Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 12 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick

Größe: px
Ab Seite anzeigen:

Download "Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 12 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick"

Transkript

1 Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 12 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick gsheldr@shelx.uni-ac.gwdg.de

2 Röntgenbeugung an Pulvern (XRD) Es ist nicht immer möglich, Einkristalle zu züchten, vor allem bei sehr schlecht löslichen Verbindungen. Solche Proben sind aber oft mikrokristallin und liefern Röntgenbeugungsdiagramme, die für eine bestimmte Phase charakteristisch sind. Der ganze 3D reziproke Raum wird auf eine Dimension zusammengequetscht. Außer bei kleinen Zellen mit hoher Symmetrie überlappen viele Reflexe. Trotzdem findet die Röntgenbeugung an Pulverproben (XRD) viele Anwendungen, vor allem in der Industrie, z.b. 1. Identifizierung von Verbindungen und Polymorphen mit Hilfe einer Datenbank von Pulverbeugungsdiagrammen 2. Semiquantitative Analyse von Mischungen 3. Untersuchungen an Phasenübergängen als Funktion von Temperatur und Druck 4. Klärung der Frage, ob die Struktur eines Einkristalls für die gesamte Probe zutrifft

3 Das Debye-Scherrer-Verfahren (Göttingen, 1915) Monochromatischer Röntgenstrahl Andrea Thorn Da die Mikrokristalle sich in allen möglichen Orientierungen befinden, besteht das Beugungsmuster aus konzentrischen Kegeln mit Beugungswinkeln 2θ. Diese können mit einem zylindrischen Film oder Flächenzähler registriert werden. Die gebeugte Intensität wird als Funktion von θ gemessen.

4 Bragg-Brentano Geometrie Quelle Detektor Blende Blende 180 2θ 180 2θ Die Beugungswinkel sind nur genau gleich, wenn die Ebene der Probe auf einem Kreis durch die Quelle und den Detektor liegt. Dieser Kreis ändert sich aber mit 2θ. Trotzdem erlaubt diese Geometrie eine relativ ausgedehnte, flache Probe.

5 Ein modernes Röntgenpulverdiffraktometer In diesem Gerät mit Bragg- Brentano Geometrie bleibt die Probe stehen, der Zähler und die Röntgenquelle werden so bewegt, dass sie den gleichen Winkel zur Ebene der Probe besitzen. Es gibt einen Monochromator zwischen Probe und Detektor, damit möglichst wenig Fluoreszenz aufgenommen wird. Diese Anordnung ist für flache oder unbewegliche Proben besonders geeignet.

6 Röntgenpulverbeugung Die Beugungswinkel werden mit Hilfe der reziproken Zelle berechnet: sin 2 θ = (λ 2 /4){h 2 a* 2 +k 2 b* 2 +l 2 c* 2 +2klb*c*cosα*+2hla*c*cosβ*+2hka*b*cosγ*} Für eine orthorhombische Struktur gilt cosα* = cosβ* = cosγ* = 0 und a* = 1/a usw. Im kubischen Fall führen weitere Vereinfachungen zu sin 2 θ = Nλ 2 /4a 2, wobei N = h 2 + k 2 + l 2 ; je nach Gittertyp sind nicht alle Werte für N möglich. Damit kann man zwischen kubischen P, I und F- Gittern unterscheiden. Das Bild zeigt das berechnete Röntgenbeugungsdiagramm von LaB 6, Raumgruppe Pm3m, λ = Å. Intensität 2θ

7 Röntgenbeugungsdiagramm von Zucker Intensität 2θ Die meisten Röntgenpulverdiagramme sind etwas schwieriger zu indizieren, wie in diesem Beispiel (Sucrose, Raumgruppe P2 1 ). Auch bei solchen Proben ist es durchaus möglich, die Reflexe zu indizieren und eine Zelle zu bestimmen. Die Bestimmung der Raumgruppe und der Struktur sind aber viel schwieriger.

8 Weitere Komplikationen bei Pulverproben Obwohl die Anwendungen als Fingerabdruckmethode keine großen technischen Anforderungen stellen, ist der quantitative Einsatz dieser Methode aufwendig. Es müssen unter Anderen folgende Effekte berücksichtigt werden, die bei der Einkristallröntgenbeugung viel weniger problematisch sind: 1. Vorzugsorientierung (Textur) 2. Untergrund 3. K α1 /K α2 Aufspaltung 4. Linienform 5. Kontaminierung mit anderen Verbindungen bzw. Phasen Dazu kommt, dass in den Lauegruppen 3, 3m1, 31m, 4/m, 6/m und m3 nicht-äquivalente Reflexe einander zwangsläufig überlagern.

9 Das Phasenproblem bei Pulvern Auch wenn das Phasenproblem als mathematisch unlösbar gilt, werden Kleinmolekülstrukturen mit Einkristallröntgendaten mittels Direkter Methoden oft in Sekunden gelöst. Für Pulverproben ist das Phasenproblem immer noch eine echte Herausforderung, hauptsächlich weil das effektive Daten-zu-Parameter-Verhältnis viel schlechter ist. Eine mögliche Lösungsmethode ist die Fragmentsuche. Ein oder mehrere starre Moleküle mit bekannter Struktur werden in der Zelle hin und her bewegt, bis z. B. der Korrelationskoeffizient zwischen beobachteten und berechneten Intensitäten ein Maximum erreicht. Erst dann wird versucht, an Hand der Atomkoordinaten die Raumgruppe zu bestimmen. Man muss zwar erst die Zelle bestimmen, die Suche kann dann aber direkt gegen die gemessenen Intensitäten als Funktion des Beugungswinkels θ gemacht werden.

