Multimediatechnik / Video

Größe: px
Ab Seite anzeigen:

Download "Multimediatechnik / Video"

Transkript

1 Multimediatechnik / Video Teil 1: Grundlagen Dipl.-Ing. Oliver Lietz TFH/Beuth-Hochschule Hochschule WS 2009 Oliver Lietz - Multimediatechnik / Video Film / Video Film/Video = Bewegte Bilder 2D+t (Ort+Zeit( Ort+Zeit) T Bildelemente (Picture Elements, Pixels) Auflösung (Ort) z.b. 720x576 Pixel Auflösung (Zeit): Bildrate (Frame Rate, FPS) z.b. 24, 25,, 30 Bilder/Sekunde N s,n M t,o R S r,m Oliver Lietz - Multimediatechnik / Video / WS 2009/10 2

2 Anzahl Pixel/Bild: Auflösung x * y 720*576 Datenmenge je Pixel: RGB: 3*8=24 Bit = 3 Byte Datenmenge Video Datenmenge je Sekunde: Bildrate (Frame Rate, FPS) z.b. 24, 25, 30 Bilder/Sekunde N T M t,o R S r,m Beispiele: SDTV: 720 x 576 x 3 x 25 Bytes/Sek. = 30 MB / s = 100 GB / h HDTV: 1920 x 1080 x 3 x 25 Bytes/Sek. = 150 MB / s = 500 GB / h s,n Oliver Lietz - Multimediatechnik / Video / WS 2009/ Video-Bildgr Bildgrößen (Auflösungen) Oliver Lietz - Multimediatechnik / Video / WS 2009/10 4

3 Bewegung Sehsinn hat eine zeitliche Auflösung < 24 Hz (Bilder/s) -> Flimmern bei Bildfolgen Abfolge von Einzelbildern wird bei ausreichender Frequenz als kontinuierliche Bewegung wahrgenommen Abhängig von Umgebungslicht, Abstand, Auflösung, Kino 24 Hz, Fernsehen 25 (50) Hz => Filme sind im Fernsehen 4 % kürzer k!!! Oliver Lietz - Multimediatechnik / Video / WS 2009/ Videocodierung/Komprimierung wozu? Speicherung DVD, Blueray Kamera (Flash, Memorystick,, Band, ) Festplatte Mobiltelefon (UMTS, 3GPP), PDA Übertragung Digital-TV (DVB) Internet / Video on Demand Mobiltelefon (UMTS, 3GPP) Digital Cinema (HDTV, 2K, 4K) Oliver Lietz - Multimediatechnik / Video / WS 2009/10 6

4 ITU-R R 709 Digitales HDTV 1920x1080 interlaced und progressiv 25 Hz (auch 24, 30, 50, 60 Hz) 8 Bit YUV 4:2:2 Farbauflösung Standard, auch 10 Bit Aufgabe: Datenrate/Stunde für f 1920x1080p 25, YUV 4:2:2, 8 Bit 1920x1080i 25, YUV 4:2:2, 8 Bit Oliver Lietz - Multimediatechnik / Video / WS 2009/ Interlaced Video ( Zeilensprung( Zeilensprung ) top field bottom field 2 zeitlich versetzte Halbbilder (Fields) aus jeder 2. Zeile Vorteil: Erhöhung hung der Frequenz 25 Frames -> > 50 Fields/Sec. Nachteil: geringere örtliche Auflösung! (vertikal) Vollbilder: progressiv,, Halbbilder: interlaced Oliver Lietz - Multimediatechnik / Video / WS 2009/10 8

5 Standards: Interlaced-Effekt 576i 25 (= 720x576, 25 Frames/s,, 50 Fields/s) 1080i 25 (= 1920x1080, 25 Frames/s,, 50 Fields/s) 1080p 50 (= 1920x1080, 50 Frames/s) 1080p 24 (Kino/Blueray) Sieht man den Interlaced- Kamm Kamm-Effekt auch auf alten Röhrenmonitoren / TV-Ger Geräten? Wie sieht progressive auf einem Interlaced-Monitor aus? Oliver Lietz - Multimediatechnik / Video / WS 2009/ De-Interlacing Ziel: optimale Darstellung von Video-Interlaced Interlaced- Material auf Progressiv-Monitor (LCD) Nicht trivial, da Material interlaced aufgenommen! Oliver Lietz - Multimediatechnik / Video / WS 2009/

6 De-Interlacing Verfahren 1. Zeilen weglassen oder verdoppeln geringere Auflösung 2. Zeilen mitteln / interpolieren ( Blending( Blending ) geringere Auflösung + Störeffekt 3. Bildanalyse / Bewegungsschätzung, neue Zwischenbilder errechnen aufwändig! Oliver Lietz - Multimediatechnik / Video / WS 2009/ Analoges TV-Signal (s/w) Abtastung zeilenweise Helligkeitsverlauf s/w = Luminanz Videosignal einer Bildzeile (Ort/Luminanz( Ort/Luminanz): Oliver Lietz - Multimediatechnik / Video / WS 2009/

7 Analoges TV-Signal Sichtbare und nicht sichtbare Bereiche Horizontal- (Zeilen-) ) und Vertikal- (Bild-) ) Austastung 576 von 625 Zeilen sichtbar Interlaced-Abtastung (Zeilensprung-Halbbilder) Oliver Lietz - Multimediatechnik / Video / WS 2009/ Aufbau einer Zeile: Analoges TV-Signal FBAS (Farb-Bild Bild-Austast-Signal): 625 Zeilen (PAL) / 525 (NTSC) Oliver Lietz - Multimediatechnik / Video / WS 2009/

8 Digitales TV-Signal Bildzeile s/w ITU-R R 601 (ehem. CCIR-601) 576 Zeilen (von 625) (2x288 interlaced) [ NTSC (US/Jp( US/Jp.): 480 Zeilen von 525 ] Abtastung : 720 Werte / Bildzeile Quantisierung (Stufen): Je Abtastwert 256 Stufen (8 Bit, im Studio auch 10 Bit) Benutzt wird nur : schwarz=16, weiss=235 Oliver Lietz - Multimediatechnik / Video / WS 2009/ Digitales TV-Signal Bildzeile Farbe (YUV) ITU-R R 601 (ehem. CCIR-601) 720 Abtastwerte / Bildzeile (Y/Lum( Y/Lum.) Farbe: YUV 4:2:2 360 Werte für f r U,V 8 Bit / 256 Stufen Oliver Lietz - Multimediatechnik / Video / WS 2009/

9 Datenmenge Digitales TV (ITU 601) 4:2:2! 720 (Y) + 2 * 360 (U,V) = 1440 Werte / Zeile Je 576 Zeilen 8 Bit pro Farbwert (YUV): ( ) * 576 = Bytes / Bild * 25/s = 20 MB / Sekunde Unkomprimiertes YUV: Speicherung/Übertragung UYVY-UYVY UYVY-UYVY- Oliver Lietz - Multimediatechnik / Video / WS 2009/ Frage Wie kann ein s/w-film platzsparend gespeichert werden ohne Qualitätsverlust? tsverlust? (Vergleich zu RGB?) Antwort: YUV-Format verwenden: Nur Y verwenden, U und V weglassen (=0)! Oliver Lietz - Multimediatechnik / Video / WS 2009/

10 Licht und Farbe Licht = Elektromagnetische Welle Farbton = Wellenlänge/Frequenz nge/frequenz λ = c/f, c=300t km/s Helligkeit = Auslenkung (Amplitude/Energie) Oliver Lietz - Multimediatechnik / Video / WS 2009/ Farbspektrum / Prisma Weißes es Licht = Farbmischung / Spektrum Brechungswinkel abhängig von Wellenlänge nge (Dispersion) Oliver Lietz - Multimediatechnik / Video / WS 2009/

