Transistor und einer Z-Diode

Größe: px
Ab Seite anzeigen:

Download "Transistor und einer Z-Diode"

Transkript

1 Berechnung einer Spannungs-Stabilisierung mit einem Transistor und einer Z-Diode Mit dieser einfachen Standard-Schaltung kann man eine unstabilisierte, schwankende Eingangsspannung in eine konstante Ausgangsspannung verwandeln, die selbst bei unterschiedlichen Belastungen konstant bleibt. Der Lastwiderstand RL symbolisiert in diesem Schaltbild den Verbraucher. Spannungsstabilisierung mit einem Transistor und einer Z-Diode Berechnungs- und Lernprogramm aus " E1 - Das interaktive Lernprogramm ". Bevor diese Schaltung Ende der 70er Jahre durch integrierte Festspannungsregler abgelöst wurde, kam sie in Netzteilen kleiner Leistung (bis etwa 300 ma) zum Einsatz. Die Eingangsspannung Ue wurde dabei durch einen Brückengleichrichter mit nachfolgendem Siebkondensator erzeugt. Zusätzlich gesiebt wurde auch die Ausgangsspannung Uaus mit einem parallel zur Last geschalteten Kondensator (man denke ihn sich parallel zu RL). Die Schaltung wird übrigens immer noch aus Kostengründen verwendet und nennt sich im Labor-Jargon "aufgebohrte Zenerdiode". Die Stabilitätswirkung kann noch zusätzlich gesteigert werden, indem man parallel zur Z-Diode noch einen kleinen Kondensator von etwa 10 µf schaltet. 1 / 7

2 Trotz ihrer Einfachheit ist die Schaltung im Prinzip immer noch aktuell, und das Verständnis ihrer Funktion ist Voraussetzung, um kompliziertere Schaltungen verstehen zu können. Funktionsweise: Wenn man die Schaltung umzeichnet, wird man leicht feststellen, dass man die Spannungsstabilisierungsschaltung auch als Kollektorschaltung (Emitterfolger) auffassen kann. Andere Darstellung zum besseren Verständnis. Die Spannungsstabilierung entspricht der Ko llektorschaltung. Der Lastwiderstand RL (stellvertretend für den Verbraucher) wird dann zum Emitterwiderstand Re, und der Widerstand Rv sorgt zusammen mit der Z-Diode für eine konstante Basisspannung. Rv und die Z-Diode übernehmen dann vergleichbar die Aufgabe des Basisspannnungsteilers. Der Vorwiderstand Rv wird so gewählt, dass durch die Zenerdiode ein Strom fließt, der in jedem Fall mindestens 5-mal höher als der Basisstrom ist. An der Zenerdiode fällt dann eine nahezu konstante Zenerspannung ab. Ganz gleich was passiert - an der Zenerdiode fällt immer die Zenerspannung ab (in gewissen Grenzen natürlich). Angenommen, die Ausgangsspannung Uaus würde ohne Belastung 10 Volt betragen. Nun wird die Schaltung mit zum Beispiel 200 ma belastet. Dann würde normalerweise die Ausgangsspannung geringer werden (zusammenbrechen). Doch diese Schaltung gleicht den Spannungseinbruch wie folgt aus: 2 / 7

3 Steigt der Ausgangsstrom an, muss folglich auch der Emitter- beziehungsweise der Kollektorstrom des Transistors ansteigen. Würde sich die Kollektor-Emitter-Strecke nun wie ein normaler Widerstand verhalten, müsste Uce nach dem Ohmschen Gesetz U=R I ebenfalls größer werden. Die Folge wäre, dass die Ausgangsspannung kleiner werden müßte. Doch das ist nicht der Fall. Die Spannung Uce bleibt konstant. Sobald nämlich die Spannung am Emitter kleiner würde (weil die Ausgangsspannung durch die höhere Belastung "in die Knie" gegangen ist), würde sich die Spannungsdifferenz zwischen Basis und Emitter (Ube) vergrößern, denn gleichzeitig bleibt ja die Basisspannung auf Grund der Zenerdiode und Rv konstant. Ein größeres Ube bedeutet aber einen starken Anstieg des Basisstroms (Die Basis-Emitter-Strecke verhält sich wie eine Zenerdiode mit einer Schwellenspannung von 0.6 bis 0.7 Volt bei Silizium). Ein hoher Basisstrom bedeutet aber auch einen noch höheren Kollektor- und Emitterstrom (Stromverstärkung des Transistors). Dies hat zur Folge, dass jetzt ein höherer Strom durch RL fließt. Der Spannungseinbruch an RL wird wieder ausgeglichen. Dieser Regelkreis stellt sich immer auf die Schwellenspannung der Emitter-Basis-Strecke ein. Merkhilfe, Zenerdiodenspannung: Als Merkhilfe kann man sich die Ube-Strecke und die Zenerdiode als Reihenschaltung zweier Zenerdioden vorstellen. Ube ist dann 0.7 Volt und die Spannung an der Zenerdiode muss dann 9.3 Volt betragen, um eine Ausgangsspannung von 10 Volt zu erhalten (0.7 V V = 10 V). Wir wählen also eine Zenerdiode mit einer Zenerspannung, die den 9.3 Volt am nächsten kommt. Berechnung: Die Zenerdiode und der Vorwiderstand Rv bilden zusammen eine Art Spannungsteiler. Damit der Einfluss des Basisstroms eine unbedeutende Rolle spielt, wählt man einen vergleichsweise großen Querstrom, der etwa 5-mal dem maximalen Basisstrom entspricht. 3 / 7

4 1. Berechnung von Ib: Angenommen, der Stromverstärkungsfaktor ß des Transistors betrüge 40, und der maximale Ausgangsstrom Iaus betrüge 200 ma. Der maximale Basisstrom Ib ist dann: Ib = Iaus / ß Ib = 200 ma / 40 Ib = 5 ma 2. Berechnung von Iz: Wie gesagt, soll der Strom durch die Z-Diode etwa 5-mal höher als der max. Basisstrom Ib sein: Iz = Ib 5 Iz = 5 ma 5 Iz = 25 ma 3. Berechnung von IRv: Nun können wir den Strom IRv bestimmen, welcher durch den Vorwiderstand Rv fließt. Durch Rv fließt nicht nur der Zenerstrom Iz sondern zusätzlich auch noch der Basisstrom Ib: IRv = Iz + Ib IRv = (5 Ib) + (1 Ib) 4 / 7