10 Die Rietveld Strukturverfeinerung In der Rietveld-Methode wird die Struktur direkt gegen die gemessenen Intensitäten als Funktion von θ verfeinert, ohne das Pulverdiagramm erst in indizierte Reflexe zu zerlegen. Es werden die gleichen Parameter verfeinert wie in einer Einkristallanalyse, mit einigen Zusatzparametern, um den Untergrund und die Linienform zu beschreiben. Die Dimensionen der Elementarzelle werden ebenfalls mitverfeinert. Bei Mischproben können sogar mehrere Strukturen gleichzeitig verfeinert werden! Diese Methode genießt große Beliebtheit, sollte aber nicht überstrapaziert werden. Es gibt gut dokumentierte Fälle, bei denen eine völlig falsche Struktur bestimmt worden ist (Mit genügend Parametern kann man einen Elefanten fitten!). Die Berechnung der Standardabweichungen ist auch oft fraglich, weil die Korrelation zwischen benachbarten Messpunkten nicht adäquat berücksichtigt werden kann.

11 Neutronenbeugung an Pulvern Neutronenbeugung mit einer spallation source und time-of-flight Datenerfassung ist besonders geeignet für Pulverproben. Es ist leichter, große Pulverproben zu bekommen als große Einkristalle! Bei (ferro-)magnetischen Strukturen muss die magnetische Streuung der Neutronen zusätzlich berücksichtigt werden. Dabei können Verdopplungen (usw.) der Elementarzelle und Änderungen der Raumgruppe auftreten. Bei den 1651 schwarz-weiß (magnetischen) Raumgruppen werden die Atome als kleine Magnete betrachtet, die entweder parallel oder antiparallel angeordnet werden können. Die ungepaarte Elektronendichte lässt sich mit polarisierten Neutronen und Einkristalldaten bestimmen!

12 Übungen 1. Für einen kubischen Kristall gilt sin 2 θ = Nλ 2 /4a 2 mit N = h 2 +k 2 +l 2. Welche N-Werte bis einschließlich N = 20 sind für (a) ein P-Gitter, (b) ein I-Gitter (h+k+l=2n) und (c) ein F-Gitter (h, k und l entweder alle gerade oder alle ungerade) erlaubt? 2. Wie kann man P, I und F-Gitter mit Hilfe eines Röntgenpulverdiagramms einer kubischen Struktur voneinander unterscheiden? 3. Für metallisches Kupfer wurden mit λ = Å folgende Pulverlinien beobachtet: θ = 21.68, 25.25, 37.10, 45.00, 47.63, 58.53, und Versuchen Sie die Linien zu indizieren und die Zellkantenlänge a zu bestimmen! 4. Schlagen Sie eine einfache Struktur vor, die mit diesen Daten konsistent ist. Wie lang ist der kürzeste Cu-Cu-Abstand im Metall?

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 3 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 3 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 3 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick gsheldr@shelx.uni-ac.gwdg.de Das Gitter Kristalle bestehen

Mehr

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 6 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 6 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 6 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick gsheldr@shelx.uni-ac.gwdg.de Röntgenbeugung und das reziproke

Mehr

Pulverdiffraktometrie

Pulverdiffraktometrie Pulverdiffraktometrie Polykristallines Material Fingerprintmethode Homogenität/ Phasenanalyse Kristallsystem + Gitterparameter + Laue-Symmetrie Raumgruppe?? Zusammensetzung - quantitativ! Textur Partikelgröße

Mehr

Pulverdiffraktometrie

Pulverdiffraktometrie Pulverdiffraktometrie Polykristallines Material Fingerprintmethode Homogenität/ Phasenanalyse/Zusammensetzung - quantitativ! Kristallsystem + Gitterparameter + Laue-Symmetrie Raumgruppe?? Textur Partikelgröße

Mehr

Anorganische Chemie VI Materialdesign. Heute: Röntgen-Einkristall-Strukturanalytik

Anorganische Chemie VI Materialdesign. Heute: Röntgen-Einkristall-Strukturanalytik Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie VI Materialdesign Heute: Röntgen-Einkristall-Strukturanalytik

Mehr

ISP-Methodenkurs. Pulverdiffraktometrie. Prof. Dr. Michael Fröba, AC Raum 114, Tel: 040 /

ISP-Methodenkurs. Pulverdiffraktometrie. Prof. Dr. Michael Fröba, AC Raum 114, Tel: 040 / ISP-Methodenkurs Pulverdiffraktometrie Prof. Dr. Michael Fröba, AC Raum 4, Tel: 4 / 4838-337 www.chemie.uni-hamburg.de/ac/froeba/ Röntgenstrahlung (I) Wilhelm Conrad Röntgen (845-93) 879-888 Professor

Mehr

Röntgen- Pulverdiagramme

Röntgen- Pulverdiagramme Röntgen- Pulverdiagramme Prof. Dr. Martin U. Schmidt Goethe-Universität Frankfurt Institut für Anorganische und Analytische Chemie Max-von-Laue-Str. 7 60438 Frankfurt am Main m.schmidt@chemie.uni-frankfurt.de

Mehr

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 13 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 13 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 13 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick gsheldr@shelx.uni-ac.gwdg.de Mehrlinge (Proteinkristalle!)