11 Farbmischung Mischung aus Grundfarben Licht: additive Farbmischung (Summe= Summe= Weiss ) Rot, Grün, Blau (RGB) Druck: subtraktive Farbmischung (Summe= Summe= Schwarz ) Cyan,, Magenta, Yellow (CMY), Key (schwarz) -> > CMYK Oliver Lietz - Multimediatechnik / Video / WS 2009/ Wie entsteht Weiß ß? Gleiche Anteile von R,G,B Welche Wellenlängen ngen hat R,G,B? Weißes es Licht: Spektrum aller Wellenlängen, ngen, nicht nur R,G,B Oliver Lietz - Multimediatechnik / Video / WS 2009/

12 CIE-Farbmodelle / Gamut Darstellbare Farben (Palette) Primärvalenzen rvalenzen R, G, B Dreieck im Farbdiagramm srgb Adobe RGB Oliver Lietz - Multimediatechnik / Video / WS 2009/ CIE-Farbdiagramm Additive Farbmischung: Primärfarben rfarben R,G,B bzw. X,Y,Z X+Y+Z = 1 Y = Luminanz X,Y = Chrominanz (Farbheit) Weißpunkt Rand: Spektralfarben Purpurlinie: Blau/Rot Farbsättigung (Saturation( Saturation) Abstand vom Weißpunkt Oliver Lietz - Multimediatechnik / Video / WS 2009/

13 Wärmestrahlung / Farbtemperatur Farbtemperatur: wie erscheint ein idealer schwarzer KörperK rper bei der genannten Temperatur? Bis 2000 K: Infrarot, danach glühen Tageslicht: 6500K (Weisspunkt D65 ) Glühlampe: 3000K Oliver Lietz - Multimediatechnik / Video / WS 2009/ Spektrum / Normlicht Spektrale Verteilung von Licht Kerze/Glühlampe A, Tageslicht D65 ( = 6500K ) Oliver Lietz - Multimediatechnik / Video / WS 2009/

14 Weißabgleich Unterschiedlicher Weißpunkt (Mischung RGB) Oliver Lietz - Multimediatechnik / Video / WS 2009/ Farbformate Nutzung verschiedene Farbdarstellungen, die an die jeweilige Anwendung angepasst sind (Beispiel: Rot-Gr Grün-Blau/RGB, Helligkeit-Farbton/HSV Farbton/HSV) Jeweils Spezifikation von 3 Zahlenwerten, z.b. (0, 0, 255) Farbformate sind äquivalent und können k ineinander umgerechnet werden YUV : z.b. für f r Farbfernsehen, JPEG / Video-Codierung RGB: Additive Mischung (Summe=Weiss( Summe=Weiss) -> > Videotechnik CMYK: Subtraktive Mischung (Summe=Schwarz( Summe=Schwarz) -> > Drucktechnik HSV: Mischung aus Farbton, Sättigung, S Helligkeit (Hue,Sat( Hue,Sat., Value) Oliver Lietz - Multimediatechnik / Video / WS 2009/

15 24 Bit-Farbtabelle RGB-Farben Oliver Lietz - Multimediatechnik / Video / WS 2009/ Helligkeits- und Farb-Pixel s/w-pixel: Helligkeit Beispiel 8 Bit/Pixel = 256 Stufen 0=schwarz, 255=weiß (häufig nur ) Farbe: Mischung z.b. RGB Beispiel 24 Bit/Pixel, RGB (0,255,0) = Grün Oliver Lietz - Multimediatechnik / Video / WS 2009/

16 RGB RotRot-Grü Grün-Blau, RGB additive Farbmischung, (1,1,1)=weiß (1,1,1)=weiß rot grün blau Oliver Lietz - Multimediatechnik / Video / WS 2009/ YUV - Farbformat Grauwert (Helligkeit) und 2 Farbdifferenzen (U, V) Farbfernsehen kompatibel zu SWSW-Fernsehen HauptHaupt-Information im Helligkeitssignal (Y) Y U V Oliver Lietz - Multimediatechnik / Video / WS 2009/

17 YUV Farbformat Grauwert (Helligkeit) und 2 Farbdifferenzen (U, V) Y U, V meist verkleinert, da Sehsinn für f r Farbauflösung weniger empfindlich als für f r Helligkeitsauflösung sung Fast immer in der Videotechnik genutzt Bezeichnungen 4:2:2 oder 4:2:0 U V Oliver Lietz - Multimediatechnik / Video / WS 2009/ Großer Sehwinkel ( > 180 ) Hohe Auflösung 1/30 = = 2 2 (Winkelminuten) Farbe, 3D Schnell Sehr großer Belichtungsbereich (10 10 ) Hoher Schärfebereich durch Akkomodation Sehen Oliver Lietz - Multimediatechnik / Video / WS 2009/

18 Aufbau des Auges Retina: Netzhaut mit Rezeptor-Zellen Gelber Fleck (Macula): Großteil der Sehzellen Sehgrube (Fovea( Fovea), Teil der Macula: scharfe Abbildung (2 o Sehwinkel) Blinder Fleck: keine Netzhaut-Zellen (engl. optic disk ) Quelle: [EGBECK] Oliver Lietz - Multimediatechnik / Video / WS 2009/ Netzhaut: Wahrnehmung von Licht [EGBECK] Zapfen: 3 Arten: Farbe Tagessehen 6 Mio. Zellen Stäbchen: Grauwerte Nachtsehen 120 Mio. Zellen Fovea: nur Zapfen! -> > Unschärfe im Dunkeln! Oliver Lietz - Multimediatechnik / Video / WS 2009/

19 Tages- / Nachtsehen Zapfen/Stäbchen Empirisch gemessenes Helligkeitsempfinden hell/dunkel Maximale Empfindlichkeit im Grünbereich Links Nachtkurve (Stäbchen), rechts Tageskurve (Zapfen) Oliver Lietz - Multimediatechnik / Video / WS 2009/ Verteilung von Zapfen und Stäbchen Quelle: [EGBECK] Oliver Lietz - Multimediatechnik / Video / WS 2009/

20 Empfindlichkeit der Zapfen Farb-Empfinden je Wellenlänge: nge: Überlagerung der Zapfenarten [EGBECK] Oliver Lietz - Multimediatechnik / Video / WS 2009/ Sehwinkel / Auflösungsverm sungsvermögengen Auflösung (Scharf sehen) 1/30 = = 2 2 (Bogenminuten) Erfassung mit einem Blick : : ca (auch TV) Gesamter Sehbereich ca Oliver Lietz - Multimediatechnik / Video / WS 2009/

21 Sehwinkel / Scheinbare Größ öße tan (α/2) = (G/2)/g α = 2 * arctan( ( (G/2)/g ) g = (G/2) / tan(α/2) Beispiel: Bildgröß öße e 100cm, α = 20,, welcher Abstand? [g = 50 / tan 10 = = 283cm] Oliver Lietz - Multimediatechnik / Video / WS 2009/ Sehwinkel - Aufgabe Ein 16:9 Bild soll einen Sehwinkel horizontal 30 aufspannen bei einem Abstand von 3m. Welche Abmessungen muss der Bildschirm haben? (x,y,diagonal) tan (α/2) = (G/2)/g G = 2 g G = 2 g tan (α/2) /2) Oliver Lietz - Multimediatechnik / Video / WS 2009/

22 Wellenausbreitung / Polarisation Richtung der Auslenkung unpolarisiert = alle Richtungen Oliver Lietz - Multimediatechnik / Video / WS 2009/ Lichtgeschwindigkeit in Medien Medium Vakuum Luft Wasser Lichtgeschwindigkeit km/s km/s km/s Glas km/s Oliver Lietz - Multimediatechnik / Video / WS 2009/

