung von Kurven und Flächen

Darstellung von Kurven und Flächen Darstellung von Kurven und Flächen Proseminar Computergraphik, 10. Juni 2008 Christoph Dähne Seite 1 Inhalt Polygonnetze 3 Knotenliste 3 Kantenliste 3 Parametrisierte kubische Kurven 4 Definition 4 Stetigkeit

Mehr

Algebraische Kurven. Holger Grzeschik

Algebraische Kurven. Holger Grzeschik Algebraische Kurven Holger Grzeschik 29.04.2004 Inhaltsübersicht 1.Einführung in die Theorie algebraischer Kurven 2.Mathematische Wiederholung Gruppen, Ringe, Körper 3.Allgemeine affine Kurven 4.Singuläre

Mehr

um diese Formen spater (eventuell in einem vergroerten Mastab) rekonstruiren zu konnen (Modellruckfuhrung). Das Problem der Datenreduktion und der dam

um diese Formen spater (eventuell in einem vergroerten Mastab) rekonstruiren zu konnen (Modellruckfuhrung). Das Problem der Datenreduktion und der dam GRUNDLAGEN DER CAD/CAM ENTWICKLUNG MIT SPLINEKURVEN - EINE EINFUHRUNG - Dan - Eugen Ulmet Fachhochschule Esslingen - Hochschule fur Technik, Kanalstr. 33, 7378 Esslingen ZUSAMMENFASSUNG Splinekurven und

Mehr

Computergrafik. Ein anwendungsorientiertes Lehrbuch. Bearbeitet von Michael Bender, Manfred Brill

Computergrafik. Ein anwendungsorientiertes Lehrbuch. Bearbeitet von Michael Bender, Manfred Brill Computergrafik Ein anwendungsorientiertes Lehrbuch Bearbeitet von Michael Bender, Manfred Brill 1. Auflage 2003. Taschenbuch. 528 S. Paperback ISBN 978 3 446 22150 5 Format (B x L): 16,9 x 24,1 cm Gewicht:

Mehr

Proseminar Bernsteinpolynome Bézier-Flächen. Dana Eckhardt Matr.-Nr:

Proseminar Bernsteinpolynome Bézier-Flächen. Dana Eckhardt Matr.-Nr: Proseminar Bernsteinpolynome Bézier-Flächen Dana Eckhardt Matr.-Nr: 4291637 Inhaltsverzeichnis 1 Einführung 2 1.1 Grundidee und Darstellung....................... 2 1.2 Satz 3.20.................................

Mehr

Einsatz von Maple bei der Lehramtsausbildung

Einsatz von Maple bei der Lehramtsausbildung Karlsruher Institut für Technologie Universität Karlsruhe (TH) Forschungsuniversität - gegründet 1825 Fakultät für Mathematik 18. Februar 2009 Numerische Mathematik für das Lehramt Pflichtveranstaltung

Mehr

Seminar How to make a PIXAR movie

Seminar How to make a PIXAR movie Seminar How to make a PIXAR movie Übersicht Punktwolken Volumenmodelle Oberflächenmodelle Polygonmodelle Parametrische Oberflächen Subdivision Surfaces Punktwolken Punktwolke: eine Menge ungeordneter kartesischer

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

Modellierung. Oliver Hartmann

Modellierung. Oliver Hartmann Modellierung Oliver Hartmann oliver.hartmann@uni-ulm.de Inhalt Boolesche Operationen Splines B-Splines Bezier-Kurven NURBS Anwendung Sculpting Volumengrafik Marching Cubes Ray Casting Texture Mapping Boolesche

Mehr

Historisches zur Gruppentheorie

Historisches zur Gruppentheorie Historisches zur Gruppentheorie Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 20 Gruppen: Abstrakte Definition Eine Gruppe

Mehr

Bézierkurven in der SII

Bézierkurven in der SII Bézierkurven in der SII Das geometrische Modellieren (CAGD) ist ein junges Gebiet im Schnittbereich von Mathematik und Informatik. Bézierkurven eignen sich wegen ihrer Einfachheit besonders als Zugang

