TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK

Größe: px
Ab Seite anzeigen:

Download "TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK"

Transkript

1 TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 11 Prof. Dr. Helmut Seidl, S. Pott, V. Prinz Abgabe: (vor der Vorlesung) Aufgabe 11.1 (P) Kürzeste Wege Gegeben sei ein Graph mit n Knoten, der keine Kreise negativer Länge besitzt. a) Zeigen Sie, dass in einem Graphen alle Teilpfade eines kürzesten Weges auch wieder kürzeste Wege zwischen den entsprechenden Knoten sind. b) Angenommen von einem Knoten s sind alle anderen Knoten erreichbar. Zeigen Sie, dass man in dem Graphen einen an s gewurzelten Spannbaum finden kann, so dass jeder (gerichtete) Teilpfad dieses Baums ein kürzester Pfad zwischen seinen Endknoten ist. Hinweis: Nehmen Sie zunächst an, alle kürzesten Pfade wären eindeutig und betrachten Sie den Teilgraph bestehend aus allen kürzesten Pfaden, die bei s beginnen. Zeigen Sie, dass dieser Teilgraph ein Baum ist und erweitern Sie die Argumentation auf den Fall, wenn kürzeste Pfade nicht eindeutig sind. Lösungsvorschlag 11.1 a) Indirekter Beweis: Angenommen, es gibt in einem Graphen einen kürzesten Pfad (v 0,v 1,...,v k ) zwischen zwei Knoten v 0 und v k, so dass ein Teilpfad p 2 = (v i,...,v j ) kein kürzester Pfad zwischen v i und v j ist. Das würde bedeuten, dass es einen kürzeren Pfad p 2 gibt. Da sich die Länge des kürzesten Weges zwischen v 0 und v k aus den Längen der Teilpfade p 1 = (v 0,...,v i ), p 2 = (v i,...,v j ) und p 3 = (v j,...,v k ) zusammensetzt, könnte man einen kürzeren Pfad zwischen v 0 und v k konstruieren, indem man p 2 durch p 2 ersetzt, was im Widerspruch zur Annahme steht, dass der ursprüngliche Pfad (v 0,v 1,...,v k ) von minimaler Länge sein sollte. Die Annahme muss also falsch sein, und damit kann man keinen Teilpfad eines kürzesten Pfades finden, der selbst kein kürzester Pfad zwischen seinen Endknoten ist. b) Da der Graph keine Kreise negativer Länge enthält und da jeder Knoten vom Knoten s erreichbar ist, muss es von s aus zu jedem anderen Knoten mindestens einen kürzesten Pfad geben, in dem kein Knoten mehr als einmal vorkommt. (Sollte auf einem kürzesten Weg zu einem Knoten t ein Knoten v mehrmals vorkommen, dann kann der Teilpfad zwischen dem ersten und dem letzten Auftreten von v nur die Länge 0 haben. Für eine Länge echt kleiner als Null, wäre dies ein verbotener Kreis negativer Länge. Für eine Länge echt größer als Null wäre der Teilpfad von v nach v kein kürzester Pfad, was ein Widerspruch wäre. Einen Kreis der Länge Null könnte man aber entfernen, so dass v nur einmal im kürzesten Pfad enthalten wäre.) Wenn wir nun annehmen, dass zwischen jedem Paar (s,v i ) von Knoten nur jeweils ein kürzester Pfad von s nach v i existiert, dann ist die entstehende Struktur, die die

