Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Sequenzanalyse

Größe: px
Ab Seite anzeigen:

Download "Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Sequenzanalyse"

Transkript

1 Universiä Posdam Insiu für Informaik Lehrsuhl Maschinelles Lernen Sequenzanalyse Michael Brückner (Verreung) Chrisoph Sawade/Niels Landwehr Paul Prasse Tobias Scheffer

2 Lieraur Klaus Neusser: Zeireihenanalyse in den Wirschafswissenschafen. Mike Hüfle: Sochasische Prozesse in der Zeireihenanalyse. hp:// 2

3 Überblick Lernen aus einer Sequenz. Sochasischer Prozess. Daenransformaion. Parameer eines saionären sochasischen Prozesses schäzen. Prognose. 3

4 Sequenzanalyse Problemsellung Gegeben: Sequenz { x : 1... n} von n geordneen Daenpunken (Messpunke). Gesuch: Sochasisches Modell welches Sequenz gu erklär. Ziele: Beschreibung: Unersuchen der Charakerisika der Sequenz über Kennzahlen und Diagramme. Modellierung: Versehen des zugrunde liegenden, Daengenerierenden Modells. Prognose: Vorhersage zukünfiger Were aufgrund des gelernen Modells. 4

5 Sequenzanalyse Gegeben Daen Sequenzen sind durch Paare ( x, ) gegeben: m xi gib den Wer der Sequenz an der Posiion i an. Äquidisane Folge (gleiche Absände i1 i) { x : 1... } n diskreer sochasischer Prozess Nich-äquidisane Folge { x( i ) : i 1... n} seiger sochasischer Prozess Berachen im Weieren nur univariae, äquidisane Zeireihen { x : 1... n} wie bspw. Tägliche Messung der Temperaur an einem Or, Enwicklung der Einwohnerzahl eines Landes, Akienkurse an aufeinanderfolgenden Börsenagen. i i 5

6 Q1/2008 Q2/2008 Q3/2008 Q4/2008 Q1/2009 Q2/2009 Q3/2009 Q4/2009 Q1/2010 Q2/2010 Q3/2010 Q4/2010 Q1/2011 Q2/2011 Q3/2011 Q4/2011 Lernen aus einer Sequenz Beispiel Vorhersage der Preisenwicklung eines Produkes: 1,8 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2 0-0,2 Preis (erware) Preis Veränderung (erware) Veränderung 6

7 Sochasischer Prozess Definiion Sochasischer Prozess: Abbildung X(, ) aus T auf Menge der reellen Zahlen die für jedes fixiere T eine Zufallsgröße X und für jedes fixiere eine gewöhnliche Funkion x() darsell. Jede Zufallsgröße X nimm für einen Versuchsausgang einen Wer (Realisierung) x an. Annahme: Gegebene Sequenz { x : 1... n} is Folge von Realisierungen eines sochasischen Prozesses. 7

8 Sochasischer Prozess Beispiel Brown sche Bewegung: Beschreib zufällige Bewegung von Teilchen. 8

9 Sochasischer Prozess Beispiel Random Walk: 9

10 Sochasischer Prozess Kenngrößen Mielwerfunkion: Erwarungswer Zeipunk. der Zufallsgröße X zum Durchschniliche Sequenz, um welche die asächlichen Beobachungen des sochasischen Prozesses schwanken. Varianzfunkion: Varianz Zeipunk. ( ) E[ X ] X ( ) E[( X ( )) ] 2 2 X X der Zufallsgröße X zum Milere quadraische Abweichung vom erwareen Verlauf des sochasischen Prozesses. 10

11 Sochasischer Prozess Kenngrößen Auokovarianzfunkion: Auokovarianz X ( s, ) E[( X s X ( s))( X X ( ))] der Zufallsgrößen X s und X zu den Zeipunken s, T. Auokorrelaionsfunkion: Auokorrelaion X zu den Zeipunken der Zufallsgrößen X s und X T mi ( s, ) s, X ( s, ) X ( s, ). ( s) ( ) Gib an ob die Zufallsgrößen eines sochasischer Prozesses linear korrelier sind, d.h. ob der Prozess zyklische Muser beschreib. X X 11

12 Sochasischer Prozess Eigenschafen Ein sochasischer Prozess heiß saionär falls für Erwarungswer r, s, T () X konsan, Varianz 2 () X, Auokovarianz X( s, ) X( s r, r), d.h. die Auokovarianzfunkion häng nur vom zeilichen Absand h s ab; somi gil diskre falls die Zeipunke T abzählbar sind. seig falls T ein Inervall der reellen Zahlen is. X ( s, ) (, s) ( h,0) ( h,0). X X X X 12

13 Sochasischer Prozess Schäzer der Kenngrößen für saionäre Prozesse Schäzer für Mielwerfunkion: 1 ˆ X() Schäzer für Varianzfunkion: ˆ Schäzer für Auokovarianzfunkion: Schäzer für Auokorrelaionsfunkion 1 i1 2 2 ( ) ( ˆ X xi X ( )) i1 nh 1 ˆ ( h,0) ( x ˆ ( n))( x ˆ ( n)) X i X ih X n i1 ˆ ( h,0) X X x ˆ X ( h,0) ˆ (0, 0) i 13

14 Sochasischer Prozess Beispiel: Schäzer für Kenngrößen h IBM Mielwer ˆ X () Sandardabw. ˆ X () in Jahren Auokovarianz ˆ ( h X,0) in Monaen 14

15 Sochasischer Prozess Lernen des Prozesses Sochasischer Prozess durch Mielwer-, Varianz- und Auokovarianzfunkion hinreichend genau gegeben. Schäzung dieser Funkionen für nichsaionäre Prozesse benöig sehr viele Daen! Ansaz: 1. Daen ransformieren um Saionariä sicherzusellen. 2. Saionären Prozess wählen und dessen Parameer schäzen. 3. Ursprüngliche Daenransformaion umkehren und gelernes Modell anwenden (Prognose). 15