23 Brechung (Refraktion) Übergang zwischen Medien, z.b. Luft/Glas Änderung der Ausbreitungsgeschwindigkeit + Änderung der Wellenlänge! nge! Brechzahl / Brechungsindex n = c 0 /c (Geschw. Vakuum/Medium) Brechungsgesetz (Snellius( Snellius) sin α / sin β = n 2 /n 1 sin α / sin β = λ 2 / λ 1 [ Schulphysik: zusätzlich (Teil( Teil-)Reflexion mit gleichem Ausfallswinkel ] Oliver Lietz - Multimediatechnik / Video / WS 2009/ Beugung Reflexion / Brechung: Richtungsänderung nderung Beugung: Ablenkung Praxis: Beugung an Objektiv-Kante und Blende (Weitere Anwendung: Audio-Wellenfeldsynthese) Oliver Lietz - Multimediatechnik / Video / WS 2009/

24 Brechung mit Sammel-Linse Oliver Lietz - Multimediatechnik / Video / WS 2009/ Optische Abbildung mit Sammellinse Linsengleichung 1/b + 1/g = 1/f G/g = B/b Brennweite f: Bildweite für f r unendlich weites Objekt Brechkraft: D [dpt] = 1/f (Dioptrien) Wie groß ist das Bild B bei b=5cm, g=50cm, G=1cm? Oliver Lietz - Multimediatechnik / Video / WS 2009/

25 Schärfe/Unsch rfe/unschärfe Oliver Lietz - Multimediatechnik / Video / WS 2009/ Unschärfe Punkt wird zu Kreis (Zerstreuung) Abbildung vor oder hinter Bildebene Oliver Lietz - Multimediatechnik / Video / WS 2009/

26 Schärfentiefe Oliver Lietz - Multimediatechnik / Video / WS 2009/ Blende Helligkeits- und Schärfentiefeanpassung Oliver Lietz - Multimediatechnik / Video / WS 2009/

27 Blende / Blendenzahl Hohe Blendenzahl / kleine Blendenöffnung K = Brennweite / Öffnungsdurchmesser Oliver Lietz - Multimediatechnik / Video / WS 2009/ Schärfentiefe Größere Schärfentiefe durch Kleinere Brennweite größere Blendenzahl (kleinere Blendenöffnung) größere Gegenstandsweite (Motivabstand) Oliver Lietz - Multimediatechnik / Video / WS 2009/

28 Räumliches Sehen (Stereoskopie) Oliver Lietz - Multimediatechnik / Video / WS 2009/ Parallaxe, Konvergenz, Disparität Parallaxe/Konvergenzwinkel α Akkomodation (Scharfstellen) Disparität Unterschiedlicher Projektionsort [Wimmer]/[Kornfeld] Oliver Lietz - Multimediatechnik / Video / WS 2009/

29 3D-Video 3D-Video = Video aus mehreren Ansichten Nicht verwechseln mit Computergrafik-3D! Oliver Lietz - Multimediatechnik / Video / WS 2009/ D-Video Video-VerarbeitungVerarbeitung Wie werden mehrere Ansichten aufgezeichnet? In der Regel 2 Kameras Mehrere Ansichten möglich m für f r besseren Raumeindruck Forschungsgebiet: Virtuelle Ansichten errechnen Oliver Lietz - Multimediatechnik / Video / WS 2009/

30 3D-Video Video-Wiedergabe Displays mit Brille: Polarisation, Shutterbrille Ohne Brille (Autostereoskopie): noch nicht perfekt Standards: Blueray,, Dezember 2009! Speicherung: 2 separate Videos 1 Video mit 2 Ansichten nebeneinander Verschachtelt Interlaced Verschachtelt Frame-weise (Blueray) Oliver Lietz - Multimediatechnik / Video / WS 2009/ D-Stereo Stereo-Video-Brillen Ziel: verschiedene Ansichten je Auge Passiv: anaglyph (rot/grün, rot/cyan oder gelb/blau-colorcode ColorCode) Polarisation horizontal/vertikal oder rotierend Aktiv: Shutterbrille (Anschluss an Grafikkarte) Oliver Lietz - Multimediatechnik / Video / WS 2009/

31 Polarisation 2 Projektoren + Polfilter Silberleinwand (Alu) Polfilter- Brille Nachteile: Leinwand Geringe Lichtstärke Oliver Lietz - Multimediatechnik / Video / WS 2009/

Multimediatechnik / Video

Multimediatechnik / Video Multimediatechnik / Video Licht und Farbe http://www.nanocosmos.de/lietz/mtv Inhalt Was ist Farbe? Lichtwellen Farbspektrum Farbmodelle Licht und Farbe Licht = Elektromagnetische Welle Farbton = Wellenlänge/Frequenz

Mehr

Multimediatechnik / Video

Multimediatechnik / Video Multimediatechnik / Video Lichtwellen und Optik http://www.nanocosmos.de/lietz/mtv Inhalt Lichtwellen Optik Abbildung Tiefenschärfe Elektromagnetische Wellen Sichtbares Licht Wellenlänge/Frequenz nge/frequenz

Mehr

Multimediatechnik / Video

Multimediatechnik / Video Multimediatechnik / Video Video-Farben Pixel, Farben, RGB/YUV http://www.nanocosmos.de/lietz/mtv Helligkeits- und Farb-Pixel s/w-pixel: Wert = Helligkeit Beispiel 8 Bit/Pixel = 256 Stufen 0=schwarz, 255=weiß

Mehr

Multimediatechnik / Video

Multimediatechnik / Video Multimediatechnik / Video Räumliches Sehen Stereoskopie / 3D Video http://www.nanocosmos.de/lietz/mtv Räumliches Sehen Quelle: [EGBECK] Räumliches Sehen (Stereoskopie) Parallaxe, Konvergenz, Disparität

Mehr

Multimediatechnik / Video

Multimediatechnik / Video Multimediatechnik / Video Beuth-Hochschule SS 2010 1 Digitales Video http://www.nanocosmos.de/lietz/mtv Videoproduktion Pre-Production Vorbereitung, Planung, Story, Orte, Budget, Production Kamera- und

Mehr

Multimediatechnik / Video. Kino und TV. Oliver Lietz. Oliver Lietz - Multimediatechnik / Video.

Multimediatechnik / Video. Kino und TV. Oliver Lietz.  Oliver Lietz - Multimediatechnik / Video. Multimediatechnik / Video Kino und TV Oliver Lietz http://www.nanocosmos.de/lietz/mtv Kino und TV Digitales Kino ( Digital Cinema, DCI) und HDTV Annäherung Kino/TV Mind. Full HD 1080 oder 2k (2048 Pixel)

Mehr

Multimediatechnik / Video

Multimediatechnik / Video Multimediatechnik / Video Räumliches Sehen Stereoskopie / 3D Video http://www.nanocosmos.de/lietz/mtv 3D-Video Kombination vieler Video- und CG-Technologien Hochauflösend (HD), Multiview,, 3D, Codierung,

Mehr

Grundlagen Videosignale. Prof. Dr. Ing. Marcus Purat

Grundlagen Videosignale. Prof. Dr. Ing. Marcus Purat Grundlagen Videosignale Prof. Dr. Ing. Marcus Purat Beuth Hochschule fürtechnik Berlin Sommersemester 2012 Grundlagen Videosignale 1. Visuelle Wahrnehmung n 2. Analoge Videosignale 3. Digitale Videosignale