Mehr

Pflichtteil - Exponentialfunktion

Pflichtteil - Exponentialfunktion Pflichtteil - Eponentialfunktion Aufgabe (Ableiten) Bestimme die. und. Ableitung der folgenden Funktionen: a) f() = ln() + b) g() = e Aufgabe (Integrieren) Berechnen Sie die Integrale: a) e d b) c) h()

Mehr

Mathematische Aspekte von fig2lat. Dirk Krause 23. September 2017

Mathematische Aspekte von fig2lat. Dirk Krause 23. September 2017 Mathematische Aspekte von figlat Dirk Krause 3. September 017 1 Inhaltsverzeichnis 1 Gedrehte Ellipsen 3 1.1 Abstand eines Punktes zu einer Geraden durch den Nullpunkt...... 3 1. Bounding-Box für gedrehte

Mehr

Bezier-Kurven. Hamid Fetouaki, Emma Skopin. 28. Januar 2009. Universität Kassel FB Mathematik/Informatik

Bezier-Kurven. Hamid Fetouaki, Emma Skopin. 28. Januar 2009. Universität Kassel FB Mathematik/Informatik Ableitungen von Universität Kassel FB Mathematik/Informatik 28. Januar 2009 Ableitungen von Motivation Bis in den späten 50er Jahren: Zeichnung der Kurven am Papier Fertigung der Modelle aus Holz und Ton

Mehr

QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN

QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN IRYNA FEUERSTEIN Es wir ein Verfahren zur Konstruktion einer quasiinterpolierenden Funktion auf gleichmäßig verteilten Konten vorgestellt.

Mehr

Grundlagen der Computergraphik Klausur SS08

Grundlagen der Computergraphik Klausur SS08 Grundlagen der Computergraphik Klausur SS08 Prof. Dr. Holger Theisel 23. Juli 2008 Vorname: Nachname: Matrikelnummer: Anzahl zusätzlicher Blätter: Die Tabelle wird bei der Korrektur ausgefüllt! Aufgabe

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 37 Wir haben schon im ersten Semester gewöhnliche Differentialgleichungen samt einiger Lösungsverfahren besprochen. Dort ging

Mehr

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Zur Berechnung ganzer Punkte auf Mordellkurven über globalen Körpern

Zur Berechnung ganzer Punkte auf Mordellkurven über globalen Körpern Zur Berechnung ganzer Punkte auf Mordellkurven über globalen Körpern Michael E. Pohst Institut für Mathematik Technische Universität Berlin 4. Februar, 2015 Mordells Gleichung ist y 2 = x 3 + κ mit einer

Mehr

RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover

RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover RRL GO- KMK EPA Mathematik Jahrgang 11 Propädeutischer Grenzwertbegriff Rekursion /Iteration Ableitung Ableitungsfunktion von Ganzrationalen Funktionen bis 4. Grades x 1/(ax+b) x sin(ax+b) Regeln zur Berechnung

Mehr

Übungen mit dem Applet Interpolationspolynome

Übungen mit dem Applet Interpolationspolynome Interpolationspolynome 1 Übungen mit dem Applet Interpolationspolynome 1 Ziele des Applets... 2 2 Übungen mit dem Applet... 2 2.1 Punkte... 3 2.2 y=sin(x)... 3 2.3 y=exp(x)... 4 2.4 y=x 4 x 3 +2x 2 +x...

Mehr

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren.