2 2 kürzesten Wege von s aus repräsentiert, ein (gerichteter) Baum mit der Wurzel s, denn es gibt in diesem Graph nur gerichtete Pfade, die entweder (eindeutige, kreisfreie) kürzeste Pfade von s zu einem Knoten sind, oder eben deren Teilpfade, die nach Teilaufgabe a) auch (eindeutige) kürzeste Pfade sind. (Es gibt keine Pfade, die die Wurzel überqueren, und auch keine Pfade, die von unterschiedlichen Knoten zum selben Zielknoten führen.) Sollte es Paare von Knoten geben, für die es mehr als einen kreisfreien kürzesten Pfad gibt, dann kann man die Anzahl der Kanten reduzieren, in dem man bei einem Knoten x mit Eingangsgrad größer als Eins eine eingehende Kante entfernt. Dieser Knoten ist nach wie vor von s erreichbar (und jeder solche Pfad muss ein kürzester Pfad sein). Alle gerichteten Wege zu diesem Knoten x sind also nach wie vor kürzeste Wege, denn sie sind (immer noch) Teilpfade eines kürzesten Pfades von s nach x. Diese Kantenlöschung kann man fortsetzen, bis alle Knoten außer s Eingangsgrad Eins haben. In diesem Fall ist der resultierende Graph wieder ein gerichteter Baum mit Wurzel s. Aufgabe 11.2 (P) Lange Wege Betrachten Sie die folgenden Währungen (AUD = Australische Dollar, BRL = Brasilianische Real, CNY = Chinesische Renminbi Yuan, EUR = Euro, GBP = Groß Britanische Pfund, JPY = Japanische Yen, USD = US Dollar) und ihre Wechselkurse (gerundete interbank rate, Stand: ) AUD BRL CNY EUR GBP JPY USD AUD 1,00 1,59 5,45 0,57 0,49 76,48 0,80 BRL 0,63 1,00 3,44 0,36 0,31 48,24 0,50 CNY 0,18 0,29 1,00 0,11 0,09 14,07 0,15 EUR 1,74 2,77 9,50 1,00 0,85 133,28 1,39 GBP 2,06 3,28 11,25 1,18 1,00 157,73 1,64 JPY 0,01 0,02 0,07 0,01 0,01 1,00 0,01 USD 1,26 2,00 6,85 0,72 0,61 96,00 1,00 Zur Vereinfachung nehmen wir an, das keine Wechselgebühren anfallen. a) Tauschen sie 100 EUR in USD. Suchen Sie einen Weg um mehr als die dem Kurs entsprechenden 139 USD zu erhalten. b) Läßt sich dieses Problem mit einem Algorithmus aus der VL automatisieren? Welche Modifikationen muss man dazu vornehmen? c) Was entspricht in dieser Situation einem Kreis negativen Gewichts? d) Gibt es in obigem Graphen einen solchen Kreis? Was bedeutet das? e) Für Interessierte: Finden Sie einen Algorithmus (modifizieren Sie obigen) der, gegeben eine solche Kursmatrix, Kreise negativen Gewichts ausgibt. f) Für Interessierte: Betrachten Sie die Situation mit Wechselgebühren.

3 3 Lösungsvorschlag 11.2 a) Tauscht man zunächst zu CNY erhält man 142, 50 USD Durch Rundungsfehler ist der Tausch von JPY zu GBP sehr vorteilhaft. Zum Beispiel erreicht man mit der Folge EUR JPY GBP USD absurde USD. b) Es handelt sich um ein kürzeste Wege -Problem, wobei die Wechselkurse den Kantengewichten entsprechen. Allerdings arbeitet man hier multiplikativ. Man muss die Gewichte eines Weges multiplizieren anstatt sie zu addieren um das Gewicht des Weges zu bestimmen. Des Weiteren interessieren uns möglichst gute, also hohe, nicht niedrige, Kurse. Entsprechend sucht man längste Wege und vergleicht mit statt. Es ist zu beachten, das Kurse kleiner 1 negativen Gewichten entsprechen, wodurch Dijkstras Algorithmus unbrauchbar wird (mit obigen Modifikationen sind die positiven Gewichte das Problem). Für den Bellman-Ford Algortihmus sind zusätzlich und + zu vertauschen. c) Eine Folge von Wechseln an deren Ende man die Ausgangswährung zurück hat, aber einen Gesamtkurs echt größer 1. d) Ja, tauscht man die 142, 50 USD aus Teil a) wieder zurück erhält man 102, 60 EUR. Das bedeutet, dass man durch einfaches Geldwechseln ohne Risiko oder Investition Profit erzeugen kann auch Arbitrage genannt. Auch mit Gebühren und ungerundeten Kursen existieren solche Kreise und werden genutzt. Dieses Verfahren ist jedoch hochgradig inflationär und bestenfalls fragwürdig. f) Wenn im Bellman-Ford Algorithmus die infect(w) Methode aufgerufen wird existiert auf dem Pfad zu w ein negativer Kreis. Da positive Kreise nicht vorkommen, folgt man von w aus den Vaterverweisen solange, bis sich ein Knoten (u) wiederholt und gibt u mit den Knoten zwischen den beiden Vorkommen von u aus. e) Für prozentuale Gebühren kann man einfach die Wechselkurse um diesen Wert senken. Feste Gebühren können zumindest abgeschätzt werden, indem man einen üblichen Wechselbetrag wählt. Aufgabe 11.3 [5 Punkte] (H) Dijkstra Laden Sie sich die Klassen WeightedGraph.java, WeightedEdge.java und Node.java von der Übungsseite. Implementieren Sie eine Klasse Dijkstra, die eine Methode computeshortestpaths bereitstellt. Parameter der Methode sind eine Instanz eines gewichteten Graphen sowie ein Knoten des Graphen als Startknoten. Die Methode soll, basierend auf dem Algorithmus von Dijkstra, alle kürzesten Wege des gewichteten Graphen berechnen. Anschließend soll für jeden Knoten die Distanz zum Startknoten sowie der direkte Vorgängerknoten (parent) ausgegeben werden. Testen Sie Ihre Implementierung anhand des gewichteten Graphen aus Blatt 10, Aufgabe 5. Vergleichen Sie Ihre Ausgabe mit der zugehörigen Lösung. Geben Sie Ihre Implementierung mit dem Testfall ab. Lösungsvorschlag 11.3 s. Dijkstra.java, DijkstraItem.java, DijkstraItemComparator.java