Mehr

Multimediatechnik / Video

Multimediatechnik / Video Multimediatechnik / Video 2-Video-Formate Pixel, Farben, RGB/YUV http://www.nanocosmos.de/lietz/mtv Inhalt Farbformate Kino- und TV-Formate Interlaced / progressiv 2D+t (Ort+Zeit( Ort+Zeit): Videosequenz

Mehr

Licht und Farben. Andreas Spillner. Computergrafik, WS 2018/2019

Licht und Farben. Andreas Spillner. Computergrafik, WS 2018/2019 Licht und Farben Andreas Spillner Computergrafik, WS 2018/2019 Farbwahrnehmung des Menschen im Auge Das Verständnis, wie Farbeindrücke entstehen, ist ein wesentlicher Bestandteil der Computergrafik. Der

Mehr

Grundlagen Videosignale

Grundlagen Videosignale Grundlagen Videosignale Prof. Dr. Ing. Marcus Purat Beuth Hochschule für Technik Berlin Sommersemester 2016 Grundlagen Videosignale 1. Visuelle Wahrnehmung 2. Analoge Videosignale 3. Digitale Videosignale

Mehr

Farben. Spektrale Zerlegung der sichtbaren Lichtes. Folie 2

Farben. Spektrale Zerlegung der sichtbaren Lichtes. Folie 2 Farben Spektrale Zerlegung der sichtbaren Lichtes Folie 2 1 Additive und subtraktive Farbmischung Additives Modell Primäre Grundfarben: Rot, Grün, Blau Subreaktives Modell Primäre Grundfarben: Cyan, Magenta,

Mehr

21.Vorlesung. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente

21.Vorlesung. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente 2.Vorlesung IV Optik 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente Versuche Lochkamera Brechung, Reflexion, Totalreflexion Lichtleiter Dispersion (Prisma)

Mehr

Signalverarbeitung für audiovisuelle Kommunikation

Signalverarbeitung für audiovisuelle Kommunikation University of Applied Science Signalverarbeitung für audiovisuelle Kommunikation 1. Digitale Multimediasignale - Bild- und Videosignale & Digitalisierung Bild- und Videosignale Bilder/Video(Bildfolgen):

Mehr

Embedded Systems Ausgewählte Themen (ES-M)

Embedded Systems Ausgewählte Themen (ES-M) Embedded Systems Ausgewählte Themen (ES-M) Beuth-Hochschule WS 2010 Oliver Lietz Dipl.-Ing. Digitale Videotechnik Oliver Lietz Mobile Software Digitale Videotechnik Überblick Codecs Streaming Virtuelles

Mehr

Objekterkennung durch Vergleich von Farben. Videoanalyse Dr. Stephan Kopf HWS2007 Kapitel 5: Objekterkennung

Objekterkennung durch Vergleich von Farben. Videoanalyse Dr. Stephan Kopf HWS2007 Kapitel 5: Objekterkennung Objekterkennung durch Vergleich von Farben 48 Farbräume (I) Definitionen: Farbe: Sinnesempfindung (keine physikalische Eigenschaft), falls Licht einer bestimmten Wellenlänge auf die Netzhaut des Auges

Mehr

Digitale Bilder. Ein Referat von Jacqueline Schäfer und Lea Pohl Am

Digitale Bilder. Ein Referat von Jacqueline Schäfer und Lea Pohl Am Digitale Bilder Ein Referat von Jacqueline Schäfer und Lea Pohl Am 06.05.2015 Inhaltsverzeichnis Einheiten Grafiktypen Bildformate Farbtiefe Farbbilder/ Farbräume Quellen Einführung in die Bildverarbeitung

Mehr

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen )

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen ) . Vorlesung EP (. Vorlesung: III) Elektrizität und Magnetismus. Wechselstrom. Elektromagnetische Wellen ) IV) Optik = Lehre vom Licht. Licht = sichtbare elektromagnetische Wellen 3. Geometrische Optik

Mehr

Medien- Technik. Videotechnik

Medien- Technik. Videotechnik Videotechnik 1 Optimaler Sehabstand Winkel < 1/60 Europa 625 / 50 / 2:1 USA 625 / 59.94 / 2:1 HDTV 1125 / 60 / 2:1 Seitenverhältnis 4:3 trad. 16:9 HDTV Bildwiederholrate muß bei hellem Umfeld höher sein

Mehr

Farbmodelle. MBV5 Werner Backfrieder FH-Hagenberg. Spektrale Zerlegung der sichtbaren Lichtes

Farbmodelle. MBV5 Werner Backfrieder FH-Hagenberg. Spektrale Zerlegung der sichtbaren Lichtes Farbmodelle MBV5 FH-Hagenberg Spektrale Zerlegung der sichtbaren Lichtes 1 Additive und subtraktive Farbmischung Chromatizitätsdiagramm X=r/(r+g+b) Y=g/(r+g+b) Z=b/(r+g+b) X+Y+Z=1 2 RGB-Modell Farbe wird

Mehr

BILDBEARBEITUNG IM UNTERRICHT

BILDBEARBEITUNG IM UNTERRICHT BILDBEARBEITUNG IM UNTERRICHT Grundlagen Farbtiefe Farbmodelle CYMK, RGB Patrick Meier, Wilmatt 2, 637 Root, msib.ch GRUNDLAGEN PHOTOSHOP Ein zentraler Begriff bei Pixelgrafiken ist die Bildauflösung.

Mehr

18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler

18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler Spektrum elektromagnetischer Wellen Licht Ausbreitung von Licht Verschiedene Beschreibungen je nach Größe des leuchtenden (oder beleuchteten) Objekts relativ zur Wellenlänge a) Geometrische Optik: Querdimension

Mehr

22. Vorlesung EP. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente

22. Vorlesung EP. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente . Vorlesung EP IV Optik 3. Geometrische Optik Brechung und Totalrelexion Dispersion 4. Farbe 5. Optische Instrumente Versuche: Brechung, Relexion, Totalrelexion Lichtleiter Dispersion (Prisma) additive

Mehr

Licht Farbwahrnehmung Farbmodelle Farben bei der Bildgenerierung

Licht Farbwahrnehmung Farbmodelle Farben bei der Bildgenerierung Licht Farbwahrnehmung Farbmodelle Farben bei der Bildgenerierung Thomas Jung t.jung@htw-berlin.de Farbwahrnehmung ist subjektiv Unterschiedliche Farbmodelle nach Anwendungsbereich Farbe ist grundlegend

Mehr

Farbmodelle. Erinnerung an Einführung: Farbsehen durch drei Arten von Zäpfchen. Alle Farbeindrücke simulierbar durch drei Farben

Farbmodelle. Erinnerung an Einführung: Farbsehen durch drei Arten von Zäpfchen. Alle Farbeindrücke simulierbar durch drei Farben Farbmodelle Erinnerung an Einführung: Farbsehen durch drei Arten von Zäpfchen Alle Farbeindrücke simulierbar durch drei Farben Oliver Deussen Farbmodelle 1 RGB-Farbmodell für additive Farbmischung (Bildschirm)

Mehr

Bildverarbeitung Herbstsemester Farben, Farbsehen und Farbbilder

Bildverarbeitung Herbstsemester Farben, Farbsehen und Farbbilder Bildverarbeitung Herbstsemester 2012 Farben, Farbsehen und Farbbilder 1 Inhalt Aufbau des Auges Helligkeits- und Farbwahrnehmung lineare Farbsysteme nicht-lineare Farbsysteme digitale Farbbilder Umwandlung

Mehr

seit Jahrhunderten Thema von Physikern, Physiologen, Psychologen und Philosophen bis heute nicht vollständig verstanden und durchdrungen

seit Jahrhunderten Thema von Physikern, Physiologen, Psychologen und Philosophen bis heute nicht vollständig verstanden und durchdrungen Farbe seit Jahrhunderten Thema von Physikern, Physiologen, Psychologen und Philosophen bis heute nicht vollständig verstanden und durchdrungen Meilensteine der geschichtlichen Entwicklung unserer Vorstellungen