16 Daenransformaion Trendbereinigung In der Praxis Mielwer of nich konsan über die Zei. Idee: Modellierung des Mielwers als Funkion der Zei, z.b. Linearer Trend: Polynomieller Trend: Exponenieller Trend: Poenzieller Trend: ˆ () X 0 1 ˆ () X p i i0 p ˆ X () i0 p ˆ X () i0 i e i i 16

17 Daenransformaion Trendbereinigung Schäzung der Parameer i durch Minimierung n 2 des quadraischen Fehlers min ( ˆ ( ) x ). Bereinige Sequenz x ˆ x X ( ), 1... n is (approximaiv) saionär bzgl. des Mielweres mi ˆ 0. X i 1 IBM Poly. Trend IBM (Trendbereinig) X 17

18 Daenransformaion Filer Enfernung nich-saionärer Komponenen durch Anwenden des Differenzenfilers: x x x x 1 d-maliges Anwenden des Differenzenfilers: x x x x d d 1 d 1 1 Anwenden des Differenzenfilers mi Fensergröße : x x x x Gläung (gleiender Durschni mi Fensergröße q): x 1 2q 1 q iq x i Enfern lineare Trends Enfern poly. Trends Enfern saisonale Trends Enfern lokale Trends 18

19 Daenransformaion Filer Beispiel: Einmaliges Anwenden des Differenzenfilers und Gläung mi q = IBM Poly. Trend IBM (gefiler) 19

20 Saionärer sochasischer Prozess Beispiel für saionäre Prozesse Sarke saionäre Prozesse: Whie-Noise-Prozess (Rauschen). Lineare saionäre Prozesse: Moving-Average-Prozess q-er Ordnung (MA q ). Auoregressive Prozesse: Auoregressiver Prozesse p-er Ordnung (AR p ). Auoregressiver Moving-Average-Prozess (ARMA p,q ). Zählprozesse. Poisson-Prozesse. (Hidden) Markov-Prozesse & Markov-Keen. Wiener-Prozesse. 20

21 Sarke saionäre Prozesse Whie-Noise-Prozess Annahmen: Aufenhalsor x zum Zeipunk is unabhängig vom Aufenhalsor zu einem vorherigen Zeipunk. Eigenschafen: Mielwerfunkion: Varianzfunkion: Auokovarianzfunkion: Beispiel: ( ) 0 Unabhängig normalvereile Beobachungen X N 2 ~ (0, X). X () 2 2 X X ( h,0) 0 X 21

22 Lineare saionäre Prozesse Moving-Average-Prozess Beispiel: Ein Eisverkäufer möche Verkaufszahlen von Eiscreme vorhersagen. Nur bisherige Verkaufszahlen x gegeben. Annahme: Kunden essen nur Eis wenn in den lezen Tagen die Sonne of zu sehen war. Modell: (Unbeobachee) Rauschwere ε sind die Sonnensunden pro Tag normier auf Mielwer 0. Beispiel für Modell mi Modellparameern: x 0,8 0,5 0,

23 Lineare saionäre Prozesse Moving-Average-Prozess Annahmen: Aufenhalsor x zum Zeipunk is das gewichee Miel aus q +1 Rauschweren zu den Zeipunken q,,: q j j j1 x 2 mi Rauschweren ε i wobei E[ ] 0 und Var[ ]. Ziel: Berechnung der Gewiche j. i i 23

24 Lineare saionäre Prozesse Moving-Average-Prozess Berechnung der Gewiche j am Beispiel eines MA 1 -Prozesses: x 1 1 Umformung des Prozesses ergib: x j j 1 j1 x j1 j1 1 j2 x 1 1 x j j 1 j1 x ( x ) j 1 j1 1 j2 x ( ) x ( ) 1 2 j 1 j1 1 j2 Minimieren des mileren quadraischen Fehlers zwischen Modell und Sequenz mi E[ ] 0: n n * 2 2 arg min ( j( ) ) arg min j( ) α j1 α j1 α α α j α j1 i0 i ( ) x 1 ji 24

25 Auoregressive Prozesse Einfacher Auoregressiver Prozess Beispiel: Ein Eisverkäufer möche Verkaufszahlen von Eiscreme vorhersagen. Nur bisherige Verkaufszahlen x gegeben. Annahme: Kunden essen nur Eis wenn sie in den lezen Tagen wenig Eis gegessen haben. Modell: Verkaufszahl x is nur abhängig von den vorherigen Verkaufszahlen und einem Rauschwer ε (Laune der Kunden). Beispiel für Modell mi Modellparameern: x x x x 0,7 1 0,6 2 0,1 3 25

26 Auoregressive Prozesse Einfacher Auoregressiver Prozess Annahmen: Aufenhalsor x zum Zeipunk is die Summe aus dem Rauschwer zum Zeipunk und dem gewicheen Miel der p Aufenhalsore zu den Zeipunken p,, 1: p jx j j1 mi Rauschweren ε wobei E[ ] 0, und 1. j Ziel: Berechnung der Gewiche j. x Var[ ] 2 26

27 Auoregressive Prozesse Einfacher Auoregressiver Prozess Berechnung der Gewiche j eines AR p - p Prozesses: x jx j j1 Idee: Minimieren des mileren quadraischen Fehlers. β * β * 2 2 n p n p 1 arg min xi i jxi j arg min xi jxi j β n p1 i p1 j1 β i p1 j1 Erwarungswer Null & konsane Varianz x x 1 p xp 1 x1 p 1 x x p 2 p 1 xp x 2 2 arg min β x x n n1 xn2 xn p p y A 2 * + β A y Pseudo-Inverse von A 27

28 Auoregressive Prozesse Auoregressiver Moving-Average-Prozess Moivaion: Fas jeder endliche Daensaz gu an MA- oder AR- Modell mi hoher Ordnung anpassbar. Je größer die Ordnung deso mehr Parameer. Ziel: Modell mi möglichs wenigen Parameern welches zudem reale Bedeuung/Inerpreaion ha. Idee: Kombinaion von MA- und AR-Modellen zu ARMA p,q -Prozess. x q x j j j j j1 j1 p 28