Mehr

Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt)

Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt) Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt) Aufgabe 0) (a0) Es sollen aus folgenden Einheitszellen in allen Raumrichtungen unendlich periodisch fortgesetzte Festkörper

Mehr

Strukturmethoden: Röntgenstrukturanalyse von Einkristallen. Sommersemester Christoph Wölper. Universität Duisburg-Essen

Strukturmethoden: Röntgenstrukturanalyse von Einkristallen. Sommersemester Christoph Wölper. Universität Duisburg-Essen Strukturmethoden: Röntgenstrukturanalyse von Einkristallen Sommersemester 2014 Christoph Wölper Universität Duisburg-Essen Christoph Wölper christoph.woelper@uni-due.de http://www.uni-due.de/~adb297b Vorlesungs-Skript

Mehr

Anorganische Chemie III - Festkörperchemie

Anorganische Chemie III - Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Chemie/Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie III - Festkörperchemie 1 Wiederholung

Mehr

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 10 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 10 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 10 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick gsheldr@shelx.uni-ac.gwdg.de Die Röntgenstrukturverfeinerung

Mehr

Grundlagen der Röntgenpulverdiffraktometrie. Seminar zur Vorlesung Anorganische Chemie I und II

Grundlagen der Röntgenpulverdiffraktometrie. Seminar zur Vorlesung Anorganische Chemie I und II David Enseling und Thomas Jüstel Seminar zur Vorlesung Anorganische Chemie I und II Folie 1 Entdeckung + erste Anwendung der X-Strahlen Wilhelm Roentgen, December of 1895. The X-ray of Mrs. Roentgen's

Mehr

Die Bragg sche Beugungsbedingung. θ θ θ θ Ebene hkl

Die Bragg sche Beugungsbedingung. θ θ θ θ Ebene hkl Die Bragg sche Beugungsbedingung Eintr effender Strahl Austretender Str ahl Gebeugter Strahl θ θ θ θ Ebene hkl d hkl x x Ebene hkl Wegdifferenz: 2 x = 2 d hkl sin θ Konstruktive Interferenz: n λ = 2 d

Mehr

Department Chemie. Röntgenbeugung. ISP-Methodenkurs. Dr. Frank Hoffmann

Department Chemie. Röntgenbeugung. ISP-Methodenkurs. Dr. Frank Hoffmann Department Chemie Röntgenbeugung ISP-Methodenkurs Dr. Frank Hoffmann 22.01.2008 Ergebnis einer RSA Ä Atomsorten und deren Koordinaten in der asymmetrischen Einheit Ä Bindungslängen und -winkel Ä Elementarzelle

Mehr

4. Pulverdiffraktometrie

4. Pulverdiffraktometrie 1 4. Pulverdiffraktometrie Literatur W.I.F. David et al., Structure Determination from Powder Diffraction Data (2000), sowie Standardtexte; K.D.M. Harris et al., Chem. Mater. 8, 2554 (1996), Angew. Chem.

Mehr

Berechnung eines Röntgen-Pulverdiffraktogramms aus Einkristallstrukturdaten ausgehend von einer RES-Datei. n λ = 2 d sinθ

Berechnung eines Röntgen-Pulverdiffraktogramms aus Einkristallstrukturdaten ausgehend von einer RES-Datei. n λ = 2 d sinθ Versuch Nr. 2 Berechnung eines Röntgen-Pulverdiffraktogramms aus Einkristallstrukturdaten ausgehend von einer RES-Datei Einleitung: Die Pulverbeugung ist eine der wichtigsten Methoden zur Charakterisierung

Mehr

Röntgenstrukturanalyse von Einkristallen

Röntgenstrukturanalyse von Einkristallen Strukturmethoden: Röntgenstrukturanalyse von Einkristallen Sommersemester 2017 Christoph Wölper Institut für Anorganische Chemie der Universität Duisburg-Essen Wiederholung Was bisher geschah Symmetrie,

Mehr

Praktikum Materialwissenschaft Röntgendiffraktrometrie mit der Debye-Scherrer-Kamera

Praktikum Materialwissenschaft Röntgendiffraktrometrie mit der Debye-Scherrer-Kamera Praktikum Materialwissenschaft Röntgendiffraktrometrie mit der Debye-Scherrer-Kamera André Schwöbel 1234567, Max Fries 1234567, Jörg Schließer 1407149, Tobias Brink 1400670 (Gruppe 17) e-mail: m.fries@stud.tu-darmstadt.de

Mehr

Strukturmethoden. Röntgenstrukturanalyse von Einkristallen Dr. Christoph Wölper. Pulverdiffraktometrie Dr. Oleg Prymak. 1. Teil

Strukturmethoden. Röntgenstrukturanalyse von Einkristallen Dr. Christoph Wölper. Pulverdiffraktometrie Dr. Oleg Prymak. 1. Teil Strukturmethoden 1. Teil Röntgenstrukturanalyse von Einkristallen Dr. Christoph Wölper 2. Teil (ab Anfang Juni) Pulverdiffraktometrie Dr. Oleg Prymak Strukturmethoden: Röntgenstrukturanalyse von Einkristallen

Mehr

Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt)

Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt) Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt) Aufgabe 0) (a0) Es sollen aus folgenden Einheitszellen in allen Raumrichtungen unendlich periodisch fortgesetzte Festkörper

Mehr

Aufgabe 1: Kristallstrukturuntersuchungen

Aufgabe 1: Kristallstrukturuntersuchungen Aufgabe 1: Kristallstrukturuntersuchungen Röntgenstrahlung entsteht in unserem Gerät durch das Auftreffen hochenergetischer Elektronen auf eine Molybdän-Anode (Abbildung 1). Im Spektrum der Strahlung (Abbildung

Mehr

Röntgenkristallstrukturanalyse : Debye-Scherrer

Röntgenkristallstrukturanalyse : Debye-Scherrer 16.04.2009 Gliederung Bragg-Bedingung Bragg-Bedingung Bragg-Bedingung: 2d m m m h k l sin(ϑ) = nλ für kubisches Gitter: 2sin(ϑ) = λ h 2 + k 2 + l 2 a d m m m h k l...netzebenenabstand ϑ...braggwinkel n...