Mehr

Licht Farbwahrnehmung Farbmodelle Farben bei der Bildgenerierung

Licht Farbwahrnehmung Farbmodelle Farben bei der Bildgenerierung Thomas Jung t.jung@htw-berlin.de Licht Farbwahrnehmung Farbmodelle Farben bei der Bildgenerierung 1 Farbwahrnehmung ist subjektiv Unterschiedliche Farbmodelle nach Anwendungsbereich Farbe ist grundlegend

Mehr

Medien- Technik. Videotechnik

Medien- Technik. Videotechnik Videotechnik 1 Optimaler Sehabstand Winkel < 1/60 Europa 625 / 50 / 2:1 USA 625 / 59.94 / 2:1 HDTV 1125 / 60 / 2:1 Seitenverhältnis 4:3 trad. 16:9 HDTV Bildwiederholrate muß bei hellem Umfeld höher sein

Mehr

Farbe. Licht Farbmodelle Farbsysteme

Farbe. Licht Farbmodelle Farbsysteme Farbe Licht Farbmodelle Farbsysteme Übungsblatt 5 http://www.uni-koblenz.de/~ugotit Organisatorisches Übung am 13.07. fällt aus. Neuer Termin 06.07. Übung am 06.07. ist damit auch letzte Übung vor der

Mehr

Vorlesung 7: Geometrische Optik

Vorlesung 7: Geometrische Optik Vorlesung 7: Geometrische Optik, Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed Geometrische Optik Beschäftigt sich mit dem Verhalten von Lichtstrahlen (= ideal schmales Lichtbündel)

Mehr

Grundlagen der Videotechnik, Farbe 2

Grundlagen der Videotechnik, Farbe 2 Grundlagen der Videotechnik, Farbe 2 1 Beispiel für additive Farbmischung: Aus: O. Limann: Fernsetechnik ohne Ballast, Franzis Verlag 2 Veranschaulichung Farbe, Farbkomponenten Aus: O. Limann: Fernsetechnik

Mehr

Ajdovic/Mühl Farbmodelle FARBMODELLE

Ajdovic/Mühl Farbmodelle FARBMODELLE FARBMODELLE Grundlagen: Gegenstände, die von einer Lichtquelle beleuchtet werden, reflektieren und absorbieren jeweils einen Teil des Lichts. Dabei wird das von den Gegenständen reflektierte Licht vom

Mehr

Farbräume. Industrielle Bildverarbeitung, Vorlesung No M. O. Franz

Farbräume. Industrielle Bildverarbeitung, Vorlesung No M. O. Franz Farbräume Industrielle Bildverarbeitung, Vorlesung No. 13 1 M. O. Franz 16.01.2008 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger & Burge, 2005. Übersicht 1 RGB- und HSV-Farbraum

Mehr

Das beidäugige Gesichtsfeld umfaßt etwa 170 Bogengrad.

Das beidäugige Gesichtsfeld umfaßt etwa 170 Bogengrad. 3 Farben 3.1 Licht 3.2 Farbwahrnehmung 3.3 RGB-Modell 3.4 CIE-Modell 3.5 YCrCb-Modell Licht: Als Licht sieht man den Teil des elektromagnetischen Spektrums zwischen etwa 400 nm bis 750 nm Wellenlänge an.

Mehr

Vorlesung 7: Geometrische Optik

Vorlesung 7: Geometrische Optik Vorlesung 7: Geometrische Optik, Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed 1 Geometrische Optik Beschäftigt sich mit dem Verhalten von Lichtstrahlen (= ideal schmales Lichtbündel)

Mehr

Bild-Erfassung Digitalisierung Abtastung/Quantisierung

Bild-Erfassung Digitalisierung Abtastung/Quantisierung Multimediatechnik / Video Bild-Erfassung Digitalisierung Abtastung/Quantisierung Oliver Lietz Bild-Erfassung Abtastung / Digitalisierung Scanner: Zeilenweise Abtastung mit CCD Digitale Kamera: Flächenweise

Mehr

2D Graphik: Pixel-Graphik Grundlagen

2D Graphik: Pixel-Graphik Grundlagen LMU München Medieninformatik Butz/Hilliges 2D Graphics WS2005 28.10.2005 Folie 1 2D Graphik: Pixel-Graphik Grundlagen Vorlesung 2D Graphik Andreas Butz, Otmar Hilliges 28.10.2005 LMU München Medieninformatik

Mehr

Farben. Grundlagen und Farbräume. Spektrale Zerlegung der sichtbaren Lichtes

Farben. Grundlagen und Farbräume. Spektrale Zerlegung der sichtbaren Lichtes Farben Grundlagen und Farbräume Spektrale Zerlegung der sichtbaren Lichtes 1 Additive und subtraktive Farbmischung Additives Modell, Grundfarben: Rot, Grün, Blau Subraktives Modell, Grundfarben: Cyan,

Mehr

Farbe in der Computergraphik

Farbe in der Computergraphik Farbe in der Computergraphik 1 Hernieder ist der Sonnen Schein, die braune Nacht fällt stark herein. 2 Gliederung 1. Definition 2. Farbwahrnehmung 3. Farbtheorie 4. Zusammenfassung 5. Quellen 3 1. Definition

Mehr

Farbtechnik und Raumgestaltung/EDV

Farbtechnik und Raumgestaltung/EDV Abb. 1 Das RGB-Farbmodell Über die additive Farbmischung werden durch die 3 Grundfarben Rot, Grün und Blau alle Farben erzeugt. Im RGB Modell werden ihre Werte je von 0 bis 1 festgelegt. R = G = B = 1

Mehr

Physikalische Grundlagen des Sehens.

Physikalische Grundlagen des Sehens. Physikalische Grundlagen des Sehens. Medizinische Physik und Statistik I WS 2016/2017 Tamás Marek 30. November 2016 Einleitung - Lichtmodelle - Brechung, - Bildentstehung Gliederung Das Sehen - Strahlengang

Mehr

Das Sehen des menschlichen Auges

Das Sehen des menschlichen Auges Das Sehen des menschlichen Auges Der Lichteinfall auf die lichtempfindlichen Organe des Auges wird durch die Iris gesteuert, welche ihren Durchmesser vergrößern oder verkleinern kann. Diese auf der Netzhaut

Mehr

Grundlagen digitaler Bildbearbeitung

Grundlagen digitaler Bildbearbeitung Grundlagen digitaler Bildbearbeitung Folie 2 Inhaltsübersicht Bitmaps und Vektorgrafiken Grafikformate Farbräume und Farbmodelle Farbmodus (Farbtiefe) Bildauflösung Webfarben Folie 3 Bitmaps und Vektorgrafiken

Mehr

Klausurtermin: Anmeldung: 2. Chance: voraussichtlich Klausur am

Klausurtermin: Anmeldung:  2. Chance: voraussichtlich Klausur am Klausurtermin: 13.02.2003 Anmeldung: www.physik.unigiessen.de/dueren/ 2. Chance: voraussichtlich Klausur am 7.4.2003 Optik: Physik des Lichtes 1. Geometrische Optik: geradlinige Ausbreitung, Reflexion,

Mehr

Vorlesung Grundlagen Videotechnik Psycho-Optik. -Geschichte: verschiedene Abstraktionsstufen

Vorlesung Grundlagen Videotechnik Psycho-Optik. -Geschichte: verschiedene Abstraktionsstufen Vorlesung Grundlagen Videotechnik Psycho-Optik -Geschichte: verschiedene Abstraktionsstufen - Abbildung 3-D auf 2-D - erste Zeichnungen, Höhlenbilder - Zerlegung in Bildpunkte: Photozellen, parallele Übertragung