29 Auoregressive Prozesse Auoregressiver Moving-Average-Prozess Beispiel: Vorhersage der Werbeausgaben zweier konkurrierender Unernehmen. Nur bisherige Werbeausgaben x und y gegeben. Modell: Werbeausgabe x is abhängig von vorherigen Werbeausgabe des Konkurrenen y -1 und Rauschwer. Werbeausgabe y is abhängig von der vorherigen Werbeausgabe des Konkurrenen x -1 und Rauschwer. x y y 1 1 x 1 1 ARMA 2,1 -Prozess x ( x ) x

30 Auoregressive Prozesse Auoregressiver Moving-Average-Prozess Überlagerungssaz von ARMA-Prozessen: x und y seien zwei unabhängige ARMA-Prozesse der Ordnung (p 1,q 1 ) und (p 2,q 2 ). Summe z = x + y is wieder ein ARMA-Prozess der Ordnung (p,q). Für AR-Ordung gil: p p 1 + p 2 Für MA-Ordung gil: q max(p 1 + q 2, p 2 + q 1 ) Folgerung: Summe zweier MA-Prozesse ergib wieder MA-Prozess. Summe zweier AR-Prozesse ergib ARMA-Prozess. 30

31 Auoregressive Prozesse Auoregressiver Moving-Average-Prozess Berechnung der Gewiche j und j eines ARMA-Prozesses analog zu MA-Prozessen. Abhängig von der Daenransformaion unerscheide man verschiedene ARMA- Prozesse, z.b.: ARIMA p,d,q : x is nach d-maligem Anwenden des Differenzenfilers ein saionärer ARMA p,q -Prozess. ARMAX: Nach vorherige Trendbereinigung sind die Residuen (bereinige Were x ) Realisierungen eines ARMA-Prozesses. 31

32 Prognose Auoregressiver Moving-Average-Prozess Vorhersage durch gelernen sochasischen Prozess (Prognose für x +h ): x, x -1, x 1 ensprechen den asächlichen Beobachungen. x +h, x +1 werden durch ihre Prognosen ersez. Sörerme ε, ε -1, ε 1 ensprechen den Prognosefehlern der 1-Schriprognosen in der Vergangenhei. Sörungen ε +h, ε +1 werden durch ihren Erwarungswer Null ersez. Daenransformaion (Trendbereinigung, Filer ec.) für prognosiziere Were x +h umkehren. 32

33 Zusammenfassung Idee: Sequenzen sind Realisierungen eines sochasischen Prozesses (z.b. MA-, AR-, ARMA-Prozess). Vorgehen: Bereinigung der Daen von nich-saionären Komponenen (Trendbereinigung, Filern). Wahl des Prozesses und Schäzen seiner Parameer. Umkehrung der Daenransformaion und Prognose neuer Were. 33

INTELLIGENTE DATENANALYSE IN MATLAB. Sequenzanalyse

INTELLIGENTE DATENANALYSE IN MATLAB. Sequenzanalyse INTELLIGENTE DATENANALYSE IN MATLAB Sequenzanalyse Lieraur Klaus Neusser: Zeireihenanalyse in den Wirschafswissenschafen. Mike Hüfle: Sochasische Prozesse in der Zeireihenanalyse. hp://www.ivh.uni-hannover.de/opiv/mehoden/sochme/sochme.pdf

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Sequenzanalyse Überblick Sh Schrie der Daenanalyse: Daenvorverarbeiung Problemanalyse Problemlösung Anwendung der Lösung Aggregaion und Selekion von Daen. Inegraion

Mehr

Zeitreihenanalyse. Steffen Bickel

Zeitreihenanalyse. Steffen Bickel Zeireihenanalyse Seffen Bickel Zeireihen Zeireihen ensehen bei Messung eines Merkmals zu verschiedenen Zeipunken. z.b.: ägliche Messung der Temperaur an einem Or, monaliche Verkaufszahlen für ein Produk,

Mehr

Prof. Dr. W. Zucchini 06 Wiederholung Kap. 1-4 Zeitreihenanalyse Sommer 2003

Prof. Dr. W. Zucchini 06 Wiederholung Kap. 1-4 Zeitreihenanalyse Sommer 2003 Prof. Dr. W. Zucchini 06 Wiederholung Kap. 1-4 Zeireihenanalyse Sommer 2003 I.) Klassische Zeireihenanalyse Komponenen einer Zeireihe: Trend- (u. Zyklus), Saison- und Residualkomponene Addiive und muliplikaive

Mehr

3.2 Autoregressive Prozesse (AR-Modelle) AR(p)-Prozesse

3.2 Autoregressive Prozesse (AR-Modelle) AR(p)-Prozesse 3. Auoregressive Prozesse (AR-Modelle 3.. AR(-Prozesse Definiion: Ein sochasischer Prozess ( heiß auoregressiver Prozess der Ordnung [AR(-Prozess], wenn er der Beziehung (3.. genüg. ( is darin ein reiner

Mehr

Aufgaben zur Zeitreihenanalyse (Kap. 3)

Aufgaben zur Zeitreihenanalyse (Kap. 3) Prof. Dr. Reinhold Kosfeld Fachbereich Wirschafswissenschafen Aufgaben zur Zeireihenanalyse (Kap. Aufgabe. Was verseh man uner einem sochasischen Prozess? Ein sochasischer Prozess is eine zeiliche Folge

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Empirische Wirschafsforschung Prof. Dr. Bernd Süßmuh Universiä Leipzig Insiu für Empirische Wirschafsforschung Volkswirschafslehre, insbesondere Ökonomerie 9.6. Zeireihen und Zeireihenmodelle Prinzipielle