5 IRv = 6 Ib IRv = 6 5 ma IRv = 30 ma 4. Berechnung von Uz: Die Wahl der Zenerspannung Uz hängt von der gewünschten Ausgangsspannung Uaus ab (im Beispiel ist Uaus = 10 Volt). Uz muss um die Schwellenspannung Ube kleiner als die Ausgangsspannung Uaus sein: Uz = Uaus - Ube Uz = 10 V V Uz = 9.3 V 5. Berechnung von Rv: Nun können wir Rv berechnen. Angenommen, die minimale Eingangsspannung Ubb betrüge 12 Volt. Dann fällt an Rv die Spannung URv ab: URv = Ubb - Uz URv = 12 V V URv = 2.7 Volt 5 / 7

6 Nach dem Ohmschen Gesetz ist dann Rv = URv / IRv Rv = 2.7 V / 30 ma Rv = 0.09 kohm Rv = 90 Ohm 6. Berechnung von PRv: Da wir nun den Spannungsabfall an Rv und den Strom durch Rv kennen, können wir die Verlustleistung von Rv berechnen: PRv = URv IRv PRv = 2.7 V 30 ma PRv = 81 mw 7. Berechnung von Pz: Die Verlustleistung Pz der Zenerdiode berechnet sich wie folgt: Pz = Uz Iz 6 / 7

7 Pz = 9.3 Volt 25 ma Pz = mw 8. Berechnung von PT1: Die Verlustleistung PT1 des Serientransistors T1 berechnet sich wie folgt: PT1 = (Ubb - Uaus) Iaus PT1 = (12 V - 10 V) 200 ma PT1 = 2 V 200 ma PT1 = 400 mw Der Transistor muss also mindestens für eine Verlustleistung von 400 mw beschaffen sein. Eventuell benötigt er einen Kühlkörper. 7 / 7

Geschrieben von: Volker Lange-Janson Freitag, den 06. März 2015 um 16:26 Uhr - Aktualisiert Sonntag, den 08. März 2015 um 08:12 Uhr

Geschrieben von: Volker Lange-Janson Freitag, den 06. März 2015 um 16:26 Uhr - Aktualisiert Sonntag, den 08. März 2015 um 08:12 Uhr Konstantstromquelle mit einem NPN-Transistor Diese Schaltung liefert einen konstanten Strom Ikonst, welcher durch RL fließt. Dabei spielt es in gewissen Grenzen keine Rolle, wie groß RL ist. Der Konstantstrom

Mehr

Geschrieben von: Volker Lange-Janson Montag, den 09. März 2015 um 07:46 Uhr - Aktualisiert Montag, den 09. März 2015 um 08:11 Uhr

Geschrieben von: Volker Lange-Janson Montag, den 09. März 2015 um 07:46 Uhr - Aktualisiert Montag, den 09. März 2015 um 08:11 Uhr // // // Spannungs-Stabilisierung mit einer Z-Diode - Berechnung Diese Grundschaltung einer Spannungsstabilisierung stellt die einfachste Anwendung einer Zenerdiode dar. Die Schaltung wandelt eine schwankende

Mehr

Geschrieben von: Volker Lange-Janson Donnerstag, den 05. März 2015 um 16:31 Uhr - Aktualisiert Sonntag, den 08. März 2015 um 08:15 Uhr

Geschrieben von: Volker Lange-Janson Donnerstag, den 05. März 2015 um 16:31 Uhr - Aktualisiert Sonntag, den 08. März 2015 um 08:15 Uhr // // Konstantstromquelle mit einem pnp-transistor - Berechnung Mit dieser einfachen Schaltung kann am Kollektor des Transistors ein konstanter Strom I gewonnen werden. Das Prinzip ist sehr einfach: An

Mehr

Wechselstrom-Gegenkopplung

Wechselstrom-Gegenkopplung // Berechnung einer Emitterschaltung mit Wechselstrom-Gegenkopplung Diese Transistor-Schaltung stellt eine Abwandlung der " Emitterschaltung mit Arbeitspunktstabilisierung durch Stromgegenkopplung " dar.

Mehr

Arbeitspunkt-Stabilisierung durch Strom-Gegenkopplung

Arbeitspunkt-Stabilisierung durch Strom-Gegenkopplung Berechnung einer Emitterschaltung mit Arbeitspunkt-Stabilisierung durch Strom-Gegenkopplung Diese Schaltung verkörpert eine Emitterschaltung mit Stromgegenkopplung zur Arbeitspunktstabilisierung. Verwendet

Mehr

Stabilisierungsschaltung mit Längstransistor

Stabilisierungsschaltung mit Längstransistor Stabilisierungsschaltung mit Längstransistor Eine Stabilisierung für ein Netzteil entsprechend nebenstehender Schaltung soll aufgebaut und dimensioniert werden. Bestimmen Sie: 1. die erforderliche Z-Dioden-Spannung

Mehr

Übungsserie, Bipolartransistor 1

Übungsserie, Bipolartransistor 1 13. März 2017 Elektronik 1 Martin Weisenhorn Übungsserie, Bipolartransistor 1 Aufgabe 1. Invertierender Verstärker Die Abbildung 1 stellt einen invertierenden Verstärker dar. Es sei = 10 kω und = 1 kω.

Mehr

von Robert PAPOUSEK 4.2 Gegentaktverstärker: Bild 1:PRINZIP DER DARLINGTONSCHALTUNG

von Robert PAPOUSEK 4.2 Gegentaktverstärker: Bild 1:PRINZIP DER DARLINGTONSCHALTUNG von Robert PAPOUSEK INHALTSVERZEICHNIS: 1.Anforderungen an Leistungsverstärker 2.Grundlagen 3.Leistungsstufen: 3.1 Parallelschalten von Transistoren 4. A- und B-Betrieb: 4.1 Eintaktverstärker 4.2 Gegentaktverstärker

Mehr

Stabilisierungsschaltung mit Längstransistor

Stabilisierungsschaltung mit Längstransistor Stabilisierungsschaltung mit Längstransistor Bestimmung des Innenwiderstandes Eine Stabilisierungsschaltung gemäß nebenstehender Schaltung ist mit folgenden Daten gegeben: = 18 V R 1 = 150 Ω Für die Z-Diode

Mehr

Projekt: Einstellbares Netzteil mit Spannungsstabilisierung

Projekt: Einstellbares Netzteil mit Spannungsstabilisierung Projekt: Einstellbares Netzteil mit Spannungsstabilisierung W. Kippels 14. Januar 2016 Inhaltsverzeichnis 1 Die Aufgabenstellung 2 2 Eine mögliche Lösung 4 2.1 Die maximalen Spannung am Kondensator:.................