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 8 1. [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. a 1 A 1 a 2 A 2 a 3

Mehr

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Universität Karlsruhe (TH) Institut für Algebra und Geometrie Dr. Klaus Spitzmüller Dipl.-Inform. Wolfgang Globke Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Lösungen zum

Mehr

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel Prof. Dr. Roger Labahn {konrad.engel,roger.labahn}@uni-rostock.de

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Informatiker, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Dritte,

Mehr

Geometrie heute und morgen

Geometrie heute und morgen Geometrie heute und morgen Fortbildungsveranstaltung des PI Kärnten 25. April 2006 Wien Zur Person seit Herbst 1999: Lehrer am Bernoulligymnasium, Wien 22 Darstellende Geometrie Mathematik Informatik Lehrbeauftragter

Mehr

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Rekonstruktion kontinuierlicher Daten Multivariate Bezier-Interpolation Transfinite Interpolation Spline-Funktionen Ulrich Rüde

Mehr

Themen Lagrange-Interpolation Hermite-Interpolation. Splines. Bézier-Kurven. 5 Interpolation. Interpolation Die Lagrangesche Interpolationsaufgabe

Themen Lagrange-Interpolation Hermite-Interpolation. Splines. Bézier-Kurven. 5 Interpolation. Interpolation Die Lagrangesche Interpolationsaufgabe 5 Themen Lagrange- Bézier-Kurven saufgabe sformel Der sfehler 5.1 saufgabe È n = Raum der reellen Polynome vom Grad n. saufgabe sformel Der sfehler 5.1 saufgabe È n = Raum der reellen Polynome vom Grad

Mehr

FEM isoparametrisches Konzept

FEM isoparametrisches Konzept FEM isoparametrisches Konzept /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/deckblatt.tex Seite von 25. p./25 Inhaltsverzeichnis. Interpolationsfunktion für die finiten Elemente 2. Finite-Element-Typen

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Übungen mit dem Applet Kurven in Parameterform

Übungen mit dem Applet Kurven in Parameterform Kurven in Parameterform 1 Übungen mit dem Applet Kurven in Parameterform 1 Ziele des Applets... Wie entsteht eine Kurve in Parameterform?... 3 Kurvenverlauf für ausgewählte x(t) und y(t)... 3 3.1 x(t)

Mehr

Approximationstheorie und Approximationspraxis

Approximationstheorie und Approximationspraxis Approximationstheorie und Approximationspraxis Martin Wagner Bergische Universität Wuppertal Fachbereich C - Mathematik und Naturwissenschaften AG Optmierung und Approximation 3. Februar 2010 1 / 20 Motivation

Mehr

5. Gitter, Gradienten, Interpolation Gitter. (Rezk-Salama, o.j.)

5. Gitter, Gradienten, Interpolation Gitter. (Rezk-Salama, o.j.) 5. Gitter, Gradienten, Interpolation 5.1. Gitter (Rezk-Salama, o.j.) Gitterklassifikation: (Bartz 2005) (Rezk-Salama, o.j.) (Bartz 2005) (Rezk-Salama, o.j.) Allgemeine Gitterstrukturen: (Rezk-Salama, o.j.)

Mehr

Polynomiale Gleichungen

Polynomiale Gleichungen Vorlesung 5 Polynomiale Gleichungen Definition 5.0.3. Ein polynomiale Funktion p(x) in der Variablen x R ist eine endliche Summe von Potenzen von x, die Exponenten sind hierbei natürliche Zahlen. Wir haben

Mehr

B-Spline Kurven in der Anwendung Zwei Beispiele

B-Spline Kurven in der Anwendung Zwei Beispiele 6 th International Conference on Applied Informatics Eger, Hungary, January 7 31, 004. B-Spline Kurven in der Anwendung Zwei Beispiele Andrea Freia, Susanne Harmsb, Regina Schikorac a b IMSGear GmbH, Donaueschingen,

Mehr

KAPITEL 8. Interpolation

KAPITEL 8. Interpolation KAPITEL 8. Interpolation 8.2 Lagrange-Interpolationsaufgabe für Polynome Wir beschränken uns auf die Lagrange-Interpolation mit Polynomen. Der Raum der Polynome vom Grad n: Stützstellen: Π n = { n j=0

Mehr

Spline-artige Kurven auf Subdivision Surfaces. Jörn Loviscach Hochschule Bremen, Germany

Spline-artige Kurven auf Subdivision Surfaces. Jörn Loviscach Hochschule Bremen, Germany Spline-artige Kurven auf Subdivision Surfaces Jörn Loviscach Hochschule Bremen, Germany Überblick Spline-artige Kurven auf Spline-Flächen Kurven auf SDS: Problem, Anwendung Verwandte Arbeiten Spline-artige

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Polynominterpolation mit Matlab.