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie Zeireihenökonomerie Kapiel 1 - Grundlagen Einführung in die Verfahren der Zeireihenanalyse (1) Typischerweise beginn man mi einer Beschreibung der jeweils zu unersuchenden Zeireihe (graphisch) Trendverhalen,

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie ifo Insiu für Wirschafsforschung an der Universiä München Zeireihenökonomerie Kapiel 6 Nichsaionäre univariae Zeireihenmodelle ifo Insiu für Wirschafsforschung an der Universiä München Nichsaionäre Prozesse

Mehr

3.3 Moving-Average-Prozesse (MA-Modelle)

3.3 Moving-Average-Prozesse (MA-Modelle) . Moving-Average-Prozesse MA-Modelle Definiion: in sochasischer Prozess heiß Moving-Average-Prozess der Ordnng [MA-Prozess], wenn er die Form θ θ i i... θ i oder B mi ha. is dabei ein reiner Zfallsprozess

Mehr

Grenzwertsätze für Zeitreihen

Grenzwertsätze für Zeitreihen KAPIEL 6 Grenzwersäze für Zeireihen In diesem Kapiel sellen wir wichige Grenzwersäze für saionäre Zeireihen {X n } in diskreer Zei zusammen. Sei µ = E(X ) und ρ(k) = E(X 1 µ)(x 1+k µ) = Cov (X 1, X 1+k

Mehr

Stationarität/Ergodizität

Stationarität/Ergodizität Empirische Mehoden (MA) SS 011 Übungsbla 3 Willi Muschler willi.muschler@uni-muenser.de Saionariä/Ergodiziä 1. Beanworen Sie folgende Fragen: (a) Was verseh man uner einem sochasischen Prozess, was uner

Mehr

Nichtparametrische Ansätze in der Zeitreihen- und Bildanalyse

Nichtparametrische Ansätze in der Zeitreihen- und Bildanalyse Dagsuhl, November 2005 Nichparamerische Zeireihen- und Bildanalyse Nichparamerische Ansäze in der Zeireihen- und Bildanalyse AG Angewande Mahemaische Saisik Prof. Dr. Jürgen Franke, Dr. Jean-Pierre Sockis,

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

Optimierungsverfahren bei saisonalen/periodischen Prozessen für Prognosezwecke

Optimierungsverfahren bei saisonalen/periodischen Prozessen für Prognosezwecke Fakulä Informaik, Professur für Technische Informaionssyseme, Proseminar Technische Informaionssyseme Proseminar Opimierungsverfahren bei saisonalen/periodischen Prozessen für Prognosezwecke Gliederung

Mehr

Analyse zeitabhängiger Daten. Zeitreihenanalyse II

Analyse zeitabhängiger Daten. Zeitreihenanalyse II Analyse zeiabhängiger Daen Zeireihenanalyse II Warum geh es in den folgenden Sizungen? Zeireihen Daum 04.04.07 11.04.07 18.04.07 25.04.07 02.05.07 09.05.07 16.05.07 23.05.07 30.05.07 06.06.07 13.06.07

Mehr

Kurzrepetition Ökonometrie I - Lösungen

Kurzrepetition Ökonometrie I - Lösungen . Einführung Ökonomerie II - Peer Salder Kurzrepeiion Ökonomerie I - Lösungen Aufgabe (Inerpreaion von Regressionsergebnissen) a) Der prozenuale Aneil der Varianz der abhängigen Variablen, der durch die

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Empirische Wirschafsforschung Prof. Dr. Bernd Süßmuh Universiä Leipzig Insiu für Empirische Wirschafsforschung Volkswirschafslehre, insbesondere Ökonomerie 9. Zeireihenanalse 9.. Das Unbeobachee-Komponenen-Modell

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie Zeireihenökonomerie Kapiel 4 Schäzung univariaer Zeireihenmodelle Y = c+ α Y + + α Y + ε + βε + + β ε p p q q Problem: Direke Schäzung der Parameer α,, αp und β,, βq über OLS nich möglich, da die Residuen

Mehr

Aufgaben zur Zeitreihenanalyse (Kap. 4)

Aufgaben zur Zeitreihenanalyse (Kap. 4) Prof. Dr. Reinhold Kosfeld Fachbereich Wirschafswissenschafen Aufgaben zur Zeireihenanalyse (Kap. 4) Aufgabe 4. Warum folg die Dickey-Fuller-Tessaisik nich der bei einem Signifikanzes der Regressionskoeffizienen

Mehr

Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe

Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe Moivaion: Sampling (4) Sampling Vorlesung Phoorealisische Compuergraphik S. Müller Ein naiver (und sehr eurer) Ansaz, die Rendering Equaion mi Hilfe eines Rayracing-Ansazes zu lösen, wäre wird eine diffuse

Mehr

Aufgaben: Repetition Ökonometrie I - Lösungen

Aufgaben: Repetition Ökonometrie I - Lösungen Ökonomerie I - Peer Salder Aufgaben: Repeiion Ökonomerie I - Lösungen Aufgabe (Radiowerbung für Kino): Die Schäzung der Regressionsgleichung U W u U : Wochenumsaz, W : Werbeausgaben ergib: 000, 07., SE

Mehr

Regression, Tests und Problembereiche

Regression, Tests und Problembereiche Ökonomerie ufgabensammlung 4 Regression, Tess und Problembereiche ufgabe 7 Führen Sie eine Trendberechnung für die Variable y durch: Jahr 996 997 998 999 000 00 00 3 4 5 6 7 y 3 5 5 8 9 0 Berechnen Sie:

Mehr

Übung zu Quantitative Methoden der Marktanalyse. Tests zu den Annahmen der OLS-Schätzung. 1. Annahmen zur OLS-Schätzung. 1. Annahmen zur OLS-Schätzung