4 4 Aufgabe 11.4 [5 Punkte] (H) Bellman-Ford Algorithmus Betrachten Sie folgenden Graphen G: e -8, e 11 2, e 12 d 1, e 10 0, e 7 5, e 8-3, e 6 b 8, e 4-1, e 5 a 4, e 2 f c -3, e 9 6, e 1 s 3, e 3 Berechnen Sie unter Verwendung des Bellman-Ford Algorithmus, ausgehend von s, alle kürzesten Wege. Geben Sie die aktuellen Distanzen von s und den aktuellen Vater aller Knoten nach jedem Durchlauf des Algorithmus über alle Graphkanten an. Arbeiten Sie die Kanten in der Reihenfolge e 1,e 2,e 3,...,e 12 ab. Tragen Sie die Ergebnisse in eine Tabelle der in Abbildung 1 dargestellten Form ein. Skizzieren Sie zudem den resultierenden Baum, der alle kürzesten Wege enthält. Lösungsvorschlag 11.4 s a b c d e f Start 0, s,,,,,, Zwischenergebnis bis e 4 0, s 6, s 4, s 3, s,,, Runde 1 0, s 6, s 2, c 3, s 2, b 9, f 7, b Runde 2 0, s -1, d 2, c 3, s 1, e 9, f 7, b Runde 3 0, s -2, d 2, c 3, s 1, e 9, f 7, b Runde 4-6 0, s -2, d 2, c 3, s 1, e 9, f 7, b Runde 7 0, s -2, d 2, c 3, s 1, e 9, f 7, b fertig, da in der 7. Runde keine Änderung passiert.

5 5 e d f b a c s Abbildung 1: Skizze aller kürzesten Wege.

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Routing Algorithmen. Begriffe, Definitionen

Routing Algorithmen. Begriffe, Definitionen Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange

Mehr

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Wasist das? Maximaler Fluss Minimaler Schnitt Warumtut man das? Logistische

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

Algorithmische Mathematik

Algorithmische Mathematik Algorithmische Mathematik Wintersemester 2013 Prof. Dr. Marc Alexander Schweitzer und Dr. Einar Smith Patrick Diehl und Daniel Wissel Übungsblatt 6. Abgabe am 02.12.2013. Aufgabe 1. (Netzwerke und Definitionen)

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Erzeugung zufälliger Graphen und Bayes-Netze

Erzeugung zufälliger Graphen und Bayes-Netze Erzeugung zufälliger Graphen und Bayes-Netze Proseminar Algorithmen auf Graphen Georg Lukas, IF2000 2002-07-09 E-Mail: georg@op-co.de Folien: http://op-co.de/bayes/ Gliederung 1. Einleitung 2. einfache