Mehr

Grundlagen der Röntgenpulverdiffraktometrie. Anorganische Chemie I und II. FH Münster, FB01

Grundlagen der Röntgenpulverdiffraktometrie. Anorganische Chemie I und II. FH Münster, FB01 Seminar David zur Enseling Vorlesung und Thomas Jüstel Anorganische Chemie I und II Folie 1 Entdeckung & erste Anwendung der X-Strahlen Wilhelm Roentgen, December of 1895. The X-ray of Mrs. Roentgen's

Mehr

Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut. Versuch Nr. 24: Röntgenographische Methoden

Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut. Versuch Nr. 24: Röntgenographische Methoden Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut Versuch Nr. 24: Röntgenographische Methoden Betreuer: M. Cwik, Tel.: 470 3574, E-mail: cwik@ph2.uni-koeln.de November 2004 Im

Mehr

5. Oberflächen-und Dünnschichtanalytik. Prof. Dr. Paul Seidel VL Vakuum- und Dünnschichtphysik WS 2014/15

5. Oberflächen-und Dünnschichtanalytik. Prof. Dr. Paul Seidel VL Vakuum- und Dünnschichtphysik WS 2014/15 5. Oberflächen-und Dünnschichtanalytik 1 5.1 Übersicht Schichtanalytik - Schichtmorphologie: - Oberflächeneigenschaften - Lichtmikroskop - Rasterelektronenmikroskop - Transmissionselektronenmikroskop -(STM,

Mehr

Strukturmethoden: Röntgenstrukturanalyse von Einkristallen. Sommersemester Christoph Wölper. Universität Duisburg-Essen

Strukturmethoden: Röntgenstrukturanalyse von Einkristallen. Sommersemester Christoph Wölper. Universität Duisburg-Essen Strukturmethoden: Röntgenstrukturanalyse von Einkristallen Sommersemester 2014 Christoph Wölper Universität Duisburg-Essen Christoph Wölper christoph.woelper@uni-due.de http://www.uni-due.de/~adb297b Vorlesungs-Skript

Mehr

NeutronenStreuung. Grundlagen. Aufbau. Eigenschaften & Vorteile Messgrößen. Historie Erzeugung Präparation Detektoren. Diffraktometer.

NeutronenStreuung. Grundlagen. Aufbau. Eigenschaften & Vorteile Messgrößen. Historie Erzeugung Präparation Detektoren. Diffraktometer. NeutronenStreuung Grundlagen Eigenschaften & Vorteile Messgrößen Historie Erzeugung Präparation Detektoren Inhalt Diffraktometer 1 / 24 Einführung detaillierte Eigenschaften auf atomarer Ebene n- & Röntgen-Streuung

Mehr

Lösung: a) b = 3, 08 m c) nein

Lösung: a) b = 3, 08 m c) nein Phy GK13 Physik, BGL Aufgabe 1, Gitter 1 Senkrecht auf ein optisches Strichgitter mit 100 äquidistanten Spalten je 1 cm Gitterbreite fällt grünes monochromatisches Licht der Wellenlänge λ = 544 nm. Unter

Mehr

Röntgendiffraktometrie

Röntgendiffraktometrie Kapitel 3.4. Röntgendiffraktometrie Lothar Schwabe, Freie Universität Berlin 1. Einleitung Die Eigenschaft der Röntgenstrahlen, unterschiedliche Materialien zu durchdringen und dabei mehr oder weniger

Mehr

Kristallographie und Röntgenbeugung

Kristallographie und Röntgenbeugung 16.04.2009 Gliederung 1 Grundlagen der Kristallographie 2 Röntgenstrahlung Laue-Bedingung Bragg-Bedingung Ewaldsche Konstruktion Röntgenverfahren zur Strukturanalyse von Kristallen 3 4 Festkörper kristalliner

Mehr

Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Struktur und Funktion: (Kap. 2)

Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Struktur und Funktion: (Kap. 2) Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Übersicht 2 Beugung von Röntgenstrahlen an Kristallen 2.1 Erzeugung von Röntgenstrahlen 2.2 Streuung an Elektronen 2.3 Streuung an

Mehr

7.5.3 Verhalten der Katalysatoren in überkritischen Medien Wasser

7.5.3 Verhalten der Katalysatoren in überkritischen Medien Wasser 7 Anhang 217 7.5.3 Verhalten der Katalysatoren in überkritischen Medien 7.5.3.1 Wasser Massenänderung Tab. 7-1: Relative Massenänderung (Gravimetrie) der Bleche in Abhängigkeit der Temperatur, m/m [%(g/g)]

Mehr

Praktikum H1: Werkstofftechnologie und Halbzeuge Versuch S1: Phasenanalyse mittels Pulverdiffraktometrie

Praktikum H1: Werkstofftechnologie und Halbzeuge Versuch S1: Phasenanalyse mittels Pulverdiffraktometrie Lehrstuhl für Kristallographie, Universität Bayreuth Praktikum H1: Werkstofftechnologie und Halbzeuge Versuch S1: Phasenanalyse mittels Pulverdiffraktometrie Wintersemester 20011/2012 1 Motivation und

Mehr

Kristallstrukturbestimmung

Kristallstrukturbestimmung Werner Massa Kristallstrukturbestimmung 3., überarbeitete und aktualisierte Auflage Mit 102 Abbildungen Teubner B. G.Teubner Stuttgart Leipzig Wiesbaden Inhaltsverzeichnis 1 Einleitung 7 2 Kristallgitter

Mehr

Röntgenographische Charakterisierung der hergestellten Feststoffe mittels Pulverdiffraktion, sowie Auswertung der erhaltenen Pulverdiffraktogramme

Röntgenographische Charakterisierung der hergestellten Feststoffe mittels Pulverdiffraktion, sowie Auswertung der erhaltenen Pulverdiffraktogramme Röntgenographische Charakterisierung der hergestellten Feststoffe mittels Pulverdiffraktion, sowie Auswertung der erhaltenen Pulverdiffraktogramme Vorbemerkung: Wegen der umfassenden Theorie von kristallographischen