Mehr

Unterschrift: Hörsaal: Platz-Nr.:

Unterschrift: Hörsaal: Platz-Nr.: FH München FK 3 Maschinenbau Diplomprüfung Elektronik SS 8 Mittwoch 6.7.8 Prof. Dr. Höcht Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 9 Minuten Name: Vorname: Sem.: nterschrift: Hörsaal: Platz-Nr.:

Mehr

Diplomvorprüfung WS 11/12 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung WS 11/12 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 9 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 11/12 Fach: Elektronik,

Mehr

Stabilisierungsschaltung mit Längstransistor

Stabilisierungsschaltung mit Längstransistor Stabilisierungsschaltung mit Längstransistor Bestimmung des Innenwiderstandes Eine Stabilisierungsschaltung gemäß nebenstehender Schaltung ist mit folgenden Daten gegeben: 18 V R 1 150 Ω Für die Z-Diode

Mehr

Praktikum zur Vorlesung Elektronik SS Serie

Praktikum zur Vorlesung Elektronik SS Serie Praktikum zur Vorlesung Elektronik SS 2009 4.Serie 09.06.2009 Di. 09.06.09 14:00-16:00 Uhr, Mi. 10.06.09 14:00-16:00 Uhr, Fr. 12.06.09 10:00-12:00 Uhr Ort: Gebäude 02-413 (nfängerpraktikum) 1. Stock, Raum

Mehr

Stabilisierungsschaltung mit Z-Diode

Stabilisierungsschaltung mit Z-Diode Stabilisierungsschaltung mit Z-Diode Nebenstehend ist eine einfache Schaltung zur Spannungsstabilisierung mit einer Z-Diode dargestellt. Links wird die (unstabile) Spannung U E angeschlossen, rechts wird

Mehr

Geschrieben von: Volker Lange-Janson Freitag, den 06. März 2015 um 17:40 Uhr - Aktualisiert Sonntag, den 08. März 2015 um 08:12 Uhr

Geschrieben von: Volker Lange-Janson Freitag, den 06. März 2015 um 17:40 Uhr - Aktualisiert Sonntag, den 08. März 2015 um 08:12 Uhr Triggerbarer Sägezahngenerator mit dem NE555-Timer-Baustein Lädt man einen Kondensator mit einem konstanten Strom auf, steigt an diesem Kondensator die Ladespannung linear an. Auf diesem Prinzip basieren

Mehr

Laborübung, NPN-Transistor Kennlinien

Laborübung, NPN-Transistor Kennlinien 15. März 2016 Elektronik 1 Martin Weisenhorn Laborübung, NPN-Transistor Kennlinien Einführung In diesem Praktikum soll das Ausgangskennlinienfeld des NPN-Transistors BC337 ausgemessen werden, um später

Mehr

Praktikum Analog- und Digitaltechnik. Versuch A2 Transistorschaltung

Praktikum Analog- und Digitaltechnik. Versuch A2 Transistorschaltung Praktikum Analog- und Digitaltechnik Versuch A2 Transistorschaltung Inhalt dieses Versuches: Verständnis von bipolar Transistoren als Schalter oder Verstärker Aufbau eines Brückengleichrichters Aufbau

Mehr

Diplomvorprüfung Elektronik SS 2008

Diplomvorprüfung Elektronik SS 2008 Diplomvorprüfung Elektronik Seite 1 von 6 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 90 Minuten Diplomvorprüfung Elektronik SS 2008 Name: Vorname:

Mehr

Übungsaufgaben EBG für Mechatroniker

Übungsaufgaben EBG für Mechatroniker Übungsaufgaben EBG für Mechatroniker Aufgabe E0: Ein Reihen- Schwingkreis wird aus einer Luftspule und einem Kondensator aufgebaut. Die technischen Daten von Spule und Kondensator sind folgendermaßen angegeben:

Mehr

Übungen zur Elektrodynamik und Optik Übung 1: Der Transistor

Übungen zur Elektrodynamik und Optik Übung 1: Der Transistor Übungen zur Elektrodynamik und Optik Übung 1: Der Transistor Oliver Neumann Sebastian Wilken 3. Mai 2006 Zusammenfassung In dieser Experimentalübung werden wir den Transistor als Spannungsverstärker für

Mehr

5. Anwendungen von Dioden in Stromversorgungseinheiten

5. Anwendungen von Dioden in Stromversorgungseinheiten in Stromversorgungseinheiten Stromversorgungseinheiten ( Netzgeräte ) erzeugen die von elektronischen Schaltungen benötigten Gleichspannungen. Sie bestehen oft aus drei Blöcken: Transformator Gleichrichter

Mehr

Wintersemester 2012/13

Wintersemester 2012/13 Diplomprüfung im Studiengang MB Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen Unterlagen, Taschenrechner Wintersemester 2012/13 Schriftliche Prüfung im Fach Elektronik/Mikroprozessortechnik,

Mehr

Fachprüfung. Schaltungen & Systeme BA

Fachprüfung. Schaltungen & Systeme BA Fachprüfung Schaltungen & Systeme BA 15. Juli 2004 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Name:... Matr.-Nr.:... Unterschrift:... Punkte Aufgabe.1.2.3.4.5.6.7.8.9 Summe 1. 2. 3. 4. 5.

Mehr

Der Transistor (Grundlagen)

Der Transistor (Grundlagen) Der Transistor (Grundlagen) Auf dem Bild sind verschiedene Transistoren zu sehen. Die Transistoren sind jeweils beschriftet. Diese Beschriftung gibt Auskunft darüber, um welchen Transistortyp es sich handelt

Mehr

Dokumentation und Auswertung. Labor. Kaiblinger, Poppenberger, Sulzer, Zöhrer. 2.1 Prüfen von Transistoren 2.2 Schaltbetrieb 2.3 Kleinsignalverstärker

Dokumentation und Auswertung. Labor. Kaiblinger, Poppenberger, Sulzer, Zöhrer. 2.1 Prüfen von Transistoren 2.2 Schaltbetrieb 2.3 Kleinsignalverstärker TGM Abteilung Elektronik und Technische Informatik Übungsbetreuer Dokumentation und Auswertung Prof. Zorn Labor Jahrgang 3BHEL Übung am 17.01.2017 Erstellt am 21.01.2017 von Übungsteilnehmern Übungsteilnehmer

Mehr

Labor. Dokumentation und Auswertung. Kaiblinger, Poppenberger, Sulzer, Zöhrer H Stromquellen. Note: Page 1/19. Übungsbetreuer Prof.

