Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung diskrete digitale Signale neue diskrete digitale Signale

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung diskrete digitale Signale neue diskrete digitale Signale"

Transkript

1 Tontechnik 2 Digitale Filter Audiovisuelle Medien HdM Stuttgart Digitale Filter Zuordnung diskrete digitale Signale neue diskrete digitale Signale lineares, zeitinvariantes, diskretes System (LTD-System) Linear Timeinvariant Discrete System Anwendung einer linearen gleichbleibenden Funktion exakte Zeitverschiebung von gefiltert und ungefiltert digitaler Rechner aus 3 Bauelementen 1. Addition 2. Multiplikation Multiplikation im Frequenzbereich Faltung im Zeitbereich Multiplikation im Zeitbereich Faltung im Frequenzbereich 3. Verzögerung 1

2 Digitale Filter Filterkoeffizienten bestimmen Frequenzgang hohe Genauigkeit sehr genaue Reproduzierbarkeit streng lineare Phase möglich zwei unterschiedliche Prinzipien von LTD-Systemen: nicht rekursiv rekursiv Quelle: Michael Dickreiter, Handbuch der Tonstudiotechnik; Daniel Ch. von Grünigen: Digitale Signalverarbeitung Nichtrekursive Filter FIR-Filter (Finite Impuls Response) System ohne Rückführungspfad keine Instabilitäten Impulsantwort des Filters ist Fourier-Transformierte der Übertragungsfunktion Frequenzgang wiederholt sich periodisch um n f A ±f A /2 für n = 0, 1, 2,... 2

3 Quelle: Michael Dickreiter, Handbuch der Tonstudiotechnik Prinzip FIR-Filter (nichtrekursiv) Quelle: Daniel Ch. von Grünigen: Digitale Signalverarbeitung FIR-Filter in Transversalfilterstruktur nichtrekursives Digitalfilter: NRDF 3

4 Quelle: Gernot Winkler: Tonaufzeichnung Digital, Elektor Verlag Prinzip FIR-Filter (nichtrekursiv) Quelle: Gernot Winkler: Tonaufzeichnung Digital, Elektor Verlag Vereinfachtes Prinzip FIR-Filter 4

5 Eigenschaften nichtrekursiver Digitalfilter Darstellung als Transversalfilter am häufigsten verwendet einfache, regelmäßige Struktur keine Rückkopplung stabil linearer Phasengang konstante Gruppenlaufzeit Verzögerung, aber keine Phasen -Verzerrung relativ unempfindlich bezüglich ungenauer Filterkoeffizienten Wertequantisierung, Bit-Auflösung endliche Impulsantwort FIR-Filter Eigenschaften nichtrekursiver Digitalfilter symmetrisch!!! 5

6 nichtrekursives Digitalfilter Amplitudengang (Kammfiltereffekt) Phasengang Gruppenlaufzeit Eigenschaften nichtrekursiver Digitalfilter 6

7 Quelle: Michael Dickreiter, Handbuch der Tonstudiotechnik; Daniel Ch. von Grünigen, Digitale Signalverarbeitung Rekursive Filter IIR-Filter (Infinite Impulse Response) unendliche Impulsantwort System mit mindestens einem Rückführungspfad, d. h. Teil des Ausgangs wird in den Eingang zurückgeleitet Neigung zu Instabilitäten, muss sorgfältig dimensioniert werden Frequenzgang wiederholt sich periodisch um n f A ±f A /2 für n = 0, 1, 2,... Quelle: Michael Dickreiter, Handbuch der Tonstudiotechnik Prinzip IIR-Filter (rekursiv) IIR-Filter 1. Ordnung 7

8 Prinzip IIR-Filter (rekursiv) rekursives Digitalfilter: RDF nicht rekursiv, wenn alle a i = 0 y(n)= - a i y(n-i) + b i x(n-i) Eigenschaften nichtrekursiver Digitalfilter stabil, wenn Pol- und Nullstellen innerhalb des Kreises!!! imaginäre Werte für quadratische Nennerpolynome Übertragungsfunktion H(z) 8

9 Beschreibung von LTD-Systemen Übertragungsfunktion Quotient aus Ausgangs- und Eingangssequenz Differenzengleichung Algorithmus zur Realisierung eines Digitalfilters häufig in Koeffizientenform y(n)= b i x(n-i) - a i y(n-i) Ordnung des Filters Anzahl der Verzögerungselemente Beschreibung von LTD-Systemen Impulsantwort Fouriertransformierte der Übertragungsfunktion Reaktion des Systems (Ausgangssequenz), wenn an den Eingang ein Einheitsimpuls angelegt wird mathematisch: Faltung von Eingangssequenz und Impulsantwort = Ausgangssequenz Beschreibung im Zeitbereich, zeitliches Verhalten des Filters (unendlich = IIR) oder endlich (FIR) 9