Mehr

Physikalisches Grundpraktikum Technische Universität Chemnitz

Physikalisches Grundpraktikum Technische Universität Chemnitz Physikalisches Grundpraktikum Technische Universität Chemnitz Protokoll «A10 - AVOGADRO-Konstante» Martin Wolf Betreuer: Herr Decker Mitarbeiter: Martin Helfrich Datum:

Mehr

TEP Diffraktometrisches Debye-Scherrer Diagramm einer Pulverprobe mit tetragonaler Gitterstruktur (Bragg-Brentano-Geometrie)

TEP Diffraktometrisches Debye-Scherrer Diagramm einer Pulverprobe mit tetragonaler Gitterstruktur (Bragg-Brentano-Geometrie) Diffraktometrisches Debye-Scherrer Diagramm einer TEP 5.4.4- Verwandte Themen Charakteristische Röntgenstrahlung, Monochromatisierung von Röntgenstrahlung, Kristallstrukturen, Bravais-Gitter, Reziproke

Mehr

Röntgendiffraktometrie

Röntgendiffraktometrie Röntgendiffraktometrie Name: Matthias Jasch Matrikelnummer: 077 Mitarbeiter: Mirjam und Rahel Eisele Gruppennummer: 7 Versuchsdatum: 9. Mai 009 Betreuer: Verena Schendel 1 Einleitung Bei der Röntgendiffraktometrie

Mehr

Diffraktometrische Debye-Scherrer Diagramme von Pulverproben mit Diamantstruktur (Bragg-Brentano-Geometrie) TEP

Diffraktometrische Debye-Scherrer Diagramme von Pulverproben mit Diamantstruktur (Bragg-Brentano-Geometrie) TEP Diffraktometrische Debye-Scherrer Diagramme von Pulverproben mit Diamantstruktur (Bragg-Brentano-Geometrie) Verwandte Themen Charakteristische Röntgenstrahlung, Monochromatisierung von Röntgenstrahlung,

Mehr

Strukturmethoden: Röntgenstrukturanalyse von Einkristallen. Sommersemester Christoph Wölper

Strukturmethoden: Röntgenstrukturanalyse von Einkristallen. Sommersemester Christoph Wölper Strukturmethoden: Röntgenstrukturanalyse von Einkristallen Sommersemester 2012 Christoph Wölper Christoph Wölper christoph.woelper@uni-due.de http://www.uni-due.de/~adb297b Vorlesungs-Script unter: http://www.uni-due.de/~adb297b/ss2012/strukturmethoden_vorlesung.pdf

Mehr

Physik 4: Skalen und Strukturen

Physik 4: Skalen und Strukturen Physik 4: Skalen und Strukturen Kapitel : Festkörperphysik.1 Aggregatszustände. Kristallstrukturen.3 Chemische Bindung.4 Gitterschwingungen.5 Elektronen im Festkörper Phasendiagramm von CO Klassisches

Mehr

Fortgeschrittenenpraktikum. 2. Praktikumsversuch aus Halbleiterphysik. Röntgenbeugung

Fortgeschrittenenpraktikum. 2. Praktikumsversuch aus Halbleiterphysik. Röntgenbeugung 2. Praktikumsversuch aus Halbleiterphysik Röntgenbeugung, 0555150 (Autor), 0555342 Gruppe I/1 1 Inhaltsverzeichnis 1 Theoretische Grundlagen 3 1.1 Bragg-Bedingung.............................................

Mehr

TEP Diffraktometrisches Debye-Scherrer Diagramm einer Pulverprobe mit hexagonaler Gitterstruktur (Bragg-Brentano-Geometrie)

TEP Diffraktometrisches Debye-Scherrer Diagramm einer Pulverprobe mit hexagonaler Gitterstruktur (Bragg-Brentano-Geometrie) Diffraktometrisches Debye-Scherrer Diagramm einer TEP 5.4.3- Verwandte Themen Charakteristische Röntgenstrahlung, Monochromatisierung von Röntgenstrahlung, Kristallstrukturen, Bravais-Gitter, Reziproke

Mehr

13 Röntgeninterferenzen an Einkristallen

13 Röntgeninterferenzen an Einkristallen 13 Röntgeninterferenzen an Einkristallen 13.1 Röntgenstreuung an Atomen Elastische Röntgenstreuung in Materie erfolgt hauptsächlich durch Wechselwirkung mit Elektronen; der Kernbeitrag ist vernachlässigbar.

Mehr

Allgemeine Mineralogie - Kristallographie. Diamant

Allgemeine Mineralogie - Kristallographie. Diamant Allgemeine Mineralogie - Kristallographie Diamant Bravaisgitter Aus den fünf 2-D Gittern können durch Translation in die dritte Dimension insgesamt 14 Bravaisgitter erzeugt werden Einteilung der Bravais

Mehr

5.3 Die magnetische Struktur α-cr 2 P 2 O 7 171

5.3 Die magnetische Struktur α-cr 2 P 2 O 7 171 5.3 Die magnetische Struktur α-cr 2 P 2 O 7 171 Abb. 5.15 Neutronenbeugungsdiagramm von α-cr 2 P 2 O 7 bei 30 K. a) "o" beobachtete Messpunkte, graue Linie: berechnetes Diagramm; b) Bragg-Positionen der

Mehr

TEP Strukturbestimmung von NaCl-Einkristallen verschiedener Orientierungen

TEP Strukturbestimmung von NaCl-Einkristallen verschiedener Orientierungen Strukturbestimmung von NaCl-Einkristallen TEP Verwandte Begriffe Charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Reziproke Gitter, Millersche- Indizes, Atomfaktor, Strukturfaktor,

Mehr

Grundlagen der Chemie Ionenradien

Grundlagen der Chemie Ionenradien Ionenradien Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Ionenradien In einem Ionenkristall halten benachbarte