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Übung zur Vorlesung Algorithmische Geometrie

Übung zur Vorlesung Algorithmische Geometrie Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)

Mehr

4.7 Der Algorithmus von Dinic für maximalen Fluss

4.7 Der Algorithmus von Dinic für maximalen Fluss 4.7 Der Algorithmus von Dinic für maximalen Fluss Wir kennen bereits den Algorithmus von Ford Fulkerson zur Suche nach einem maximalen Fluss in einem Graphen. Wir lernen nun einen Algorithmus für maximalen

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine Kreise enthält. Diese Graphen sind Bäume: Diese aber nicht:

Mehr

Statistische Untersuchungen zu endlichen Funktionsgraphen

Statistische Untersuchungen zu endlichen Funktionsgraphen C# Projekt 1 Name: Statistische Untersuchungen zu endlichen Funktionsgraphen Aufgabe: Basierend auf dem Abschnitt 2.1.6. Random mappings, Kap.2, S 54-55, in [1] sollen zunächst für eine beliebige Funktion

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Prioritätswarteschlangen Mariano Zelke Datenstrukturen 2/28 Der abstrakte Datentyp Prioritätswarteschlange : Füge Elemente (mit Prioritäten) ein und entferne

Mehr

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung Theoretische Informatik Rainer Schrader Zentrum für Angewandte Informatik Köln 14. Juli 2009 1 / 40 2 / 40 Beispiele: Aus den bisher gemachten Überlegungen ergibt sich: aus der Chomsky-Hierarchie bleiben

Mehr

Algorithmen und Datenstrukturen 2-2. Seminar -

Algorithmen und Datenstrukturen 2-2. Seminar - Algorithmen und Datenstrukturen 2-2. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 2. Übungsserie: 3 Aufgaben, insgesamt 30 Punkte A4 Flußnetzwerk, Restgraphen

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine einfachen Kreise enthält. Bäume und Wälder 2 / 37 Bäume

Mehr

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 1, 2015 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Klausur Informatik B April Teil I: Informatik 3

Klausur Informatik B April Teil I: Informatik 3 Informatik 3 Seite 1 von 8 Klausur Informatik B April 1998 Teil I: Informatik 3 Informatik 3 Seite 2 von 8 Aufgabe 1: Fragekatalog (gesamt 5 ) Beantworten Sie folgende Fragen kurz in ein oder zwei Sätzen.

Mehr

4. Kreis- und Wegeprobleme Abstände in Graphen

4. Kreis- und Wegeprobleme Abstände in Graphen 4. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 4.4. Es sei G = (V,E) ein Graph. Der Abstand d(v,w) zweier Knoten v,w V ist die minimale Länge eines Weges von v nach w. Falls

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI

Mehr

Graphentheorie. Maximale Flüsse. Maximale Flüsse. Maximale Flüsse. Rainer Schrader. 31. Oktober Gliederung. sei G = (V, A) ein gerichteter Graph

Graphentheorie. Maximale Flüsse. Maximale Flüsse. Maximale Flüsse. Rainer Schrader. 31. Oktober Gliederung. sei G = (V, A) ein gerichteter Graph Graphentheorie Rainer Schrader Zentrum ür Angewandte Inormatik Köln 31. Oktober 2007 1 / 30 2 / 30 Gliederung maximale Flüsse Schnitte Edmonds-Karp-Variante sei G = (V, A) ein gerichteter Graph sei c eine

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Fully dynamic algorithms for the single source shortest path problem.

Fully dynamic algorithms for the single source shortest path problem. Fully dynamic algorithms for the single source shortest path problem. Michael Baur Wintersemester 2001/2002 Zusammenfassung Im folgenden Paper werde ich Algorithmen für das dynamische Kürzeste-Wege-Problem

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Abgabe: (vor 12 Uhr) Aufgabe 3.1 (P) Kontrollflussgraph. Zeichnen Sie für das folgende MiniJava-Programm den Kontrollflussgraphen.