Mehr

Farbmodelle in Photoshop

Farbmodelle in Photoshop Farbmodelle in Photoshop Der Farbmodus RGB (Rot Grün und Blau) beschreibt eine Farbe über bestimmte Werte für jede der drei Primärfarben. Diese Informationen sind in drei Kanälen gespeichert, jeweils einem

Mehr

Zusammenfassung Graphik - Formate. Vektorgraphik - PS, EPS, WMF geometrische Figuren, exakte Berechnung auf beliebige Größe

Zusammenfassung Graphik - Formate. Vektorgraphik - PS, EPS, WMF geometrische Figuren, exakte Berechnung auf beliebige Größe Zusammenfassung Graphik - Formate Vektorgraphik - PS, EPS, WMF geometrische Figuren, exakte Berechnung auf beliebige Größe Rastergraphik - BMP, GIF, JPEG, PNG feste Anzahl von Bildpunkten (ppi) Wiedergabe

Mehr

6. Licht, Farbe und Bilder

6. Licht, Farbe und Bilder 6. Licht, Farbe und Bilder 6.1 Licht und Farbe: Physikalische und physiologische Aspekte 6.2 Farbmodelle 6.3 Raster-Bilddatenformate 6.4 Verlustbehaftete Kompression bei Bildern Ludwig-Maximilians-Universität

Mehr

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für den 13.02.2003 unter www.physik.uni-giessen.de/ dueren/

Mehr

6. Licht, Farbe und Bilder

6. Licht, Farbe und Bilder 6. Licht, Farbe und Bilder 6.1 Licht und Farbe: Physikalische und physiologische Aspekte 6.2 Farbmodelle 6.3 Raster-Bilddatenformate 6.4 Verlustbehaftete Kompression bei Bildern 6.5 Weiterentwicklungen

Mehr

Vorkurs Physik des MINT-Kollegs

Vorkurs Physik des MINT-Kollegs Vorkurs Physik des MINT-Kollegs Optik MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum in der

Mehr

22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)

22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) 22. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche

Mehr

WAS BRINGT ULTRA HIGH TV? FKTG Regionalveranstaltung 18.Juni Prof. Dr. Rolf Hedtke

WAS BRINGT ULTRA HIGH TV? FKTG Regionalveranstaltung 18.Juni Prof. Dr. Rolf Hedtke WAS BRINGT ULTRA HIGH TV? FKTG Regionalveranstaltung 18.Juni 2013 Prof. Dr. Rolf Hedtke AGENDA - örtliche Auflösung - zeitliche Auflösung - Dynamik Auflösung - Farb Auflösung - UHD Formate - HEVC Codierung

Mehr

Die Ergebnisse der Kapiteltests werden nicht in die Berechnung der Semesternoten mit einbezogen!

Die Ergebnisse der Kapiteltests werden nicht in die Berechnung der Semesternoten mit einbezogen! Kapiteltest Optik 2 Lösungen Der Kapiteltest Optik 2 überprüft Ihr Wissen über die Kapitel... 2.3a Brechungsgesetz und Totalreflexion 2.3b Brechung des Lichtes durch verschiedene Körper 2.3c Bildentstehung

Mehr

Farbe in der Computergrafik

Farbe in der Computergrafik TU Dresden Fakultät Informatik Institut für SMT CGV Proseminar: Computergrafik Referent: Ralf Korn Dozent: Dr. W. Mascolus Farbe in der Computergrafik Diplomstudiengang Informatik Matrikelnr.: 3320569

Mehr

6. Licht, Farbe und Bilder

6. Licht, Farbe und Bilder 6. Licht, Farbe und Bilder 6.1 Licht und Farbe: Physikalische und physiologische Aspekte 6.2 Farbmodelle 6.3 Raster-Bilddatenformate 6.4 Verlustbehaftete Kompression bei Bildern 6.5 Weiterentwicklungen

Mehr

Spektren und Farben. Schulversuchspraktikum WS 2002/2003. Jetzinger Anamaria Mat.Nr.:

Spektren und Farben. Schulversuchspraktikum WS 2002/2003. Jetzinger Anamaria Mat.Nr.: Spektren und Farben Schulversuchspraktikum WS 2002/2003 Jetzinger Anamaria Mat.Nr.: 9755276 Inhaltsverzeichnis 1. Vorwissen der Schüler 2. Lernziele 3. Theoretische Grundlagen 3.1 Farbwahrnehmung 3.2 Das

Mehr

Medientechnik. Hinweise zur Klausurvorbereitung. Stand:

Medientechnik. Hinweise zur Klausurvorbereitung. Stand: Medientechnik Hinweise zur Klausurvorbereitung Stand: 30.01.17 1. Hinweise Dieses Material soll Ihnen helfen, sich auf die Klausur Medientechnik für den Studiengang Angewandte Informatik an der FH Erfurt

Mehr

6. Licht, Farbe und Bilder

6. Licht, Farbe und Bilder 6. Licht, Farbe und Bilder 6.1 Licht und Farbe: Physikalische und physiologische Aspekte 6.2 Farbmodelle 6.3 Raster-Bilddatenformate 6.4 Verlustbehaftete Kompression bei Bildern 6.5 Weiterentwicklungen

Mehr

EDV-Anwendungen im Archivwesen II

EDV-Anwendungen im Archivwesen II EDV-Anwendungen im Archivwesen II 070472 UE WS08/09 Grundlagen der Digitalisierung Überblick Allgemeine Grundlagen der Digitalisierung anhand der Ton-Digitalisierung Abtastrate (Samplerate) Wortlänge (Bitrate)

Mehr

Based on material by Werner Purgathofer, TU Wien, and Horst Bischof, TU Graz Hearn/Baker

Based on material by Werner Purgathofer, TU Wien, and Horst Bischof, TU Graz Hearn/Baker Based on material by Werner Purgathofer, TU Wien, and Horst Bischof, TU Graz Hearn/Baker 12.1-12.8 Was ist Licht? Licht = begrenztes Frequenzband des elektromagnetischen Wellenspektrums Rote Farbe: 3.8x10

Mehr

Teil 6: Farbe. Einleitung. Farbreiz vs. Farbwahrnehmung. Farbräume, Verwendung von Farbe

Teil 6: Farbe. Einleitung. Farbreiz vs. Farbwahrnehmung. Farbräume, Verwendung von Farbe Farbräume, Verwendung von Farbe Einleitung Farbe: Wichtiger Bestandteil d. vis. Wahrnehmung Mehrdimensional (Farbton, Helligkeit, etc.) Rechnen mit Farben: Farbmetrik Was ist Farbe überhaupt? Eigenschaft

Mehr

Teil 6: Farbe Farbräume, Verwendung von Farbe

Teil 6: Farbe Farbräume, Verwendung von Farbe Farbräume, Verwendung von Farbe Einleitung Farbe: Wichtiger Bestandteil d. vis. Wahrnehmung Mehrdimensional (Farbton, Helligkeit, etc.) Rechnen mit Farben: Farbmetrik Was ist Farbe überhaupt? Eigenschaft

Mehr

Broschüre-Licht und Farbe

Broschüre-Licht und Farbe Broschüre-Licht und Farbe Juliane Banach Juni 2008 bearbeitet mit: FreeHand 2007 Inhaltsverzeichnis Kapitel Seite Was ist Licht? 4 Das Auge 5 Stäbchen und Zapfen 6 Dispersion 7 Farbspektrum 8 Absorption