Mehr

Kristallstruktur und Mikrostruktur Teil I Vorlesung 5

Kristallstruktur und Mikrostruktur Teil I Vorlesung 5 Kristallstruktur und Mikrostruktur Teil I Vorlesung 5 Wiederholung # 2D Muster haben keine Spiegelebene in der Projektionebene # Der Verschiebungsvektor v einer Gleitspiegelebene, parallel zur Achse t

Mehr

Typisch metallische Eigenschaften:

Typisch metallische Eigenschaften: Typisch metallische Eigenschaften: hohe elektrische Leitfähigkeit hohe thermische Leitfähigkeit bei Energiezufuhr (Wärme, elektromagnetische Strahlung) können Elektronen emittiert werden metallischer Glanz

Mehr

Beugung am Gitter mit Laser ******

Beugung am Gitter mit Laser ****** 5.10.301 ****** 1 Motiation Beugung am Gitter: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Die Beugung am Gitter erzeugt ein schönes Beugungsbild

Mehr

Intensitätsverteilung der Beugung am Spalt ******

Intensitätsverteilung der Beugung am Spalt ****** 5.10.801 ****** 1 Motivation Beugung am Spalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). 2 Experiment Abbildung 1: Experimenteller Aufbau

Mehr

FK Experimentalphysik 3, Lösung 3

FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl

Mehr

3. Beugung am Kristall 3.1 Beugung mit Photonen, Neutronen, Elektronen

3. Beugung am Kristall 3.1 Beugung mit Photonen, Neutronen, Elektronen 3. Beugung am Kristall 3.1 Beugung mit Photonen, Neutronen, Elektronen Analyse von Kristallstrukturen durch die Beugung von: Photonen, Neutronen und Elektronen Wellenlänge in A 10 1.0 0.1 1 10 100 Voraussetzung:

Mehr

1 Kristallgitter und Kristallbaufehler 10 Punkte

1 Kristallgitter und Kristallbaufehler 10 Punkte 1 Kristallgitter und Kristallbaufehler 10 Punkte 1.1 Es gibt 7 Kristallsysteme, aus denen sich 14 Bravais-Typen ableiten lassen. Charakterisieren Sie die kubische, tetragonale, hexagonale und orthorhombische

Mehr

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt 5.10.802 ****** 1 Motivation Beugung am Doppelspalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Der Unterschied der Intensitätsverteilungen

Mehr

6. Diffraktometrie. Michael Bolte. Institut für Organische Chemie. der Universität Frankfurt. Max-von-Laue-Straße 7.

6. Diffraktometrie. Michael Bolte. Institut für Organische Chemie. der Universität Frankfurt. Max-von-Laue-Straße 7. 6. Diffraktometrie Michael Bolte Institut für Organische Chemie der Universität Frankfurt Max-von-Laue-Straße 7 60438 Frankfurt E-Mail: bolte@chemie.uni-frankfurt.de I. Meßmethoden mit Diffraktometern

Mehr

3.5 Experimentelle Bestimmung der Kristallstruktur Beugungsverfahren

3.5 Experimentelle Bestimmung der Kristallstruktur Beugungsverfahren 3.5 Experimentelle Bestimmung der Kristallstruktur Beugungsverfahren Röntgenbeugungsverfahren - - - Laue-Verfahren Drehkristall-Verfahren Debye-Scherrer-Verfahren (Pulververfahren) Elektronenbeugung Neutronenbeugung

Mehr

Übungen zur Physik des Lichts

Übungen zur Physik des Lichts ) Monochromatisches Licht (λ = 500 nm) wird an einem optischen Gitter (000 Striche pro cm) gebeugt. a) Berechnen Sie die Beugungswinkel der Intensitätsmaxima bis zur 5. Ordnung. b) Jeder einzelne Gitterstrich

Mehr

Protokoll zum Versuch Debye - Scherrer - Verfahren. Tina Clauß, Jan Steinhoff Betreuer: Dr. Uschmann

Protokoll zum Versuch Debye - Scherrer - Verfahren. Tina Clauß, Jan Steinhoff Betreuer: Dr. Uschmann Protokoll zum Versuch Debye - Scherrer - Verfahren Tina Clauß, Jan Steinhoff Betreuer: Dr. Uschmann 6. März 2005 3 Inhaltsverzeichnis 1 Aufgabenstellung 4 2 Theoretische Grundlagen 4 2.1 Röntgenstrahlung.................................

Mehr

19.Juni Strukturbestimmung. Gruppe 36. Simon Honc Christian Hütter

19.Juni Strukturbestimmung. Gruppe 36. Simon Honc Christian Hütter 19.Juni 2005 Strukturbestimmung Gruppe 36 Simon Honc shonc@web.de Christian Hütter christian.huetter@gmx.de 1 I. Theoretische Grundlagen 1. Struktur idealer Kristalle Generell kann man bei Kristallen vom

Mehr

Werkstoffe und Sensorik

Werkstoffe und Sensorik 1 1. Kristall-Strukturen Kristalline Materialien bestehen aus regelmäßigen Anordnungen von Atomen in 3 Dimensionen. Einheitszelle: Kleinste, sich wiederholende Einheit, die die volle Symmetrie der Kristallstruktur

Mehr

Praktikumsprotokoll Diffraktometrie

Praktikumsprotokoll Diffraktometrie Versuchstag: 30.04.2009 Name: Christian Niedermeier Gruppe: 12 Betreuer: Verena Schendel Praktikumsprotokoll Diffraktometrie 1. Einleitung Durch Bestrahlung eines Einkristalls aus Silicium bzw. LiF mit

Mehr

Röntgenbeugungsverfahren - Laue-Verfahren - Drehkristall-Verfahren - Debye-Scherrer-Verfahren (Pulververfahren) Elektronenbeugung Neutronenbeugung