Übung zu Quantitative Methoden der Marktanalyse. Tests zu den Annahmen der OLS-Schätzung. 1. Annahmen zur OLS-Schätzung. 1. Annahmen zur OLS-Schätzung Termin Übungsinhal Übung zu Quaniaive Mehoden der Markanalyse Annahmen derols-schäzung 9.06.009 9.06.009 Tess zu den Annahmen der OLS- Schäzung 06.07.009 Klausurvorbereiung.07.009 Klausurvorbereiung 0.07.009

Mehr

Analyse zeitabhängiger Daten. Zeitreihenanalyse I

Analyse zeitabhängiger Daten. Zeitreihenanalyse I Analyse zeiabhängiger Daen Zeireihenanalyse I Warum geh es in den folgenden Sizungen? Zeireihen Daum 04.04.07 11.04.07 18.04.07 25.04.07 02.05.07 09.05.07 16.05.07 23.05.07 30.05.07 06.06.07 13.06.07 20.06.07

Mehr

Prognoseverfahren: Gewogener gleitender Durchschnitt, Exponentielle Glättung erster und zweiter Ordnung

Prognoseverfahren: Gewogener gleitender Durchschnitt, Exponentielle Glättung erster und zweiter Ordnung 4202 KE2 Quaniaive verfahren verfahren: Gewogener gleiender Durchschni, Exponenielle Gläung erser und zweier Ordnung Ein Unernehen öche die Nachfrage nach eine Produk prognosizieren. Dabei sollen ier die

Mehr

Differentialgleichungen

Differentialgleichungen Ein einfaches Modell (Domar) Im Domar Wachsumsmodell reffen wir die folgenden Annahmen: Kapiel Differenialgleichungen () Erhöhung der Invesiionsrae I() erhöh das Einkommen Y(): dy d = s di (s = konsan)

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

III Wechselkursempirie

III Wechselkursempirie III Wechselkursempirie ) Daen /$ Wechselkurs (bzw. DM-Kurs in vor offiziellem Sar des ): monaliche Durchschniswere von Januar 96 bis November 22. 2.2 DM/$ Nominal Exchange Rae (monhly average ) 2..8.6.4.2..8.6

Mehr

Kapitel : Exponentielles Wachstum

Kapitel : Exponentielles Wachstum Wachsumsprozesse Kapiel : Exponenielles Wachsum Die Grundbegriffe aus wachsum 1.xmcd werden auch hier verwende! Wir verwenden im Beispiel 2 auch fas die gleiche Angabe wie in Beispiel 1 - lediglich eine

Mehr

Stochastische Automaten und Quellen

Stochastische Automaten und Quellen KAPITEL 2 Sochasische Auomaen und Quellen Sei A ein Sysem allgemeiner Ar (z.b. ein physikalisches Sysem oder eine Nachrichenquelle), das wir zu diskreen Zeipunken = 0, 1,... beobachen. Wir nehmen an: (SA

Mehr

Analyse zeitabhängiger Daten. Zeitreihenanalyse I

Analyse zeitabhängiger Daten. Zeitreihenanalyse I Analyse zeiabhängiger Daen Zeireihenanalyse I 1 Warum geh es in den folgenden Sizungen? Zeireihen Daum 05.04.06 12.04.06 19.04.06 26.04.06 03.05.06 10.05.06 17.05.06 24.05.06 31.05.06 07.06.06 14.06.06

Mehr

7. Vorlesung Wintersemester

7. Vorlesung Wintersemester 7. Vorlesung Winersemeser Der ungedämpfe Oszillaor mi komplexem Lösungsansaz Wie gezeig, wird die DGL des ungedämpfen Oszillaors mẍ() + kx() = 0 () im Komplexen von den Funkionen x () = e iω und x 2 ()

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit WS 2007/08

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit WS 2007/08 Phillips Kurve (Blanchard Ch.8) 310 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

Vorlesung 8: Zeitreihenanalyse

Vorlesung 8: Zeitreihenanalyse Vorlesung 8: Zeireihenanalyse 1. Was is besonders an Zeireihen? 2. Unabhängige Beobachungen bei Zeireihen? 3. Regressionsmodelle für Zeireihen 4. Zufall und Zeireihen 5. Schäzung von Regressionsmodellen

Mehr

Der kinetische Ansatz zur Beschreibung von Selbstorganisationsprozessen. mögliche Variationen und Erweiterungen: diskrete Gleichungen (endliches t):

Der kinetische Ansatz zur Beschreibung von Selbstorganisationsprozessen. mögliche Variationen und Erweiterungen: diskrete Gleichungen (endliches t): Ludwig Pohlmann Thermodynamik offener Syseme und Selbsorganisaionsphänomene SS 007 Der kineische Ansaz zur Beschreibung von Selbsorganisaionsprozessen. Die Beschreibung von Prozessen Prozesse (Veränderungen,

Mehr

Teil D: Einführung in die Kointegrationsmethodologie

Teil D: Einführung in die Kointegrationsmethodologie Teil D: Einführung in die Koinegraionsmehodologie 1. Problem der Scheinregression Makroökonomische Zeireihen (z.b. Oupu, Invesiionen, Beschäfigung) sind ypischerweise rendbehafeee Zeireihen. Bruosozialproduk

Mehr

Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. Regina T. Riphahn, Ph.D. Musterlösung zur Baseler Zwischenklausur im WS 02/03

Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. Regina T. Riphahn, Ph.D. Musterlösung zur Baseler Zwischenklausur im WS 02/03 Lehrsuhl für Saisik und emp. irschafsforschung, Prof. Regina T. Riphahn, Ph.D. Muserlösung zur Baseler Zwischenklausur im S 0/0 Aufgabe 1: [1] Mi den Daen von 177 Miewohnungen einer Schweizer Sad wurde

Mehr

Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. Regina T. Riphahn, Ph.D. Musterlösung zur Baseler Abschlussklausur im WS 02/03

Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. Regina T. Riphahn, Ph.D. Musterlösung zur Baseler Abschlussklausur im WS 02/03 Lehrsuhl für Saisik und emp. irschafsforschung, Prof. Regina T. Riphahn, Ph.D. Muserlösung zur Baseler Abschlussklausur im S 0/03 Aufgabe 1: [] Sie wollen die Skifahrgewohnheien von innen und Schweizern