Labor. Dokumentation und Auswertung. Kaiblinger, Poppenberger, Sulzer, Zöhrer H Stromquellen. Note: Page 1/19. Übungsbetreuer Prof. TGM Abteilung Elektronik und Technische Informatik Dokumentation und Auswertung Labor Jahrgang 3BHEL Übung Übungsbetreuer Prof. Melchart Übung am 07.03.2017 Erstellt am 11.03.2017 von Pascal Zöhrer Übungsteilnehmer

Mehr

Labor. Dokumentation und Auswertung. Kaiblinger, Poppenberger, Sulzer, Zöhrer H1435. Lineare Spannungsregler 1. Note: Page 1/12

Labor. Dokumentation und Auswertung. Kaiblinger, Poppenberger, Sulzer, Zöhrer H1435. Lineare Spannungsregler 1. Note: Page 1/12 TGM Abteilung Elektronik und Technische Informatik Dokumentation und Auswertung Labor Jahrgang 3BHEL Übung Übungsbetreuer Prof. Bartos Übung am 31.01.2017 Erstellt am 10.02.2017 von Pascal Zöhrer Übungsteilnehmer

Mehr

6. Bipolare Transistoren Funktionsweise. Kollektor (C) NPN-Transistor. Basis (B) n-halbleiter p n-halbleiter. Emitter (E) Kollektor (C)

6. Bipolare Transistoren Funktionsweise. Kollektor (C) NPN-Transistor. Basis (B) n-halbleiter p n-halbleiter. Emitter (E) Kollektor (C) 6.1. Funktionsweise NPN-Transistor Kollektor (C) E n-halbleiter p n-halbleiter C Basis (B) B Emitter (E) PNP-Transistor Kollektor (C) E p-halbleiter n p-halbleiter C Basis (B) B Emitter (E) 1 Funktionsweise

Mehr

RC - Breitbandverstärker

RC - Breitbandverstärker Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 5 RC - Breitbandverstärker Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt: 30.04.1997 Protokoll

Mehr

1. Einleitung. 1.1 Funktionsweise von npn Transistor. Seite 1 von 12

1. Einleitung. 1.1 Funktionsweise von npn Transistor. Seite 1 von 12 Seite 1 von 12 1. Einleitung Der Bipolartransistor ist ein Halbleiterbauelement welches aus einer npn bzw pnp Schichtfolge besteht (Er arbeitet mit zwei unterschiedlich gepolten pn Übergängen). Diese Halbleiterschichten

Mehr

Laborübung Gegentaktendstufe Teil 1

Laborübung Gegentaktendstufe Teil 1 Inhaltsverzeichnis 1.0 Zielsetzung...2 2.0 Grundlegendes zu Gegentaktverstärkern...2 3.0 Aufgabenstellung...3 Gegeben:...3 3.1.0 Gegentaktverstärker bei B-Betrieb...3 3.1.1 Dimensionierung des Gegentaktverstärkers

Mehr

Institut für Informatik. Aufgaben zum Seminar Technische Informatik. Aufgabe Reihenschaltung von Halbleiterdioden

Institut für Informatik. Aufgaben zum Seminar Technische Informatik. Aufgabe Reihenschaltung von Halbleiterdioden UNIVERSITÄT LEIPZIG Institut für Informatik Abt. Technische Informatik Dr. Hans-Joachim Lieske Aufgaben zum Seminar Technische Informatik Aufgabe 2.3.1. - Reihenschaltung von Halbleiterdioden In integrierten

Mehr

Aufgabe E1: Aufgabe E2: Aufgabe E3: Fachhochschule Aachen Lehrgebiet Flugzeug- Elektrik und Elektronik Prof. Dr. G. Schmitz

Aufgabe E1: Aufgabe E2: Aufgabe E3: Fachhochschule Aachen Lehrgebiet Flugzeug- Elektrik und Elektronik Prof. Dr. G. Schmitz Aufgabe E1: Gegeben sei eine Leuchtdiode (LED), die an einer Gleichspannung von 3V betrieben werden soll. Dabei soll sich ein Strom von 10mA einstellen. a) erechnen Sie den erforderlichen Vorwiderstand,

Mehr

NvK-Gymnasium Bernkastel-Kues Widerstände. Physik Elektronik 1 U 5V = R= 20 = 0,25A R 20 1V 1A

NvK-Gymnasium Bernkastel-Kues Widerstände. Physik Elektronik 1 U 5V = R= 20 = 0,25A R 20 1V 1A Widerstände I R 20 = Ω U 5V I = R= 20 = Ω 0,25A U = R I 10 100Ω = 1kΩ ± 5% 402 100Ω = 40, 2kΩ ± 2% 1Ω = 1V 1A Widerstände U = R I 1Ω = 1V 1A 12 100 kω = 1, 2MΩ ± 5% 56 10Ω = 560Ω ± 10% 47 100Ω = 4,7kΩ

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 02. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 02. 06.