Polynominterpolation mit Matlab. Polynominterpolation mit Matlab. Die Matlab-Funktion polyfit a = polyfit(x,f,n-1); berechnet die Koeffizienten a = (a(1),a(2),...,a(n)); des Interpolationspolynoms p(x) = a(1)*x^(n-1) + a(2)*x^(n-2) +...

Mehr

Polynomiale Approximation. und. Taylor-Reihen

Polynomiale Approximation. und. Taylor-Reihen Polynomiale Approximation und Taylor-Reihen Heute gehts um die Approximation von glatten (d.h. beliebig oft differenzierbaren) Funktionen f nicht nur durch Gerade (sprich Polynome vom Grade 1) und Polynome

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln г Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Inhaltsverzeichnis

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Differentialgeometrie

Differentialgeometrie Alfred Gray Differentialgeometrie Klassische Theorie in moderner Darstellung Aus dem Amerikanischen übersetzt und bearbeitet von Hubert Gollek Mit 277 Abbildungen Spektrum Akademischer Verlag Heidelberg

Mehr

einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt also den kinematischen Kurvendurchlauf (κ ι ν ε µ α = Bewegung).

einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt also den kinematischen Kurvendurchlauf (κ ι ν ε µ α = Bewegung). 10.4. Raumkurven Kinematik Wir betrachten eine zweimal differenzierbare Parameterdarstellung w( t) x( t ) y( t ) z( t ) einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt

Mehr

Ansichten über krumme Kurven oder der Einsatz der Spline-Interpolation in einer CNC-Steuerung

Ansichten über krumme Kurven oder der Einsatz der Spline-Interpolation in einer CNC-Steuerung CNC Power Engineering - Always on the move Ansichten über krumme Kurven oder der Einsatz der Spline-Interpolation in einer CNC-Steuerung Amazing ideas and freaky challenges in software development Klaus,

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

Mathematik für Ingenieure 1

Mathematik für Ingenieure 1 A. Hoffmann B. Marx W. Vogt Mathematik für Ingenieure 1 Lineare Algebra, Analysts Theorie und Numerik PEARSON Studium ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don

Mehr

Regression, Interpolation, numerische. Integration

Regression, Interpolation, numerische. Integration ,, numerische 9. Vorlesung 170004 Methoden I Clemens Brand 20. Mai 2010 Gliederung : Aufgabenstellung Gesucht ist ein Polynom, das die Datenpunkte möglichst gut approximiert Gegeben m+1 Wertepaare (x i,

Mehr

Visualisierung von Fräsfehlern auf Basis von CAD-Daten

Visualisierung von Fräsfehlern auf Basis von CAD-Daten Visualisierung von Fräsfehlern auf Basis von CAD-Daten Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) am Fachbereich Mathematik der Justus-Liebig-Universität

Mehr

Lissajous-Kurven INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Friedrich Buckel. Text Nummer: Stand: 28.

Lissajous-Kurven INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Friedrich Buckel.  Text Nummer: Stand: 28. Lissajous-Kurven Tet Nummer: 50 Stand: 8. März 06 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 55 Lissajous-Figuren Vorwort Lissajous-Figuren sind Kurven, die man sehr gut durch physikalische Eperimente erzeugen

Mehr

Lissajous-Kurven DEMO. Text Nummer: Stand: 28. März Friedrich Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Lissajous-Kurven DEMO. Text Nummer: Stand: 28. März Friedrich Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Lissajous-Kurven Tet Nummer: 50 Stand: 8. März 06 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 55 Lissajous-Figuren Vorwort Lissajous-Figuren sind Kurven, die man sehr gut durch physikalische Eperimente erzeugen

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

Fachhochschule Aachen. Seminararbeit. im Studiengang Scientific Programming. Splines in der Datenverarbeitung. Herr Prof. Dr.