Mehr

PHYSIKTEST 4C April 2016 GRUPPE A

PHYSIKTEST 4C April 2016 GRUPPE A PHYSIKTEST 4C April 2016 GRUPPE A SCHÜLERNAME: PUNKTEANZAHL: /20 NOTE: NOTENSCHLÜSSEL 18-20 Sehr Gut (1) 15-17 Gut (2) 13-14 Befriedigend (3) 10-12 Genügend (4) 0-9 Nicht Genügend (5) Aufgabe 1. (2 Punkte)

Mehr

Tutorium Physik 2. Optik

Tutorium Physik 2. Optik 1 Tutorium Physik 2. Optik SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 11. OPTIK - REFLEXION 11.1 Einführung Optik:

Mehr

Prof. Dr. Horst Fischer // Dr. Kim Heidegger WS 2017/2018

Prof. Dr. Horst Fischer // Dr. Kim Heidegger WS 2017/2018 Pro. Dr. Horst Fischer // Dr. Kim Heidegger WS 2017/2018 rundlagen der Physik mit Experimenten ür Studierende der Medizin, Zahnmedizin und Pharmazie Übungsaugaben ür die Übungsstunde in der Woche vom 08.01.18

Mehr

VIDEO. Videos von CD oder DVD abspielen Videos im Netz finden Videos von der Kamera/ vom Fotoapparat einspielen

VIDEO. Videos von CD oder DVD abspielen Videos im Netz finden Videos von der Kamera/ vom Fotoapparat einspielen VIDEO VIDEO Videos von CD oder DVD abspielen Videos im Netz finden Videos von der Kamera/ vom Fotoapparat einspielen WIE IST EIN DIGITALES FOTO AUFGEBAUT? CAMERA OBSCURA BIS ZUR DIGITALKAMERA DIE AUFLÖSUNG

Mehr

Grafikformate. Auflösung Farbtiefe Farbmodelle

Grafikformate. Auflösung Farbtiefe Farbmodelle Farblehre Grafikformate Auflösung Farbtiefe Farbmodelle Grafikformate 1. Auflösung Je höher die Auflösung umso besser das Bild. niedrig mittel hoch 09.03.2007 2 Auflösung 1cm 1cm 1 Pixel pro cm Auflösung

Mehr

Digitale Videotechnik

Digitale Videotechnik Digitale Videotechnik Prof. Dr. Hansjörg Mixdorff Digitale Videotechnik, WS 02/03, TFH Berlin G. Heising, H. Mixdorff 1 1 1 Hansjörg Mixdorff seit April 2001 an der TFH Berlin Professor für Digitale A/V-Technik

Mehr

Einblicke in ein W-Seminar Farben

Einblicke in ein W-Seminar Farben Einblicke in ein W-Seminar Farben Lehrerfortbildung Bayreuth, 13.10.11 StR Dr. Michael Bail Gymnasium Fränkische Schweiz, Ebermannstadt/ Bayerischer Philologenverband 1 Inhalt Farbwahrnehmung RGB-Displays

Mehr

Spiegelsymmetrie. Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert

Spiegelsymmetrie. Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert Ebener Spiegel Spiegelsymmetrie Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert Konstruktion des Bildes beim ebenen Spiegel Reelles Bild: Alle Strahlen schneiden sich Virtuelles

Mehr

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Optik (Physik)

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Optik (Physik) SMART Sammlung mathematischer Aufgaben als Hypertext mit TEX Optik (Physik) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität Bayreuth 1. Mai

Mehr

Multimediatechnik / Video

Multimediatechnik / Video Multimediatechnik / Video Video-Kompression Zusammenfassung http://www.nanocosmos.de/lietz/mtv 2009 1 Motivation: Video-Kompression Unkomprimierte Datenmengen sind zu groß! TV: 20 MB/s = 72 GB/h (720x576x2x25)

Mehr

Kapitel 12. Geometrische Optik 12.1 Lichtausbreitung 12.2 Reflexion und Brechung 12.3 Spiegel 12.4 Linsen 12.5 optische Instrumente

Kapitel 12. Geometrische Optik 12.1 Lichtausbreitung 12.2 Reflexion und Brechung 12.3 Spiegel 12.4 Linsen 12.5 optische Instrumente Geometrische Optik.1 Lichtausbreitung.2 Reflexion und Brechung.3 Spiegel.4 Linsen.5 optische Instrumente Licht Konzept-Test a: Spiegelbild ein Blick in den Spiegel Wie groß muss planer Spiegel sein um

Mehr

Welle-Teilchendualismus. Reflexion. Brechungsgesetz. Elektromagnetische Wellen haben sowohl Wellen- als auch Teilcheneigenschaften

Welle-Teilchendualismus. Reflexion. Brechungsgesetz. Elektromagnetische Wellen haben sowohl Wellen- als auch Teilcheneigenschaften Welle-Teilchendualismus Elektromagnetische Wellen haben sowohl Wellen- als auch Teilcheneigenschaften Holger Scheidt Optik 2 Reflexion Brechung Beugung Interferenz Kohärenz Polarisierbarkeit Optik Absorption

Mehr

NG Brechzahl von Glas

NG Brechzahl von Glas NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes

Mehr

Kontrollaufgaben zur Optik

Kontrollaufgaben zur Optik Kontrollaufgaben zur Optik 1. Wie schnell bewegt sich Licht im Vakuum? 2. Warum hat die Lichtgeschwindigkeit gemäss moderner Physik eine spezielle Bedeutung? 3. Wie nennt man die elektromagnetische Strahlung,

Mehr

Zusammenfassung Graphik - Formate. Vektorgraphik - PS, EPS, WMF geometrische Figuren, exakte Berechnung auf beliebige Größe

Zusammenfassung Graphik - Formate. Vektorgraphik - PS, EPS, WMF geometrische Figuren, exakte Berechnung auf beliebige Größe Zusammenfassung Graphik - Formate Vektorgraphik - PS, EPS, WMF geometrische Figuren, exakte Berechnung auf beliebige Größe Rastergraphik - BMP, GIF, JPEG, PNG feste Anzahl von Bildpunkten (ppi) Wiedergabe

Mehr

3 Farben. 3.1 Farbassoziationen. 3.2 Licht. 3.3 Farbwahrnehmung. 3.4 Modelle RGB und CMYK. 3.5 CIE-Modell. 3.6 YCrCb-Modell. Farbassoziationen:

3 Farben. 3.1 Farbassoziationen. 3.2 Licht. 3.3 Farbwahrnehmung. 3.4 Modelle RGB und CMYK. 3.5 CIE-Modell. 3.6 YCrCb-Modell. Farbassoziationen: Farbassoziationen: 3 Farben 3.1 Farbassoziationen 3.2 Licht 3.3 Farbwahrnehmung 3.4 Modelle RGB und CMYK Mit Farben assoziiert man häufig Begriffe, Stimmungen, Emotionen oder Eigenschaften. Einige Beispiele

Mehr

Videos von CD oder DVD abspielen Videos im Netz finden Videos von der Kamera/vom Fotoapparat einspielen

Videos von CD oder DVD abspielen Videos im Netz finden Videos von der Kamera/vom Fotoapparat einspielen Videos von CD oder DVD abspielen Videos im Netz finden Videos von der Kamera/vom Fotoapparat einspielen WIE IST EIN DIGITALES FOTO AUFGEBAUT? CAMERA OBSCURA BIS ZUR DIGITALKAMERA DIE AUFLÖSUNG FILM-

Mehr

Physik 3 exp. Teil. 30. Optische Reflexion, Brechung und Polarisation

Physik 3 exp. Teil. 30. Optische Reflexion, Brechung und Polarisation Physik 3 exp. Teil. 30. Optische Reflexion, Brechung und Polarisation Es gibt zwei Möglichkeiten, ein Objekt zu sehen: (1) Wir sehen das vom Objekt emittierte Licht direkt (eine Glühlampe, eine Flamme,