Mehr

Grundlagen der Elektrotechnik Teil 2

Grundlagen der Elektrotechnik Teil 2 Grundlagen der Elektrotechnik Teil 2 Dipl.-Ing. Ulrich M. Menne ulrich.menne@ini.de 18. Januar 2015 Zusammenfassung: Dieses Dokument ist eine Einführung in die Grundlagen der Elektrotechnik die dazu dienen

Mehr

Transistorkennlinien und -schaltungen

Transistorkennlinien und -schaltungen ELS-44-1 Transistorkennlinien und -schaltungen 1 Vorbereitung 1.1 Grundlagen der Halbleiterphysik Lit.: Anhang zu Versuch 27 1.2 p-n-gleichrichter Lit.: Kittel (14. Auflage), Einführung in die Festkörperphysik

Mehr

I C. T A p` A p I B U BE U B U CE. 1. Schaltungsgrundlagen für gleichspannungsgekoppelte Transistorverstärker

I C. T A p` A p I B U BE U B U CE. 1. Schaltungsgrundlagen für gleichspannungsgekoppelte Transistorverstärker 1. Schaltungsgrundlagen für gleichspannungsgekoppelte Transistorverstärker Eine Verstärkung von kleinen Gleichspannungssignalen (1-10mV) ist mit einem Transistor nicht möglich, da einerseits die Arbeitspunkteinstellung

Mehr

SS 98 / Platz 1. Versuchsprotokoll. (Elektronik-Praktikum) zu Versuch 4. Differenzverstärker

SS 98 / Platz 1. Versuchsprotokoll. (Elektronik-Praktikum) zu Versuch 4. Differenzverstärker Dienstag, 19.5.1998 SS 98 / Platz 1 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Elektronik-Praktikum) zu Versuch 4 Differenzverstärker 1 Inhaltsverzeichnis 1 Problemstellung 3 2 Physikalische

Mehr

Matr. Nr.: Kennzahl: b) Bestimmen Sie den Strom durch beide Dioden durch grafische Netzwerkanalyse. (15 Punkte)

Matr. Nr.: Kennzahl: b) Bestimmen Sie den Strom durch beide Dioden durch grafische Netzwerkanalyse. (15 Punkte) 1. PROBETEST ZU HALBLEITER-SCHALTUNGSTECHNIK, WS 2017/18 DATUM Punktemaximum: 100 Testdauer: 90 min Vorname: Nachname: Matr. Nr.: Kennzahl: Hinweis zum Test: Alle nötigen Zwischenschritte angeben! Ergebnisse

Mehr

- Versuch 5 - Spannungsteiler

- Versuch 5 - Spannungsteiler Campus Friedrichshafen Messtechnik - Labor Lehrveranstaltung Messtechnik für Wirtschaftsingenieure Fachrichtung E-Technik - Versuch 5 - Spannungsteiler Name: Gruppe: 1 Inhaltsverzeichnis 1 Aufgabenstellung

Mehr

Versuch: A2 Transistorschaltungen

Versuch: A2 Transistorschaltungen Versuch: A2 Transistorschaltungen Ziel dieses Versuches: Verstehen, wie Bipolartransistoren in Schaltern und Verstärkern eingesetzt werden Aufbau eines Brückengleichrichters Aufbau einer Spannungskonstanthaltung

Mehr

Fachprüfung. Schaltungen & Systeme

Fachprüfung. Schaltungen & Systeme Fachprüfung Schaltungen & Systeme 30. Juli 2007 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Name:... Matr.-Nr.:... Unterschrift:... Punkte Aufgabe.1.2.3.4.5.6.7 Summe 1. 2. 3. Punkte gesamt

Mehr

Transistor- und Operationsverstärkerschaltungen

Transistor- und Operationsverstärkerschaltungen Name, Vorname Testat Besprechung: 23.05.08 Abgabe: 30.05.08 Transistor- und Operationsverstärkerschaltungen Aufgabe 1: Transistorverstärker Fig.1(a): Verstärkerschaltung Fig.1(b): Linearisiertes Grossignalersatzschaltbild

Mehr

Versuch 2 der Bipolartransistor

Versuch 2 der Bipolartransistor PRAKTIKUM ANALOGELEKTRONIK WS 2009/2010 VERSUCH 2 1 Versuch 2 der Bipolartransistor 1. Emitterschaltung Das Aufnehmen vollständiger Kennlinien wäre viel zu zeitaufwendig. Wir beschränken uns deshalb auf

Mehr

HSD FB E I. Hochschule Düsseldorf Fachbereich Elektro- und Informationstechnik. Datum: WS/SS Gruppe: S Q. Teilnehmer Name Matr.-Nr.

HSD FB E I. Hochschule Düsseldorf Fachbereich Elektro- und Informationstechnik. Datum: WS/SS Gruppe: S Q. Teilnehmer Name Matr.-Nr. HSD FB E I Hochschule Düsseldorf Fachbereich Elektro- und Informationstechnik Schaltungs-Praktikum bistabiler Multivibrator Datum: WS/SS 201.. Gruppe: S Teilnehmer Name Matr.-Nr. 1 2 3 Testat R verwendete

Mehr

Netzgerät mit integriertem Festspannungsregler

Netzgerät mit integriertem Festspannungsregler mit integriertem Festspannungsregler 1. Allgemeines Ein paar Grundlagen müssen schon sein, denn ohne geht es nicht. Vor Beginn der Arbeit sind einige Symbole ( Bild 1 ) aus der verwendeten Schaltung zu

Mehr

Grundlagen der Elektronik Übungen für die Werkstätte

Grundlagen der Elektronik Übungen für die Werkstätte Grundlagen der Elektronik Übungen für die Werkstätte Zusammengestellt von Johannes Stehlik Grundlagen der Elektronik Übung 1 Einweggleichrichtung: 1k Schaltplan: 230V 50Hz ~ ~ U m - Erstellt von Johannes

Mehr

Lo sung zu UÜ bung 1. I Schaltung Ersatzquellenberechnung. 1.1 Berechnung von R i

Lo sung zu UÜ bung 1. I Schaltung Ersatzquellenberechnung. 1.1 Berechnung von R i Lo sung zu UÜ bung 1 I Schaltung 1 Schaltbild 1: 1.Schaltung mit Spannungsquelle 1. Ersatzquellenberechnung 1.1 Berechnung von R i Zunächst Ersatzschaltbild von den Klemmen aus betrachtet zeichnen: ESB

Mehr

Versuch P1-50,51,52 - Transistorgrundschaltungen. Vorbereitung. Von Jan Oertlin. 4. November 2009

Versuch P1-50,51,52 - Transistorgrundschaltungen. Vorbereitung. Von Jan Oertlin. 4. November 2009 Versuch P1-50,51,52 - Transistorgrundschaltungen Vorbereitung Von Jan Oertlin 4. November 2009 Inhaltsverzeichnis 0. Funktionsweise eines Transistors...2 1. Transistor-Kennlinien...2 1.1. Eingangskennlinie...2

Mehr

Dotierter Halbleiter

Dotierter Halbleiter FH München FK 03 Maschinenbau Diplomprüfung Elektronik SS 007 Freitag, 0.7.007 Prof. Dr. Höcht (Prof. Dr. Kortstock) Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 90 Minuten 1 Homogene Halbleiter