Fachhochschule Aachen. Seminararbeit. im Studiengang Scientific Programming. Splines in der Datenverarbeitung. Herr Prof. Dr. Fachhochschule Aachen Seminararbeit im Studiengang Scientific Programming Thema: Splines in der Datenverarbeitung eingereicht von: Selman Terzi eingereicht am: 14. Dezember 2012 Erster Betreuer: Zweiter

Mehr

Approximation. E(N) N. Beachte: Der Wert für N = 32 ist vernachlässigt, da er in der Grössenordnung der Rechengenauigkeit liegt.

Approximation. E(N) N. Beachte: Der Wert für N = 32 ist vernachlässigt, da er in der Grössenordnung der Rechengenauigkeit liegt. Approximation Ziel: Approximation der Funktion f(x) = x mit Polynomen (global und stückweise) Experiment: Abhängigkeit des Approximationsfehlers E(N) (in der Maximumnorm) von der Anzahl der Freiheitsgrade

Mehr

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 11. Differentialgeometrie Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

4. FUNKTIONSANPASSUNGEN

4. FUNKTIONSANPASSUNGEN 4. FUNKTIONSANPASSUNGEN 04. Da die Funktion einen Hoch- und einen Tiefpunkt besitzt, muss sie mindestens dritten Grades sein. Eine kurzfristige Prognose ist mit dieser Funktion wahrscheinlich möglich,

Mehr

2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks

2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks 2.1.2 Konkretisierte Unterrichtsv auf der Basis des Lehrwerks Einführungsphase 1 Buch: Bigalke, Dr. A., Köhler, Dr. N.: Mathematik Gymnasiale Oberstufe Nordrhein-Westfalen Einführungsphase, Berlin 2014,

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I

Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I Institut für Mathematik Blatt Prof. Dr. B. Martin, H. Süß Abgabe: 0.4. Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I Aufgabe : 2 Punkte Stellen Sie die Gleichung der Ebene auf, in

Mehr

Mathematik für Ingenieure 1

Mathematik für Ingenieure 1 A. Hoff mann B. Marx W. Vogt Mathematik für Ingenieure 1 Lineare Algebra, Analysis Theorie und Numerik PEARSON btudiurn. ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don

Mehr

Mathematik für Ingenieure

Mathematik für Ingenieure A. Hoffmann B. Marx W. Vogt Mathematik für Ingenieure Lineare Algebra, Analysis Theorie und Numerik 1. Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills,

Mehr

Geoinformatik Kapitel 2 Geometrische Grundlagen

Geoinformatik Kapitel 2 Geometrische Grundlagen Geoinformatik Kapitel 2 Univ.-Prof. Dr.-Ing. Wolfgang Reinhardt AGIS / Inst. Für Angewandte Informatik (INF4) Universität der Bundeswehr München Wolfgang.Reinhardt@unibw.de www.agis.unibw.de Inhalte Einführung

Mehr

1 Einleitung. 1.1 Motivation. 6 Differentialgeometrie: Grundlagen Vorlesung 1

1 Einleitung. 1.1 Motivation. 6 Differentialgeometrie: Grundlagen Vorlesung 1 6 Differentialgeometrie: Grundlagen Vorlesung Einleitung. Motivation.. Name of the game Geometer bezeichnet klassisch einen Landvermesser (heute ist eher Geodät gebräuchlich. Die klassische Differentialgeometrie

Mehr

2.8 KURVENINTEGRALE UND STAMMFUNKTIONEN

2.8 KURVENINTEGRALE UND STAMMFUNKTIONEN 2.8 KURVENINTEGRALE UND STAMMFUNKTIONEN Im folgenden seien X normierter Vektorraum und Y B-Raum über IK = IR oder IK = CI. Wir wollen in diesem Kapitel für stetige Abbildungen f : X D f B(X; Y ) und stückweise

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 7 11. Mai 2010 Kapitel 8. Vektoren Definition 76. Betrachten wir eine beliebige endliche Anzahl von Vektoren v 1, v 2,..., v m des R n, so können

Mehr

Kurven. injektiv, dann heißt K eine Jordan-Kurve.