Mehr

Multiple Regression: Übung 1

Multiple Regression: Übung 1 4. Muliple Regression Ökonomerie I - Peer Salder 1 Muliple Regression: Übung 1 Schäzung einer erweieren Konsumfunkion für die Schweiz Wir unersuchen die Abhängigkei der Konsumausgaben der Schweizer Haushale

Mehr

4.1 OLS a) OLS-Schätzung der Koeffizienten der Strukturform

4.1 OLS a) OLS-Schätzung der Koeffizienten der Strukturform 4. Schäzmehoden 4. 4. OLS a) OLS-Schäzung der Koeffizienen der Srukurform OLS liefer verzerre und nich konsisene Schäzungen der Koeffizienen der Srukurform inerdependener Modelle, weil i.a. Sörvariable

Mehr

Definition Ein Homomorphismus von Lie-Algebren. Für uns ist vor allem die im folgenden Satz eingeführte Darstellung von Bedeutung.

Definition Ein Homomorphismus von Lie-Algebren. Für uns ist vor allem die im folgenden Satz eingeführte Darstellung von Bedeutung. 1 Lie-Gruppen 1. Lie-Algebren Im lezen Vorrag haben wir bereis das Konzep der Lie-Algebren kennengelern. Zunächs werde ich noch einige weiere grundlegende Definiionen dazu angeben. In diesem Kapiel sei

Mehr

Man nimmt einfach eine entsprechende Variable für den Trend in das Regressionsmodell auf (hier die Variable t).

Man nimmt einfach eine entsprechende Variable für den Trend in das Regressionsmodell auf (hier die Variable t). 1 Trendbereinigung Trends in den abhängigen und unabhängigen Variablen führen in Zeireihenanalysen aus zweierlei Gründen zu Problemen: (i) Hohe R-Quadra-Were suggerieren einen guen Modellfi und (ii) hohe

Mehr

Statistische Analysen am Rechner: Eine Einführung

Statistische Analysen am Rechner: Eine Einführung Saisische Analysen am Rechner: Eine Einführung Diese Rechnerübung soll einen ersen Einblick in das Programm EViews geben. Dafür werden der Akienmarkindex DAX und der Index des Renenmarkes REX für den Zeiraum

Mehr

Leibnizschule Hannover

Leibnizschule Hannover Leibnizschule Hannover - Seminararbei - Medikameneneinnahme -Modellierung- M D Schuljahr: 20 Fach: Mahemaik Inhalsverzeichnis 1 Einleiung 2 2 Einfache Verabreichung 3 21 Die inravenöse Variane 3 22 Die

Mehr

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten! Universiä Regensburg, Winersemeser 3/4 Examenskurs Analysis (LGy) Dr. Farid Madani Probeklausur Thema Nr. (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeien! Aufgabe (5 Punke). Man

Mehr

7. Stochastische Prozesse und Zeitreihenmodelle

7. Stochastische Prozesse und Zeitreihenmodelle 7. Stochastische Prozesse und Zeitreihenmodelle Regelmäßigkeiten in der Entwicklung einer Zeitreihe, um auf zukünftige Entwicklung zu schließen Verwendung zu Prognosezwecken Univariate Zeitreihenanalyse

Mehr

Kurs 9.3: Forschungsmethoden II

Kurs 9.3: Forschungsmethoden II Mc Banking & Finance Kurs 9.3: Forschungsmehoden II Zeireihenanalyse Lernsequenz 06: Zeireihen mi sochasischer Volailiä November 04 Prof. Dr. Jürg chwarz Folie Inhal Ziele 5 Einführung 7 chäzung von ARCH(p)-Modellen

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Akuarielle und finanzmahmaische Bewerung I Xiaoying Xu Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof Schmidli,

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

4.7. Exponential- und Logarithmusfunktionen

4.7. Exponential- und Logarithmusfunktionen ... Eonenialfunkionen Definiion:.. Eonenial- und Logarihmusfunkionen Die Funkion f() = c a mi D = R, c und a R + \{}heiß Eonenialfunkion zur Basis a. Die Eonenialfunkion zur Basis a = e mi der Eulerschen

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Arbitragefreie Preise

Arbitragefreie Preise Arbiragefreie Preise Maren Schmeck 24. Okober 2006 1 Einleiung P i () Preis von Anleihe i zur Zei, i = 1,..., n x i Anzahl an Einheien der Anleihe i V () = n i=1 x ip i () Wer eines Porfolios mi x i Einheien

Mehr

Kurs 9.3: Forschungsmethoden II

Kurs 9.3: Forschungsmethoden II MSc Banking & Finance Kurs 9.3: Forschungsmehoden II Zeireihenanalyse Lernsequenz 03: Einführung in die sochasische Modellierung November 014 Prof. Dr. Jürg Schwarz Folie Inhal Ziele 6 Saische vs. dynamische

Mehr

Thema : Rendite und Renditemessung

Thema : Rendite und Renditemessung Thema : Rendie und Rendiemessung Lernziele Es is wichig, die Zeigewichung der Rendie als ennzahl zu versehen, den Unerschied zwischen einer koninuierlichen und einer diskreen erzinsung zu begreifen und

Mehr

Nachfrageprognose. Prof. Dr. Helmut Dietl

Nachfrageprognose. Prof. Dr. Helmut Dietl Nachfrageprognose Prof. Dr. Helmu Diel Problemsellung und Lernziele Inwiefern können erviceunernehmen durch Nachfrageprognosen einen Webewerbsvoreil erwirschafen? Nach dieser Veransalung sollen ie, die

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Empirische Wirschafsforschung Prof. Dr. Bernd Süßmuh Universiä Leipzig Insiu für Empirische Wirschafsforschung Volkswirschafslehre, insbesondere Ökonomerie 6.4. Mulikollineariä a) Das Problem und seine

Mehr

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2.