Mehr

mit Ergebnissen Aufg. P max Klausur "Elektronik" Σ 100 am Hinweise zur Klausur:

mit Ergebnissen Aufg. P max Klausur Elektronik Σ 100 am Hinweise zur Klausur: mit Ergebnissen Name, Vorname: Matr.Nr.: Klausur "Elektronik" 62107 am 04.03.2011 Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 2 h. Aufg. P max 0 2 1 10 2 15 3 15 4 12 5 18 6 13 7 15 Σ

Mehr

4 20mA Technik Seite 1 von 13. Einleitung

4 20mA Technik Seite 1 von 13. Einleitung 4 20mA Technik Seite 1 von 13 Einleitung In der Industrie werden Sensoren und Auswerteschaltungen nicht immer am gleichen Ort verwendet. Der Sensor muss über längere Strecken sein Sensorsignal liefern,

Mehr

Vorbereitung zum Versuch Transistorschaltungen

Vorbereitung zum Versuch Transistorschaltungen Vorbereitung zum Versuch Transistorschaltungen Armin Burgmeier (47488) Gruppe 5 9. Dezember 2007 0 Grundlagen 0. Halbleiter Halbleiter bestehen aus Silizium- oder Germanium-Gittern und haben im allgemeinen

Mehr

Einstellbare- und Festspannungsregler

Einstellbare- und Festspannungsregler TU-Berlin Elektrotechnik SS 2005 Ausarbeitung zum Referat: Einstellbare- und Festspannungsregler Oleg Zeiter zeiter@cs.tu-berlin.de Inhaltsverzeichnis 1. Vorwort...3 2. Aufgaben eines Spannungsreglers...3

Mehr

Übungsserie: Diode 1

Übungsserie: Diode 1 7. März 2016 Elektronik 1 Martin Weisenhorn Übungsserie: Diode 1 1 Vorbereitung Eine Zenerdiode ist so gebaut, dass der Betrieb im Durchbruchbereich sie nicht zerstört. Ihre Kennlinie ist in Abb. 1 dargestellt.

Mehr

Diplomprüfung SS 2011 Elektronik/Mikroprozessortechnik, 90 Minuten

Diplomprüfung SS 2011 Elektronik/Mikroprozessortechnik, 90 Minuten Diplomprüfung Elektronik Seite 1 von 9 Hochschule München FK 03 Maschinenbau Zugelassene Hilfsmittel: alle eigenen Diplomprüfung SS 2011 Elektronik/Mikroprozessortechnik, 90 Minuten Matr.-Nr.: Name, Vorname:

Mehr

VII Stromquellen. Praktische Elektronik 7-1 Hans-Hellmuth Cuno

VII Stromquellen. Praktische Elektronik 7-1 Hans-Hellmuth Cuno Praktische Elektronik 7-1 Hans-Hellmuth Cuno VII Stromquellen VII.1 Anwendungsbereich Stromquellen haben ihre Domäne in der Meßtechnik, wobei sie meist andere Funktionen unterstützen. Ohmmeter mit digitaler

Mehr

6. Signalgeneratoren und gesteuerte Quellen

6. Signalgeneratoren und gesteuerte Quellen Fortgeschrittenenpraktikum I Universität Rostock - Physikalisches Institut 6. Signalgeneratoren und gesteuerte Quellen Name: Daniel Schick Betreuer: Dipl. Ing. D. Bojarski Versuch ausgeführt: 18. Mai 2006

Mehr

Grundlagen der Technischen Informatik 1 WS 2015/16 Übungsblatt 4

Grundlagen der Technischen Informatik 1 WS 2015/16 Übungsblatt 4 Technische Informatik Prof. Dr. M. Bogdan Institut für Informatik Technischen Informatik 1 WS 2015/16 Übungsblatt 4 Abgabe: bis zum 06.01.2016 im weißen Briefkasten der TI Nähe Raum P 518 1 Hinweise: -

Mehr

Elektronische Spannungs- und Stromreglerschaltungen Prinzipien und Schaltungsbeispiele

Elektronische Spannungs- und Stromreglerschaltungen Prinzipien und Schaltungsbeispiele Elektronische Spannungs- und Stromreglerschaltungen Prinzipien und Schaltungsbeispiele Eine Hausarbeit von Mitja Stachowiak, im Fach Technologie, Heinrich Emanuel Merck Schule Darmstadt, März 211 Überblick:

Mehr

Die wichtigsten Eigenschaften von bipolaren Transistoren.

Die wichtigsten Eigenschaften von bipolaren Transistoren. Elektronik-Kurs Die wichtigsten Eigenschaften von bipolaren Transistoren. Es gibt 2 Arten von bipolaren Transistoren: NPN-Transistoren PNP-Transistoren Diese Bezeichnung entspricht dem inneren Aufbau der

Mehr

Klausur "Elektronik und Messtechnik" am Teil: Elektronik

Klausur Elektronik und Messtechnik am Teil: Elektronik Name, Vorname: Matr.Nr.: Klausur "Elektronik und Messtechnik" 9115 am 01.10.2004 1. Teil: Elektronik Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 2 h. Zugelassene Hilfsmittel sind: Taschenrechner

Mehr

A1: Die Aufgabe 1 ist Grundlage für alle nachfolgenden Aufgaben und wird von jedem Studenten im Selbststudium erarbeitet.

A1: Die Aufgabe 1 ist Grundlage für alle nachfolgenden Aufgaben und wird von jedem Studenten im Selbststudium erarbeitet. Wirtschaftsingenieurwesen Grundlagen der Elektronik und Schaltungstechnik Prof. Dr. Ing. Hoffmann Übung 4 Bipolartransistor als Schalter und Verstärker Übung 4: 07.06.2018 A1: Die Aufgabe 1 ist Grundlage

Mehr

Übungen zur Elektrodynamik und Optik Übung 2: Der Differenzverstärker

Übungen zur Elektrodynamik und Optik Übung 2: Der Differenzverstärker Übungen zur Elektrodynamik und Optik Übung 2: Der Differenzverstärker Oliver Neumann Sebastian Wilken 10. Mai 2006 Inhaltsverzeichnis 1 Eigenschaften des Differenzverstärkers 2 2 Verschiedene Verstärkerschaltungen