Röntgenbeugungsverfahren - Laue-Verfahren - Drehkristall-Verfahren - Debye-Scherrer-Verfahren (Pulververfahren) Elektronenbeugung Neutronenbeugung 3.5 Experimentelle Bestimmung der Kristallstruktur Beugungsverfahren Röntgenbeugungsverfahren - Laue-Verfahren - Drehkristall-Verfahren - Debye-Scherrer-Verfahren (Pulververfahren) Elektronenbeugung Neutronenbeugung

Mehr

Textur I. Grundlagen. Günter Gottstein. Institut für Metallkunde und Metallphysik IMM

Textur I. Grundlagen. Günter Gottstein. Institut für Metallkunde und Metallphysik IMM Textur I Grundlagen Günter Gottstein Institut für Metallkunde und Metallphysik IMM Indizierung von Ebenen und Richtungen Definition und Darstellung von Orientierungen Definition und Darstellung von Texturen

Mehr

XDR - Röngendiffraktometrie

XDR - Röngendiffraktometrie Praktikum Werkstoffmechanik Studiengang: Chemie-Ingenieurwesen Technische Universität München SS 2004 XDR - Röngendiffraktometrie Oliver Gobin 24 Juli 2004 Betreuer: Dr. W. Loos 1 Aufgabenstellung Folgende

Mehr

Methoden der Kristallcharakterisierung

Methoden der Kristallcharakterisierung Methoden der Kristallcharakterisierung Aus dem Alltag des Kristallzüchters: Es wurde eine feste Substanz synthetisiert. Ist es eine kristalline Substanz? Um welche kristalline Phase handelt es sich? Antworten

Mehr

Wiederholung der letzten Vorlesungsstunde

Wiederholung der letzten Vorlesungsstunde Wiederholung der letzten Vorlesungsstunde Festkörper, ausgewählte Beispiele spezieller Eigenschaften von Feststoffen, Kohlenstoffmodifikationen, Nichtstöchiometrie, Unterscheidung kristalliner und amorpher

Mehr

Vorlesung 2: Größe der Atome Massenspektroskopie Atomstruktur aus Rutherfordstreuung (1911)

Vorlesung 2: Größe der Atome Massenspektroskopie Atomstruktur aus Rutherfordstreuung (1911) Vorlesung 2: Roter Faden: Größe der Atome Massenspektroskopie Atomstruktur aus Rutherfordstreuung (1911) Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/ Wim de Boer, Karlsruhe Atome

Mehr

Übungen Festkörper (WS 2017/2018) (wird im Laufe des Semesters vervollständigt)

Übungen Festkörper (WS 2017/2018) (wird im Laufe des Semesters vervollständigt) Übungen Festkörper (WS 2017/2018) (wird im Laufe des Semesters vervollständigt) Aufgabe 0) (a0a) Es sollen aus folgenden kubischen Einheitszellen in allen Raumrichtungen unendlich periodisch fortgesetzte

Mehr

Struktur von Festkörpern

Struktur von Festkörpern Struktur von Festkörpern Wir wollen uns zunächst mit der Struktur von Festkörpern, daß heißt mit der Geometrie in der sie vorliegen beschäftigen Kovalent gebundene Festkörper haben wir bereits in Form

Mehr

Röntgen- Pulverdiffraktometrie

Röntgen- Pulverdiffraktometrie Rudolf Allmann Röntgen- Pulverdiffraktometrie Rechnergestützte Auswertung, Phasenanalyse und Strukturbestimmung unter Mitwirkung von Dr. ARNT KERN 2., korrigierte und erweiterte Auflage Mit 138 Abbildungen

Mehr

Physik 4: Skalen und Strukturen

Physik 4: Skalen und Strukturen Physik 4: Skalen und Strukturen.5: Kleine Skalen Chemische Bindung Aggregatszustände Kristallstrukturen und Streuung Bildung des Lebens Kovalente Molekülbindungen Ladungsdichteverteilungen: CH 4 NH 3 H

Mehr

2. METALLISCHE WERKSTOFFE

2. METALLISCHE WERKSTOFFE 2. METALLISCHE WERKSTOFFE Metalle sind kristallin aufgebaut Bindung wischen den Atomen = Metallbindung Jedes Atom gibt ~ 1 Elektron aus äußerster Schale ab positiv geladene Metallionen negativ geladene

Mehr

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgabe ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.

Mehr

2.2 Röntgenbeugung Messverfahren. Definition von Netzebenen (Bragg-Beugung):

2.2 Röntgenbeugung Messverfahren. Definition von Netzebenen (Bragg-Beugung): 2.2 Röntgenbeugung 2.2.1 Messverfahren Definition von Netzebenen (Bragg-Beugung): a) Debye-Scherrer- Verfahren: Pulver m. Kristalliten jeder Orientierung Alle Netzebenen (Monochromatisches Licht) Beugungsordnungen

Mehr

2. Experimentelle Methoden

2. Experimentelle Methoden . Experimentelle Methoden.1 Eigenschaften von Röntgen- und Synchrotronstrahlung Strahlen X sind elektromagnetische Wellen, die sich im Vakuum mit der Lichtgeschwindigkeit verbreiten Wilhelm Conrad Röntgen

Mehr

IV. Pulverdiffraktometrie - Phasenanalyse

IV. Pulverdiffraktometrie - Phasenanalyse IV. - Phasenanalyse Auf welche verschiedene Arten kann die Bragg sche Beziehung λ = d hkl sin ϑ erfüllt werden? Verwendung von weißer Primärstrahlung (und somit eines großen Wellenlängenbereiches) zusammen

Mehr

Gefüge und Eigenschaften metallischer Werkstoffe WS 17/18

Gefüge und Eigenschaften metallischer Werkstoffe WS 17/18 Gefüge und Eigenschaften metallischer Werkstoffe WS 7/8 Übung 5 Musterlösung 0..07 Aufgabe Welche Bravais-Gittertypen gibt es? Welche Modifikationen besitzen Sie? Nennen Sie Materialbeispiele zu jedem

Mehr

Quantenphysik. Klassische Physik. Moderne Themen der Physik. Mechanik Wärmelehre uns statistische Physik Elektrodynamik.