Abgabe: (vor 12 Uhr) Aufgabe 3.1 (P) Kontrollflussgraph. Zeichnen Sie für das folgende MiniJava-Programm den Kontrollflussgraphen. TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2011 Einführung in die Informatik I Übungsblatt 3 Prof. Dr. Helmut Seidl, A. Lehmann, A. Herz,

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes

Mehr

Algorithmik Funke/Bahrdt/Krumpe/Mendel/Seybold SS Übungsblatt 4

Algorithmik Funke/Bahrdt/Krumpe/Mendel/Seybold SS Übungsblatt 4 Algorithmik Funke/Bahrdt/Krumpe/Mendel/Seybold SS 2015 http://www.fmi.informatik.uni-stuttgart.de/alg Institut für Formale Methoden der Informatik Universität Stuttgart Übungsblatt 4 Punkte: 50 Problem

Mehr

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1

Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Bäume 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Inhalt Grundbegriffe: Baum, Binärbaum Binäre Suchbäume (Definition) Typische Aufgaben Suchaufwand Löschen allgemein, Methode Schlüsseltransfer

Mehr

Theoretische Informatik SS 03 Übung 11

Theoretische Informatik SS 03 Übung 11 Theoretische Informatik SS 03 Übung 11 Aufgabe 1 Zeigen Sie, dass es eine einfachere Reduktion (als die in der Vorlesung durchgeführte) von SAT auf 3KNF-SAT gibt, wenn man annimmt, dass die Formel des

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 9 10.12.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T20 Beweisen Sie die

Mehr

ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK

ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK (HAUPTTERMIN) Bearbeitungszeit: 270 Minuten Hilfsmittel: Wörterbuch zur deutschen Rechtschreibung Taschenrechner (nicht programmierbar, nicht grafikfähig) (Schüler,

Mehr

Uninformierte Suche in Java Informierte Suchverfahren

Uninformierte Suche in Java Informierte Suchverfahren Uninformierte Suche in Java Informierte Suchverfahren Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Suchprobleme bestehen aus Zuständen

Mehr

Übungen zu Programmierung I - Blatt 8

Übungen zu Programmierung I - Blatt 8 Dr. G. Zachmann A. Greß Universität Bonn Institut für Informatik II 1. Dezember 2004 Wintersemester 2004/2005 Übungen zu Programmierung I - Blatt 8 Abgabe am Mittwoch, dem 15.12.2004, 15:00 Uhr per E-Mail

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 1 für die Übung

Mehr

Unterscheidung: Workflowsystem vs. Informationssystem

Unterscheidung: Workflowsystem vs. Informationssystem 1. Vorwort 1.1. Gemeinsamkeiten Unterscheidung: Workflowsystem vs. Die Überschneidungsfläche zwischen Workflowsystem und ist die Domäne, also dass es darum geht, Varianten eines Dokuments schrittweise

Mehr

Vorlesung 4 BETWEENNESS CENTRALITY

Vorlesung 4 BETWEENNESS CENTRALITY Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Tutoraufgabe 1 (2 3 4 Bäume):

Tutoraufgabe 1 (2 3 4 Bäume): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Übungsblatt (Abgabe.0.0) F. Corzilius, S. Schupp, T. Ströder Allgemeine Hinweise: Die Hausaufgaben sollen in Gruppen von je bis Studierenden aus

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Institut für Programmierung und Reaktive Systeme 25. August 2014. Programmier-Labor. 04. + 05. Übungsblatt. int binarysearch(int[] a, int x),

Institut für Programmierung und Reaktive Systeme 25. August 2014. Programmier-Labor. 04. + 05. Übungsblatt. int binarysearch(int[] a, int x), Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 25. August 2014 Programmier-Labor 04. + 05. Übungsblatt Aufgabe 21: a) Schreiben Sie eine Methode

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Graphen. Formale Methoden der Informatik WiSe 2010/2011 teil 2, folie 1 (von 60)

Graphen. Formale Methoden der Informatik WiSe 2010/2011 teil 2, folie 1 (von 60) Graphen Formale Methoden der Informatik WiSe 2010/2011 teil 2, folie 1 (von 60) Teil II: Graphen 1. Einführung 2. Wege und Kreise in Graphen, Bäume 3. Planare Graphen / Traveling Salesman Problem 4. Transportnetzwerke

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 18, 2012 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Datenstrukturen und Algorithmen SS07

Datenstrukturen und Algorithmen SS07 Datenstrukturen und Algorithmen SS07 Datum: 27.6.2007 Michael Belfrage mbe@student.ethz.ch belfrage.net/eth Programm von Heute Online Algorithmen Update von Listen Move to Front (MTF) Transpose Approximationen

Mehr

Die Ein- und Ausfuhr von Ägyptischen Pfund ist auf 5.000 EGP beschränkt.