10 Digitalfilterstrukturen Direktstrukturen werden direkt aus den Differenzengleichungen hergeleitet transponierte Direktstruktur nach dem Transponierungstheorem: Werden alle Signalflussrichtungen umgekehrt, alle Addierer durch Knoten und alle Knoten durch Addierer ersetzt und Eingang und Ausgang vertauscht, dann ändert sich die Übertragungsfunktion nicht. Transponierte Direktstrukturen vom Typ 2 minimale Anzahl von Verzögerungsgliedern, Multiplizierern und Addierern Direktstruktur 1 und 2 (rekursiv) Zweige getrennt (direkt und Rückführung) 10

11 Transponierte Direktstruktur 2 Eigenschaften rekursiver Digitalfilter Vielzahl von Strukturen Kaskadenstruktur am häufigsten verwendet regelmäßige Struktur: Grundmuster, die sich innerhalb der Gesamtstruktur wiederholen theoretisch unendlich lange Impulsantwort IIR-Filter Ausnahme, wenn alle Pole mit Nullstellen zusammenfallen dann FIR-Filter!!! alle Multiplikatoren im Rückführungspfad = 0 in der Praxis Impulsantwort nur wenige ms lang 11

12 Eigenschaften rekursiver Digitalfilter mögliche Instabilität wegen vorhandener Rückkopplung Einschwingzeit!!! Phasengang nicht linear Gruppenlaufzeit nicht konstant minimalphasiges LTD-System wenn negativer Phasengang bei gegebenen Amplitudengang minimal dann Gruppenlaufzeit ebenfalls minimal geringere Latenz als FIR rekursives Digitalfilter Amplitudengang Phasengang Gruppenlaufzeit 12

13 Eigenschaften rekursiver Digitalfilter empfindlich bezüglich ungenauer Filterkoeffizienten (wegen Wertequantisierung, Bit-Auflösung) mögliche Auswirkungen ungenauer Filterkoeffizienten ggf. starke Abweichungen zwischen Ist- und Sollwerten Instabilität Quantisierungsrauschen durch Rundungsfehler nach der Multiplikation (ggf. deutlich hörbar) unerwünschte Schwingungen (sog. Grenzzyklen ), d. h. periodisches Ausgangssignal bei nur 1 Eingangssignal Eigenschaften rekursiver Digitalfilter nicht symmetrisch!!! 13

14 Digitale Filter Fouriertransformation Simulation digitaler Filter ggf. Vorecho bei symmetrischer Impulsantwort Eigenschaften rekursiver Digitalfilter 14

15 Eigenschaften rekursiver Digitalfilter stabil, wenn Pol- und Nullstellen innerhalb des Kreises Eigenschaften rekursiver Digitalfilter weicher als bei nichtrekursiv!!! 15

16 Einteilung der klassischen Digitalfilter Amplitudengang eines zeitdiskreten Systems ist symmetrisch und periodisch 4 grundlegende Filterfunktionen 16

17 4 grundlegende Approximationsarten Eigenschaften von 4 IIR-Filterarten 17

18 Eigenschaften von 4 IIR-Filterarten Digitalfilter / Grundsätzliches Koeffizientenwerte der Übertragungsfunktion Wahl der Toleranzgrenzen abhängig von Anwendung je enger der Toleranzbereich desto höher die Ordnungszahl desto höher der technische Aufwand 18

19 Abtastfrequenz vs. Anforderungen je höher die Abtastfrequenz, desto höher die Anforderungen an Genauigkeit der Filterkoeffizienten der Multiplikations- und Additionsergebnisse bei tiefer Abtastfrequenz: höhere Anforderungen an das Antialiasingfilter geringerer Realisierungsaufwand (Anzahl der Verzögerungsglieder, Multiplizierer und Addierer) Problematik bei Digitalfiltern Grenzen der Genauigkeit bei Abtastwerten Koeffizienten Ergebnisse von Additionen und Multiplikationen Festkomma-Darstellung Gleitkomma-Darstellung 19

20 Digitalfilter / Grundsätzliches Nichtlinearität des Phasengangs ist ein Indikator für die Gruppenlaufzeit je höher die Linearität (= Annäherung an einen linearen Phasengang), umso konstanter die Gruppenlaufzeit Digitalfilter - Vorteile keine Schwankungen durch Toleranz der Bauteile keine Alterung der Bauteile kein manueller Abgleich in der Fertigung notwendig, daher raschere Endprüfung von Geräten Filterfunktionen möglich, die mit Analogfiltern nur schwer oder gar nicht realisierbar sind, z. B. Filter mit linearer Phase. 20