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2. Seminar Finanzmathematik - Begrüßung - Motivation - Inhaltsangabe 3. Zusammen - fassung Zeitreihenanalyse Andreas Dienst SS 2006 Zeitreihen: Definition und Motivation - Begrüßung - Motivation - Inhaltsangabe

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

MEHRWERK. Logistik Optimierung in SAP mit Dispositions- Lösung Forecast

MEHRWERK. Logistik Optimierung in SAP mit Dispositions- Lösung Forecast MEHRWERK Logisik Opimierung in SAP mi Disposiions- Lösung Forecas Disposiionslösung Forecas Logisik-Opimierung in SAP Forecas Conrolling Operaions Kanban Planning Seie 2 Disposiionslösung Forecas Forecas-Kreislauf

Mehr

Stochastische Differentialgleichungen

Stochastische Differentialgleichungen INSTITUT FÜR STOCHASTIK SS 2007/08 UNIVRSITÄT KARLSRUH Bla 9 Priv.-Doz. Dr. D. Kadelka Übungen zur Vorleung Sochaiche Differenialgleichungen Muerlöungen Aufgabe 21: Definieren Sie analog zur d-dimenionalen

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Anfangswertprobleme gewöhnlicher Differentialgleichungen

Anfangswertprobleme gewöhnlicher Differentialgleichungen 13. Großübung Anfangswerprobleme gewöhnlicher Differenialgleichungen gesuch: mi T und y () = f(, ), y( ) = y (1) y( j+1 ) = y( j ) + j+1 j f(s, y(s)) ds () Idee: Erseze Inegral durch Quadraurformel Näherungen

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Einfache lineare Regression: Übung 2

Einfache lineare Regression: Übung 2 3. Einfache lineare Regression Ökonomerie I - Peer Salder 1 Einfache lineare Regression: Übung Simulaionsexperimen mi künslich generieren Sichproben Wahres Modell (daengenerierender Prozess): y x u mi

Mehr

3.4 Systeme linearer Differentialgleichungen

3.4 Systeme linearer Differentialgleichungen 58 Kapiel 3 Invarianen linearer Transformaionen 34 Syseme linearer Differenialgleichungen Die Unersuchung der Normalformen von Marizen soll nun auf die Lösung von Differenialgleichungssysemen angewende

Mehr

5. Übungsblatt zur Linearen Algebra II

5. Übungsblatt zur Linearen Algebra II Fachbereich Mahemaik Prof. J. Bokowski Dennis Frisch, Nicole Nowak Sommersemeser 27 5., 8. und 2. Mai 5. Übungsbla zur Linearen Algebra II Gruppenübung Aufgabe G (Hüllen) In dieser Aufgabe soll es darum

Mehr

Einführung in gewöhnliche Differentialgleichungen

Einführung in gewöhnliche Differentialgleichungen Einführung in gewöhnliche Differenialgleichungen Jonahan Zinsl 25. Mai 202 Definiionen Definiion.(Gewöhnliche Differenialgleichung. Ordnung) Uner einer gewöhnlichen Differenialgleichung. Ordnung verseh

Mehr

7 Das lokale Ito-Integral

7 Das lokale Ito-Integral 7 Das lokale Io-Inegral 7.3 Ein lokales L p -Maringal is uner einer gleichgradigen Inegrierbarkeisbedingung ein L p -Maringal 7.4 Rechsseiig seiges (seiges), lokales L p -Maringal 7.5 Seige, lokale Maringale

Mehr

Koeffizienten(a) Modell Koeffizienten T Signifikanz

Koeffizienten(a) Modell Koeffizienten T Signifikanz Lehrsuhl für Saisik und empirische Wirschafsforschung, Prof. Riphahn, Ph.D. Bachelorprüfung, Empirische Wirschafsforschung Fach: Prüfer: Bachelorprüfung Empirische Wirschafsforschung Prof. Regina T. Riphahn,

Mehr

Übungsaufgaben zu Kapitel 5: Erwartungen Die Grundlagen

Übungsaufgaben zu Kapitel 5: Erwartungen Die Grundlagen Kapiel 5 Übungsaufgaben zu Kapiel 5: Erwarungen Die Grundlagen Übungsaufgabe 5-1a 5-1a) Beschreiben Sie die heoreischen Überlegungen zum Realzins. Wie unerscheide sich der Realzins vom Nominalzins? Folie

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

Kritische Analyse impliziter Kapitalkosten

Kritische Analyse impliziter Kapitalkosten Kriische Analyse implizier Kapialkosen Maserarbei Münchener Forschungspreis für Wirschafsprüfung 26. November 2013 Chrisoph Künzel, M.Sc. Chrisoph Künzel 26. November 2013 1 Konzep der implizien Kapialkosen

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

Kapitel : Exponentiell-beschränktes Wachstum

Kapitel : Exponentiell-beschränktes Wachstum Wachsumsprozesse Kapiel : Exponeniell-beschränkes Wachsum Die Grundbegriffe aus wachsum.xmcd werden auch hier verwende! Wir verwenden nun eine Angabe aus der Biologie und in einem weieren Beispiel eines

Mehr

BESCHREIBUNG VON ZERFALLSPROZESSEN

BESCHREIBUNG VON ZERFALLSPROZESSEN BESCHREIBUNG VON ZERFALLSPROZESSEN ab Ende der 1. Schulsufe Kreuze zu jedem angeführen Beispiel das richige mahemaische Modell an, begründe deine Enscheidung und beschreibe die Bedeuung der in den Modellen

Mehr

6. Vektorautoregressive Modelle

6. Vektorautoregressive Modelle 6. Vekorauoregressive Modelle 6. In bisherigen Modellen Feslegung von exogenen Variablen nowendig. Sreng genommen gib es keine vollsändig exogenen Variablen. Beisiel: Selbs die exogene Anhebung des Leizinssazes

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sysemheorie eil A - Zeikoninuierliche Signale und Syseme - Muserlösungen Manfred Srohrmann Urban Brunner Inhal 3 Muserlösungen - Zeikoninuierliche Syseme im Zeibereich 3 3. Nachweis der ineariä... 3 3.