Die Ein- und Ausfuhr von Ägyptischen Pfund ist auf 5.000 EGP beschränkt. Ägypten Ägyptische Pfund / EGP Die Ein- und Ausfuhr von Ägyptischen Pfund ist auf 5.000 EGP beschränkt. Mitnahme von EURO-Bargeld oder Reiseschecks, da der Umtausch in Ägypten ca. 10% günstiger ist. Ein

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 3.2.07 astian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben

Mehr

11.1 Grundlagen - Denitionen

11.1 Grundlagen - Denitionen 11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die

Mehr

C++, LEDA und STL Visualisierung minimal/maximal aufspannender Bäume

C++, LEDA und STL Visualisierung minimal/maximal aufspannender Bäume Fachbereich IV, Informatik Softwarepraktikum C++, LEDA und STL Visualisierung minimal/maximal aufspannender Bäume Wintersemester 2004/2005 Dokumentation Algorithmen zur Lösung von MST - Problemen Nicolas

Mehr

3 Quellencodierung. 3.1 Einleitung

3 Quellencodierung. 3.1 Einleitung Source coding is what Alice uses to save money on her telephone bills. It is usually used for data compression, in other words, to make messages shorter. John Gordon 3 Quellencodierung 3. Einleitung Im

Mehr

9. Heuristische Suche

9. Heuristische Suche 9. Heuristische Suche Prof. Dr. Rudolf Kruse University of Magdeburg Faculty of Computer Science Magdeburg, Germany rudolf.kruse@cs.uni-magdeburg.de S Heuristische Suche Idee: Wir nutzen eine (heuristische)

Mehr

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas

Mehr

Algorithmen und Datenstrukturen (WS 2007/08) 63

Algorithmen und Datenstrukturen (WS 2007/08) 63 Kapitel 6 Graphen Beziehungen zwischen Objekten werden sehr oft durch binäre Relationen modelliert. Wir beschäftigen uns in diesem Kapitel mit speziellen binären Relationen, die nicht nur nur besonders

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP B-Bäume I Annahme: Sei die Anzahl der Objekte und damit der Datensätze. Das Datenvolumen ist zu groß, um im Hauptspeicher gehalten zu werden, z.b. 10. Datensätze auf externen Speicher auslagern, z.b. Festplatte

Mehr

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: ralf@informatik.uni-bonn.de Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume

Mehr

Guten Morgen und Willkommen zur Saalübung!

Guten Morgen und Willkommen zur Saalübung! Guten Morgen und Willkommen zur Saalübung! 1 Wie gewinnt man ein Spiel? Was ist ein Spiel? 2 Verschiedene Spiele Schach, Tic-Tac-Toe, Go Memory Backgammon Poker Nim, Käsekästchen... 3 Einschränkungen Zwei

Mehr

Rechnen mit Währungen

Rechnen mit Währungen Arbeitsanweisung Arbeitsauftrag: Die Schüler lesen einen kurzen Info-Text und lösen das Arbeitsblatt. Ziel: Die Schüler lernen, mit Fremdwährungen zu rechnen und Umrechnungstabellen zu lesen. Material:

Mehr

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer

Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer Algorithmen und Datenstrukturen Große Übung vom 29.10.09 Nils Schweer Diese Folien Braucht man nicht abzuschreiben Stehen im Netz unter www.ibr.cs.tu-bs.de/courses/ws0910/aud/index.html Kleine Übungen

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

Algorithmen zur Berechnung von Matchings

Algorithmen zur Berechnung von Matchings Algorithmen zur Berechnung von Matchings Berthold Vöcking 1 Einleitung Matchingprobleme sind Zuordnungsprobleme. Es geht darum z.b. Studierenden Plätze in Seminaren zuzuordnen, Bewerber auf freie Stellen

Mehr