Quantenphysik. Klassische Physik. Moderne Themen der Physik. Mechanik Wärmelehre uns statistische Physik Elektrodynamik. phys4.01 Page 1 Klassische Physik Mechanik Wärmelehre uns statistische Physik Elektrodynamik Physik 1-3 Quantenphysik Quantisierung der Materie Quantisierung der Ladung Quantisierung der Energie Physik

Mehr

Röntgenstrukturanalyse und Rietveldmethode

Röntgenstrukturanalyse und Rietveldmethode Harald Krischner Brigitte Koppelhuber-Bitschnau Röntgenstrukturanalyse und Rietveldmethode Eine Einführung 5., neubearbeitete Auflage Mit 87 Abbildungen und 24 Tabellen vieweg Inhaltsverzeichnis 1 Entstehung

Mehr

Versuch 2.2: Überstruktur in Cu 3 Au

Versuch 2.2: Überstruktur in Cu 3 Au Versuch 2.2: Überstruktur in Cu 3 Au Betreuer: Thomas Finger, Martin Valldor Der Versuch befindet sich in Raum 326 des II. Physikalischen Instituts. In vielen binären Legierungen mit bestimmten stöchiometrischen

Mehr

Alle Angaben sind ohne Gewähr!

Alle Angaben sind ohne Gewähr! Alle Angaben sind ohne Gewähr! Die Abbildungen sind hauptsächlich aus dem Buch: Van Holde/Johnson/Ho: Principles of physical biochemistry Buch nur zur Kristallographie: Crystallography Made Crystal Clear:

Mehr

Symmetrie im reziproken Raum

Symmetrie im reziproken Raum 9. Intensitäten Symmetrie im reziproken Raum Methoden und Konzepte Basiskurs: Kristallographie und Beugung, 10.2010, C.R. Symmetrie im realen Raum (Wdh.) Nicht I-gewichtetes reziprokes Gitter Intensitäten

Mehr

Spins Do -Experimenteller Magnetismus

Spins Do -Experimenteller Magnetismus 31.1.2018 Spins Do -Experimenteller Magnetismus Martin Valldor IBM-Ahmed Email: m.valldor@ifw-dresden.de 1 Neutronen treffen auf Elektronen elastisch 2 Fission Das Neutron die Quelle Spallation 89 Kr 36

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

Besprechung am

Besprechung am PN2 Einführung in die Physik für Chemiker 2 Prof. J. Lipfert SS 2016 Übungsblatt 10 Übungsblatt 10 Besprechung am 27.6.2016 Aufgabe 1 Interferenz an dünnen Schichten. Weißes Licht fällt unter einem Winkel

Mehr

1. Systematik der Werkstoffe 10 Punkte

1. Systematik der Werkstoffe 10 Punkte 1. Systematik der Werkstoffe 10 Punkte 1.1 Werkstoffe werden in verschiedene Klassen und die dazugehörigen Untergruppen eingeteilt. Ordnen Sie folgende Werkstoffe in ihre spezifischen Gruppen: Stahl Holz

Mehr

3. Struktur idealer Kristalle

3. Struktur idealer Kristalle 3. Struktur idealer Kristalle 3.1 Raumgitter - 3-D-periodische Anordnungen - Raumgitter und Basis - primitive Translationen - Elementarzelle - Dreh- und Spiegelsymmetrien - Einheitszelle - 7 Kristallsysteme,

Mehr

Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min

Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min Thema: Wellen und Quanten Interferenzphänomene werden an unterschiedlichen Strukturen untersucht. In Aufgabe 1 wird zuerst der Spurabstand einer CD bestimmt. Thema der Aufgabe 2 ist eine Strukturuntersuchung

Mehr

Anhang Häufig verwendete Symbole

Anhang Häufig verwendete Symbole 68 Anhang Häufig verwendete Symbole Anhang Häufig verwendete Symbole θ B exakter Braggwinkel θ B Abweichung vom Braggwinkel λ Wellenlänge d Netzebenenabstand π & σ Parallel- & Senkrechtkomponente der Polarisation

Mehr

Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch.

Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch. Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch. Stichworte zur Vorbereitung: AVOGADRO-Konstante, Röntgenstrahlung, Röntgenröhre,

Mehr

letzte Vorlesung ( )

letzte Vorlesung ( ) Letzte Vorlesung letzte Vorlesung (19.05.2008) Synthesemethoden IIIb Lasersynthese Templatsynthese Charakterisierung I Definitionen Symmetrie Elementarzelle, Kristallsysteme Kristallklassen, Raumgruppen

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Freie Universität Berlin WS 6/7 Fachbereich Physik 4..6 Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Übungsblatt 7: Dichtematrix, Variationsprinzip Aufgabe (5 Punkte) Betrachten Sie ein Gas

Mehr

TEP Diffraktometrische Debye-Scherrer Diagramm (Bragg-Brentano Geometrie) von Pulverproben der drei kubischen Bravais Gitter

TEP Diffraktometrische Debye-Scherrer Diagramm (Bragg-Brentano Geometrie) von Pulverproben der drei kubischen Bravais Gitter Diffraktometrische Debye-Scherrer Diagramm TEP 5.4.1- Verwandte Themen Charakteristische Röntgenstrahlung, Monochromatisierung von Röntgenstrahlung, Kristallstrukturen, Bravais-Gitter, Reziproke Gitter,

Mehr