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik 2 (GPh2) am 17.09.2013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter

Mehr

Farbe in der Computergraphik

Farbe in der Computergraphik Farbe in der Computergraphik Farbe in der Computergraphik Gliederung: Licht und Farbe Farbspezifikation Farbmodelle Gamma und Gammakorrektur B. Preim AG Visualisierung Farbe 2 Farbe in der Computergraphik

Mehr

Messen optischer Größen, Messen aus Bildern Übersicht Optische Strahlung, Sensorik Geometrie, Photogrammetrie Kamerakalibrierung Stereo

Messen optischer Größen, Messen aus Bildern Übersicht Optische Strahlung, Sensorik Geometrie, Photogrammetrie Kamerakalibrierung Stereo Messen optischer Größen, Messen aus Bildern Übersicht Optische Strahlung, Sensorik Geometrie, Photogrammetrie Kamerakalibrierung Stereo Menschliche Wahrnehmung Neurophysiologie Kognitive Psychologie Digitale

Mehr

Kapitel 6. Optik. 6.1 Licht 6.2 Strahlenoptik 6.3 Linsen 6.4 Optische Systeme. Einführung in die Physik für Studierende der Pharmazie

Kapitel 6. Optik. 6.1 Licht 6.2 Strahlenoptik 6.3 Linsen 6.4 Optische Systeme. Einführung in die Physik für Studierende der Pharmazie Kapitel 6 Optik 6.2 Strahlenoptik 6.3 Linsen 6.4 Optische Systeme Einführung in die Physik für Studierende der Pharmazie 1 Einführung in die Physik für Studierende der Pharmazie 2 Die Lichtgeschwindigkeit

Mehr

Visual Computing Theoretische Übung Light & Colors

Visual Computing Theoretische Übung Light & Colors Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Prof. M. Gross Remo Ziegler / Chistian Voegeli / Daniel Cotting ) Definitionen Visual Computing Theoretische Übung

Mehr

FARBEN IM INTERNET FARBWERTE, FARBTIEFEN IN DER BILDBEARBEITUNG

FARBEN IM INTERNET FARBWERTE, FARBTIEFEN IN DER BILDBEARBEITUNG FARBEN IM INTERNET FARBWERTE, FARBTIEFEN IN DER BILDBEARBEITUNG Unter dem Begriff Farbtiefe versteht man die Anzahl der pro Pixel zur Verfügung stehenden Bits zur Speicherung der Farbinformationen. Die

Mehr

Physik für Naturwissenschaften. Dr. Andreas Reichert

Physik für Naturwissenschaften. Dr. Andreas Reichert Physik für Naturwissenschaften Dr. Andreas Reichert Termine Klausur: 5. Februar?, 12-14 Uhr, Raum wird noch bekannt gegeben Sprechstunde: Montags ab 13:30-14:30 Uhr Raum MC 244, Campus Duisburg andreas.reichert@uni-due.de

Mehr

Wie lautet das Lichtsteuerprotokoll? Was bedeutet DMX? Wie viel Kanäle besitzt eine DMX-Verbindung und wie wird sie als ganzes bezeichnet?

Wie lautet das Lichtsteuerprotokoll? Was bedeutet DMX? Wie viel Kanäle besitzt eine DMX-Verbindung und wie wird sie als ganzes bezeichnet? Was bedeutet DMX? Wie lautet das Lichtsteuerprotokoll? Wie viel Kanäle besitzt eine DMX-Verbindung und wie wird sie als ganzes bezeichnet? Wie viel Byte bzw. mögliche Werte können über einen DMX-Kanal

Mehr

Physik - Optik. Physik. Graz, 2012. Sonja Draxler

Physik - Optik. Physik. Graz, 2012. Sonja Draxler Wir unterscheiden: Geometrische Optik: Licht folgt dem geometrischen Strahlengang! Brechung, Spiegel, Brechung, Regenbogen, Dispersion, Linsen, Brillen, optische Geräte Wellenoptik: Beugung, Interferenz,

Mehr

LMU München LFE Medieninformatik Mensch-Maschine Interaktion (Prof. Dr. Florian Alt) SS2016. Mensch-Maschine-Interaktion

LMU München LFE Medieninformatik Mensch-Maschine Interaktion (Prof. Dr. Florian Alt) SS2016. Mensch-Maschine-Interaktion 1 Mensch-Maschine-Interaktion Kapitel 2 - Wahrnehmung Sehsinn und visuelle Wahrnehmung Physiologie der visuellen Wahrnehmung Farbwahrnehmung Attentive und präattentive Wahrnehmung Gestaltgesetze Hörsinn

Mehr

Protokoll. Farben und Spektren. Thomas Altendorfer 9956153

Protokoll. Farben und Spektren. Thomas Altendorfer 9956153 Protokoll Farben und Spektren Thomas Altendorfer 9956153 1 Inhaltsverzeichnis Einleitung Ziele, Vorwissen 3 Theoretische Grundlagen 3-6 Versuche 1.) 3 D Würfel 7 2.) Additive Farbmischung 8 3.) Haus 9

Mehr

Teilskript zur LV "Optik 1" Paraxiale Abbildungseigenschaften sphärischer Linsen Seite 1

Teilskript zur LV Optik 1 Paraxiale Abbildungseigenschaften sphärischer Linsen Seite 1 Teilskript zur LV "Optik " sphärischer Linsen Seite Objekt (optisch) Gesamtheit von Objektpunkten, von denen jeweils ein Bündel von Lichtstrahlen ausgeht Wahrnehmen eines Objektes Ermittlung der Ausgangspunkte

Mehr

Vorlesung : Roter Faden:

Vorlesung : Roter Faden: Vorlesung 5+6+7: Roter Faden: Heute: Wellenoptik, geometrische Optik (Strahlenoptik) http://www-linux.gsi.de/~wolle/telekolleg/schwingung/index.html Versuche: Applets: http://www.walter-fendt.de/ph4d huygens,

Mehr

-Pixelgrafik, Rastergrafik Beispiele: bmp (Bitmap) tiff (Tagged Image File Format, u. a. Rastergrafik, aber auch mehr) raw (reine Pixeldaten)

-Pixelgrafik, Rastergrafik Beispiele: bmp (Bitmap) tiff (Tagged Image File Format, u. a. Rastergrafik, aber auch mehr) raw (reine Pixeldaten) Multimediale Werkzeuge, Bildobjekte -Beispiel für ein Programm zur Bearbeitung von Bildern: Adobe Photoshop. Speichern in unterschiedlichen Formaten, Bearbeiten z.b. unscharf filtern, scharf filtern...

Mehr

Musterprüfung Wie schnell breiten sich elektromagnetische Wellen im Vakuum aus?

Musterprüfung Wie schnell breiten sich elektromagnetische Wellen im Vakuum aus? 1 Module: Elektromagnetische Strahlung Linsen Optische Geräte Musterprüfung 1. Teil: Elektromagnetische Strahlung 1.1. Ordne die verschiedenen Arten elektromagnetischer Wellen nach abnehmender Wellenlänge.

Mehr

Farbmetrik & Farbmanagement. Sebastian J. Fricke Mediengestalter für Digital- und Printmedien Medieninformatikstudent

Farbmetrik & Farbmanagement. Sebastian J. Fricke Mediengestalter für Digital- und Printmedien Medieninformatikstudent Farbmetrik & Farbmanagement Was ist Farbe? Farbmanagement Ausgabemedium Was ist Farbe? Farbmanagement Ausgabemedium Farbe ist ein optischer Einfluss. Farbe entsteht nur durch Licht. Farbe ist ein optischer

Mehr