Mehr

= 16 V geschaltet. Bei einer Frequenz f 0

= 16 V geschaltet. Bei einer Frequenz f 0 Augaben Wechselstromwiderstände 6. Ein Kondensator mit der Kapazität 4,0 µf und ein Drahtwiderstand von, kohm sind in eihe geschaltet und an eine Wechselspannungsquelle mit konstanter Eektivspannung sowie

Mehr

pn-übergang, Diode, npn-transistor, Valenzelektron, Donatoren, Akzeptoren, Ladungsträgerdiffusion, Bändermodell, Ferminiveau

pn-übergang, Diode, npn-transistor, Valenzelektron, Donatoren, Akzeptoren, Ladungsträgerdiffusion, Bändermodell, Ferminiveau Transistor 1. LITERATUR: Berkeley, Physik; Kurs 6; Kap. HE; Vieweg Dorn/Bader und Metzler, Physik; Oberstufenschulbücher Beuth, Elektronik 2; Kap. 7; Vogel 2. STICHWORTE FÜR DIE VORBEREITUNG: pn-übergang,

Mehr

Fachprüfung. Schaltungen & Systeme

Fachprüfung. Schaltungen & Systeme Fachprüfung Schaltungen & Systeme 12. September 2006 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Name:... Matr.-Nr.:... Unterschrift:... Punkte Aufgabe.1.2.3.4.5.6.7 Summe 1. 2. 3. Punkte

Mehr

Diplomvorprüfung SS 2011 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung SS 2011 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 9 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2011 Fach: Elektronik,

Mehr

Spannungsregelung. Projektlabor Lutz Schülein. 17. November Technische Universität Berlin

Spannungsregelung. Projektlabor Lutz Schülein. 17. November Technische Universität Berlin Spannungsregelung Projektlabor 2015 Lutz Schülein Technische Universität Berlin 17. November 2015 1 Übersicht 2 Lineare Spannungsregler 3 Schaltregler 4 Vergleich 5 Referenzen Übersicht 1 Übersicht 2 Lineare

Mehr

Schülerexperimente zur Elektronik

Schülerexperimente zur Elektronik Schülerexperimente zur Elektronik Walter Sova Diodenschaltungen 1) Welche Lämpchen leuchten jeweils bei den Schalterstellungen? 2) Für den Durchlassbereich eines bestimmten Diodentyps wurde die dargestellte

Mehr

Kennlinien von Dioden: I / A U / V. Zusammenfassung Elektronik Dio.1

Kennlinien von Dioden: I / A U / V. Zusammenfassung Elektronik Dio.1 Kennlinien von Dioden: I / A / V I = I S (e / T ) mit : T = kt / e 6mV I S = Sperrstrom Zusammenfassung Elektronik Dio. Linearisiertes Ersatzschaltbild einer Diode: Anode 00 ma I F r F 00 ma ΔI F Δ F 0,5

Mehr

Aufgabe 1: Schaltender Transistor

Aufgabe 1: Schaltender Transistor Aufgabe 1: Schaltender Transistor Zur verlustarmen und stufenlosen Steuerung der Heckscheibenheizung eines Autos wird ein schaltender Transistor eingesetzt. Durch die Variation der Einschaltdauer des Transistors

Mehr

Transistorkennlinienschreiber

Transistorkennlinienschreiber Fachhochschule für Technik und Wirtschaft Berlin EMT- Labor Transistorkennlinienschreiber Stephan Schreiber Olaf Drzymalski Marcus-Oliver Zunk Messung am 5..99 Protokoll vom 5..99 Seite 2 EMT-Labor Transistorkennlinienschreiber

Mehr

Diplomprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten

Diplomprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Zugelassene Hilfsmittel: alle eigenen Diplomprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten Matr.-Nr.: Name, Vorname:

Mehr

Wie funktioniert eigentlich eine Ladeschale für Ni-MH-Akkus?

Wie funktioniert eigentlich eine Ladeschale für Ni-MH-Akkus? Wie funktioniert eigentlich eine Ladeschale für Ni-MH-Akkus? Zwei Ni-MH-Akkupacks für PMR-Funkgeräte waren nach sechs Jahren defekt, nachdem sie über eine Ladeschale permanent geladen wurden. Nun wollte

Mehr

Probeklausur Elektronik (B06)

Probeklausur Elektronik (B06) Probeklausur Elektronik (B06) Bitte vor Arbeitsbeginn ausfüllen Name: Vorname: Matrikel-Nummer: Fachsemester: Datum: Unterschrift: Zugelassene Hilfsmittel: Taschenrechner ohne Textspeicher 1DIN A4-Blatt:

Mehr

Klausur "Elektrotechnik" am

Klausur Elektrotechnik am Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 1,5 h. Klausur "Elektrotechnik" 6141 am 24.09.1998 Aufg. P max 0 2 1 9 2 10 3 12 4 9 5 19 6 6 Σ 67 N P Zugelassene

Mehr

Der elektrische Widerstand R. Auswirkung im Stromkreis Definition Ohmsches Gesetz

Der elektrische Widerstand R. Auswirkung im Stromkreis Definition Ohmsches Gesetz Der elektrische Widerstand R Auswirkung im Stromkreis Definition Ohmsches Gesetz Kennlinie Wir wissen, am gleichen Leiter bewirken gleiche Spannungen gleiche Ströme. Wie ändert sich der Strom, wenn man

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse A 06: Transistor & Verstärker. Amateurfunkgruppe der TU Berlin. Stand

AFu-Kurs nach DJ4UF. Technik Klasse A 06: Transistor & Verstärker. Amateurfunkgruppe der TU Berlin.  Stand Technik Klasse A 06: Transistor & Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 04.05.2016 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. Amateurfunkgruppe

Mehr

Vorwiderstandsberechnung für LEDs

Vorwiderstandsberechnung für LEDs B.Bulut (bx61) Inhaltsverzeichnis Thema Seite 1 Einleitung 1 2 Datenblatt vom LED 1 3 Vorwiderstand für eine LED 2 3.1 Bedeutung der Abkürzungen 3 3.2 Vorwiderstand für mehrere LEDs 3 4 Parallelschaltung

Mehr

Abschlussprüfung Schaltungstechnik 2

Abschlussprüfung Schaltungstechnik 2 Name: Platz: Abschlussprüfung Schaltungstechnik 2 Studiengang: Mechatronik SS2009 Prüfungstermin: Prüfer: Hilfsmittel: 22.7.2009 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing. Eder Nicht programmierbarer