Kurven. injektiv, dann heißt K eine Jordan-Kurve. Kurven Der Begriff der Kurve, zunächst etwa im R 2 oder R 3, kann auf zwei Arten gebildet werden. Der geometrische Zugang definiert eine Kurve als den geometrischen Ort von Punkten in der Ebene bzw. im

Mehr

Integralrechnung. Mathematik-Repetitorium

Integralrechnung. Mathematik-Repetitorium Integralrechnung 6.1 Geometrische Interpretation 6.2 Grundaufgabe 6.3 Basisintegrale, Regeln 6.4 Produktregel: Partielle Integration 6.5 Quotienten 6.6 Variablensubstitution 6.7 Integration von Potenzreihen

Mehr

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion

Mehr

Nebenfach Mathematik Studienplan

Nebenfach Mathematik Studienplan Nebenfach Mathematik Studienplan Studienbeginn im Wintersemester 3. Semester Numerische Analysis I 4. Semester Computeralgebra 5. Semester Funktionentheorie Numerisches Praktikum Nebenfach Mathematik Studienplan

Mehr

Mathematik für Informatik 3

Mathematik für Informatik 3 Mathematik für Informatik 3 - ANALYSIS - Folgen, Reihen und Funktionen - Funktionen mehrerer Veränderlicher - Extremwertaufgaben - Normen und Approximationen - STATISTIK - WAHRSCHEINLICHKEITSRECHNUNG Literaturempfehlungen:

Mehr

Geometrische Algorithmen in der Ebene

Geometrische Algorithmen in der Ebene Aufgabe 1 Schnitt von Gerade und Kreis Aus einer Textdatei werden die Daten für eine Gerade g (zwei Punkte a, b R 2 ) und für einen Kreis g (Mittelpunkt m R 2 und Radius r) eingelesen. Diese Datei kann

Mehr

Zentrale Klausur am Ende der Einführungsphase 2016 Mathematik

Zentrale Klausur am Ende der Einführungsphase 2016 Mathematik Teil I (hilfsmittelfrei) Seite 1 von 2 Zentrale Klausur am Ende der Einführungsphase 2016 Mathematik Teil I: Hilfsmittelfreier Teil Aufgabe 1: Analysis 1 f x = x 5 x + 16 x 2. 3 Gegeben ist die Funktion

Mehr

Facharbeit. Mathematik

Facharbeit. Mathematik Albert-Schweitzer-Gymnasium Kollegstufenjahrgang 2001/2003 Erlangen Facharbeit aus dem Fach Mathematik Thema: Splinefunktionen und ihre Anwendung Verfasser: Moritz Lenz Leistungskurs: Mathematik 1 Kursleiter:

Mehr

3D-Objektmodellierung

3D-Objektmodellierung 3D-Objektmodellierung Beschränkung auf echte dreidimensionale Strukturen: keine isolierten Punkte, Kanten oder Flächen keine baumelnden Kanten oder Flächen Computergrafik: Modellierung dreidimensionaler

Mehr

Vorwort. Daniel Waschmann Freiformkurven und Freiformflächen BG / BRG Schwechat

Vorwort. Daniel Waschmann Freiformkurven und Freiformflächen BG / BRG Schwechat 1 Vorwort In drei Jahren Darstellender Geometrie lernt man einiges über geometrische Objekte, Zusammenhänge, Besonderheiten und Konstruktionen, welche räumliches Vorstellungsvermögen erfordern und auch

Mehr