Mehr

Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkeit Seminararbeit aus Numerik von Differentialgleichungen

Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkeit Seminararbeit aus Numerik von Differentialgleichungen Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkei Seminararbei aus Numerik von Differenialgleichungen Michael Hubner, Sefan Wurm 8. Juli 22 Inhalsverzeichnis. Problemdefiniion 2 2. Einführende

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen HS Esslingen SS 2016 Fakulä Grundlagen (HS Esslingen) SS 2016 1 / 12 Übersich 1 Vorberachungen zur Dierenzial- und Inegralrechnung Ableiungsbegri

Mehr

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 5 Die Phillipskurve

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 5 Die Phillipskurve AVWL II, Prof. Dr. T. Wollmershäuser Kapiel 5 Die Phillipskurve Version: 22.11.2010 Der empirische Befund in den 60er Jahren Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 : 1931-1939 In

Mehr

ifo Institut für Wirtschaftsforschung an der Universität München Endogenes Wachstum Prof. Dr. Kai Carstensen LMU und ifo Institut

ifo Institut für Wirtschaftsforschung an der Universität München Endogenes Wachstum Prof. Dr. Kai Carstensen LMU und ifo Institut Endogenes Wachsum Prof. Dr. Kai Carsensen LMU und ifo Insiu Rückblick auf die Modelle mi exogenem TF TF is der zenrale Mechanismus, um Wachsum pro Kopf zu erreichen Einkommensunerschiede zwischen armen

Mehr

Einführung in die Ökonometrie

Einführung in die Ökonometrie Maerialien zur Vorlesung Einführung in die Ökonomerie Sommersemeser 5 Prof. Dr. Klaus Neusser Universiä Bern Einführung in die Ökonomerie Inhal Einführung 4. Einige Lehrbücher 6. Einige ökonomerische Programmpakee

Mehr

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum www.mahe-aufgaben.com Analysis: Exp. und beschränkes Wachsum Analysis Übungsaufgaben zum exponeniellen und beschränken Wachsum Gymnasium Klasse 10 Alexander Schwarz www.mahe-aufgaben.com Februar 2014 1

Mehr

Technische Universität München. Lösung Montag SS 2012

Technische Universität München. Lösung Montag SS 2012 Technische Universiä München Andreas Wörfel Ferienkurs Analysis für Physiker Lösung Monag SS 0 Aufgabe Gradien und Tangene ( ) Besimmen Sie zur Funkion f(x, y) = x y + xy + y die pariellen Ableiungen,

Mehr

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals 1/8 Grundidee der Inegralrechnung Inegralrechnung Die Inegralrechnung is neben der Differenialrechnung der wichigse Zweig der Analysis. Sie is aus dem Problem der Flächen- und Volumenberechnung ensanden.

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universiä München WS 11/1 Insiu für Informaik Prof. Dr. Hans-Joachim Bungarz Michael Lieb, M. Sc. Dipl.-Inf. Chrisoph Riesinger Dipl.-Inf. Marin Schreiber Numerisches Programmieren 4. Programmieraufgabe:

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Prof. Dr. Guido Sweers WS 08/09 Jan Gerdung, M.Sc. Gewöhnliche Differenialgleichungen Übungsbla Die Lösungen müssen in den Übungsbriefkasen Gewöhnliche Differenialgleichungen (Raum 0 im MI) geworfen werden.

Mehr

Workshop Monetäre Ökonometrie. zur Vorlesung Theorie der Geldpolitik von Prof. G. Illing

Workshop Monetäre Ökonometrie. zur Vorlesung Theorie der Geldpolitik von Prof. G. Illing Julian von Landesberger 4.06.007 Workshop Moneäre Ökonomerie zur Vorlesung heorie der Geldpoliik von Prof. G. Illing Gliederung I Grundlagen Das OLS-Schäzverfahren Einige wichige Begriffe Saisische Prozesse

Mehr

14.1 Neuronale Netze Neuronale Netze. 14 Neuronale Netze Neuronale Netze Neuronale Netze. Neuronale Netze

14.1 Neuronale Netze Neuronale Netze. 14 Neuronale Netze Neuronale Netze Neuronale Netze. Neuronale Netze 14 Neuronale Neze 14.1 Übersich 14.1 Neuronale Neze Neuronale Neze 14 Neuronale Neze Die Folien zu Neur(on)alen Nezen sind angelehn an zwei Lieraursellen: Cross, S.S., Harrison, R.F., Kennedy, R.L. (1995):

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Überblick. Beispielexperiment: Kugelfall Messwerte und Messfehler Auswertung physikalischer Größen Darstellung von Ergebnissen

Überblick. Beispielexperiment: Kugelfall Messwerte und Messfehler Auswertung physikalischer Größen Darstellung von Ergebnissen Überblick Beispielexperimen: Kugelfall Messwere und Messfehler Auswerung physikalischer Größen Darsellung von Ergebnissen Sicheres Arbeien im abor Beispielexperimen : Kugelfall Experimen: Aus der saionären

Mehr

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz Wachsum Exponenielles Wachsum Aufgabensammlung Teil 2a Auch mi Verwendung von Mehoden aus der Analysis: Wachsumsraen Differenialgleichungen Auch mi CAS-Einsaz Sand: 23. Februar 2012 Daei Nr. 45811 INTERNETBIBLIOTHEK

Mehr

Herleitung: Effektivwerte

Herleitung: Effektivwerte Herleing: Effekivwere elekre.gihb.io December 16, 1 1 Definiion Der Effekivwer is die Spannng einer Wechselgröße im zeilichen Miel, drch die mi einer Gleichqelle die selbe Leisng an einem Verbracher abfallen

Mehr