Mehr

Übungsserie, Operationsverstärker 1

Übungsserie, Operationsverstärker 1 1. April 1 Elektronik 1 Martin Weisenhorn Übungsserie, Operationsverstärker 1 Aufgabe 1. Komparator Die Bezeichnung Komparator steht für Vergleicher. Gegeben ist die Schaltung in Abb. 1a. Die u ref u ref

Mehr

Geregelte Stabilisierungsschaltung mit Längstransistor

Geregelte Stabilisierungsschaltung mit Längstransistor Geregelte Stabilisierungsschaltung mit Längstransistor I R1 R 1 U R1 I B3 U CE3 I B4 V 3 V 4 U CE4 I A I R2 U E R 2 U R2 U CE2 V 2 I R3 I Z V 1 U Z R 3 UR3 Eine Stabilisierung für ein Netzteil entsprechend

Mehr

Transistor als Analogverstärker: rker: die Emitterschaltung

Transistor als Analogverstärker: rker: die Emitterschaltung Transistor als Analogverstärker: rker: die Emitterschaltung a.) Wahl der Versorgungsspannung b.) Arbeitspunkteinstellung, Wahl des Transistors c.) Temperaturabhängigkeit des Arbeitspunkts d.) Einfügen

Mehr

Übung zum Elektronikpraktikum

Übung zum Elektronikpraktikum Universität Göttingen Sommersemester 2010 Prof. Dr. Arnulf Quadt Raum D1.119 aquadt@uni-goettingen.de Übung zum Elektronikpraktikum Lösung 2 13. September - 1. Oktober 2010 2: Der Transistoreffekt Ein

Mehr

Diplomprüfung Elektronik SS 2005 Montag,

Diplomprüfung Elektronik SS 2005 Montag, FH München FB 3 Maschinenbau Diplomprüfung Elektronik SS Montag, 18.7. Prof. Dr. Höcht Prof. Dr. Kortstock Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 9 Minuten Name: Vorname: Sem.: Unterschrift:

Mehr

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA Inhaltsverzeichnis 1. Einleitung... 1 2. Messverfahren... 1 3. Bemerkung zur Fehlerrechnung... 1 4. Stromverstärkungsfaktor... 2 5. Eingangskennlinie...

Mehr

Klausur "Elektrotechnik 1,2" Fachnr. 8149, 8425 und am

Klausur Elektrotechnik 1,2 Fachnr. 8149, 8425 und am Name, Vorname: Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 3 h. Zugelassene Hilfsmittel sind: Taschenrechner Klausur "Elektrotechnik 1,2" Fachnr. 8149, 8425 und 6132 am 10.07.1996 Matr.Nr.:

Mehr

Testat zu Versuch 4 Variante 6 SS14

Testat zu Versuch 4 Variante 6 SS14 Testat zu Versuch 4 Variante 6 SS14 Name: Vorname: Matrikel.-Nr.: 1. Eine Wechselspannung mit einer Amplitude von U e = 24 V, fe = 2 khz soll mittels eines Einweggleichrichters gleichgerichtet werden.

Mehr

Professur für Leistungselektronik und Messtechnik

Professur für Leistungselektronik und Messtechnik Aufgabe 1: Diode I (leicht) In dieser Aufgabe sollen verschiedene Netzwerke mit Dioden analysiert werden. I = 1 A R = 2 Ω T = 25 C Diodenkennlinie: Abbildung 5 Abbildung 1: Stromteiler mit Diode a) Ermitteln

Mehr

Wirtschaftsingenieurwesen Elektronik/Schaltungstechnik Prof. M. Hoffmann Übung 3 Halbleiterdioden

Wirtschaftsingenieurwesen Elektronik/Schaltungstechnik Prof. M. Hoffmann Übung 3 Halbleiterdioden Wirtschaftsingenieurwesen Elektronik/Schaltungstechnik Prof. M. Hoffmann Übung 3 Halbleiterdioden Aufgabe 1: Kennlinie, Kennwerte, Ersatzschaltbilder und Arbeitspunktbestimmung Gegeben sind die nachfolgende

Mehr

Aufgabe 1: Emitterfolger als Spannungsquelle (leicht)

Aufgabe 1: Emitterfolger als Spannungsquelle (leicht) Aufgabe 1: Emitterfolger als Spannungsquelle (leicht) Ein Emitterfolger soll in bezug auf den Lastwiderstand R L als Spannungsquelle eingesetzt werden. Verwendet werde ein Transistor mit der angegebenen

Mehr

1 Vorausgesetztes Wissen

1 Vorausgesetztes Wissen 1 Vorausgesetztes Wissen Zweiweg-Gleichrichter Bei der Zweiweg-Gleichrichtung wird meist ein Brückengleichrichter als gleichrichtendes Bauelement verwendet. Dieser besteht allerdings einfach nur aus 4

Mehr

ELEXBO A-Car-Engineering

ELEXBO A-Car-Engineering Experimentier-Box Mini 1 Aufgabe: -Bauen Sie alle Schemas nacheinander auf und beschreiben Ihre Feststellungen. -Beschreiben Sie auch die Unterschiede zum vorherigen Schema. Bauen Sie diese elektrische

Mehr

Klausur 06.09.2010 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5

Klausur 06.09.2010 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Klausur 06.09.2010 Grundlagen der Elektrotechnik II (M, EUT, LUM) Seite 1 von 5 Aufgabe 1 (4 Punkte) Name: Mit Matr.-Nr.: Lösung r = 30 cm d = 1 mm Q = 7,88 10-6 As ε 0 = 8,85 10-12 As/Vm ε r = 5 Der dargestellte

Mehr

( ) R U V = Phasendrehung I R. invertierender Verstärker (Weiterführung): Eingangswiderstand:

( ) R U V = Phasendrehung I R. invertierender Verstärker (Weiterführung): Eingangswiderstand: invertierender erstärker (Weiterführung: Phasendrehung 0, 80 Eingangswiderstand: e e re e re e ( Nicht-invertierender erstärker - erzeugt keine Phasendrehung zwischen Ein- und Ausgangssignal Betrachtung

Mehr

Diplomprüfung SS 2010

Diplomprüfung SS 2010 Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Diplomprüfung SS 2010 Fach: Elektronik, Dauer: 90 Minuten Prof. Dr. G. Buch Prof. Dr. T. Küpper Zugelassene Hilfsmittel: alle

Mehr