21 Digitalfilter - Nachteile begrenzter Frequenzbereich (durch periodische Fortsetzung des Spektrums) begrenzter Wertebereich (durch Wertequantisierung) interne Rundungs-, Abschneide- und Begrenzungsoperationen zur Wortlängenbegrenzung Quantisierungsrauschen nichtlineare Effekte auf vor allem in rekursiven Filtern höherer Ordnung feinere Quantisierung, Nutzung von Gleitkommazahlen nötig Gegenüberstellung FIR- und IIR-Filter FIR-Filter (nicht rekursiv) linearer Phasengang; frequenzunabhängige Gruppenlaufzeit immer stabil relativ unempfindlich gegenüber Quantisierungseffekten, weil nichtrekursiv bei gegebenen Toleranzbereich höhere Ordnungszahl als IIR-Filter hoher Rechenaufwand hoher Realisierungsaufwand Approximationsverfahren beim Entwurf von FIR-Filtern, Schätzungsproblematik (Bestätigung oder neuer Versuch) IIR-Filter (rekursiv) nichtlinearer Phasengang; Gruppenlaufzeit frequenzabhängig, aber meist kleiner als bei FIR-Filter können instabil sein empfindlich gegenüber Quantisierungseffekten / ungenauen Filterkoeff. (abhängig von Bit-Auflösung) bei gegebenen Toleranzbereich geringere Ordnungszahl als FIR-Filter geringer Rechenaufwand geringer Realisierungsaufwand Entwurfsverfahren für Analogfilter (zeitkontinuierlich) können bei IIR-Filtern angewendet werden 21

Seminar Digitale Signalverarbeitung Thema: Digitale Filter

Seminar Digitale Signalverarbeitung Thema: Digitale Filter Seminar Digitale Signalverarbeitung Thema: Digitale Filter Autor: Daniel Arnold Universität Koblenz-Landau, August 2005 Inhaltsverzeichnis i 1 Einführung 1.1 Allgemeine Informationen Digitale Filter sind

Mehr

Digitale Signalverarbeitung

Digitale Signalverarbeitung Daniel Ch. von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme 4. Auflage Mit 222 Bildern, 91 Beispielen, 80 Aufgaben sowie einer CD-ROM mit Lösungen

Mehr

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme Inhaltsverzeichnis Daniel von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme ISBN (Buch): 978-3-446-44079-1 ISBN (E-Book): 978-3-446-43991-7 Weitere

Mehr

Vorteile digitaler Filter

Vorteile digitaler Filter Digitale Filter Vorteile digitaler Filter DF haben Eigenschaften, die mit analogen Filtern nicht realisiert werden können (z.b. lineare Phase). DF sind unabhängig von der Betriebsumgebung (z.b. Temperatur)

Mehr

3. Quantisierte IIR-Filter R

3. Quantisierte IIR-Filter R . Zweierkomplement a) Wie sieht die binäre Darstellung von -5 aus bei den Wortbreiten b = 4, b =, b = 6? b) Berechnen Sie folgende Additionen im Format SINT(4). Geben Sie bei Überlauf auch die Ausgaben

Mehr

Kontrollfragen zum Skript Teil 1 beantwortet

Kontrollfragen zum Skript Teil 1 beantwortet Kontrollfragen zum Skript Teil 1 beantwortet Von J.S. Hussmann Fragen zu SW 1.1 Welche Vorteile hat die DSVB? Programmierbar Parametrierbar Reproduzierbar Wie heisst die Umwandlung eines Zeit-diskreten

Mehr

filter Filter Ziele Parameter Entwurf

filter Filter Ziele Parameter Entwurf 1 Filter Ziele Parameter Entwurf 2.3.2007 2 Beschreibung Pol-Nullstellen- Diagramm Übertragungsfunktion H(z) Differenzengleichung y(n) Impulsantwort h(n): Finite Impulse Response (FIR) Infinite Impulse

Mehr

Zeitdiskrete Signalverarbeitung

Zeitdiskrete Signalverarbeitung Zeitdiskrete Signalverarbeitung Ideale digitale Filter Dr.-Ing. Jörg Schmalenströer Fachgebiet Nachrichtentechnik - Universität Paderborn Prof. Dr.-Ing. Reinhold Haeb-Umbach 7. September 217 Übersicht

Mehr

Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen

Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen 21. November 2016 Siehe Skript, Kapitel 8 Kammeyer & Kroschel, Abschnitt 4.1 1 Einführung Filterstrukturen: FIR vs. IIR 2 Motivation: Grundlage

Mehr

x[n-1] x[n] x[n+1] y[n-1] y[n+1]

x[n-1] x[n] x[n+1] y[n-1] y[n+1] Systeme System Funtion f, die ein Eingangssignal x in ein Ausgangssignal y überführt. zeitdisretes System Ein- und Ausgangssignal sind nur für disrete Zeitpunte definiert y[n] = f (.., x[n-1], x[n], x[n+1],

Mehr

Einführung in die digitale Signalverarbeitung WS11/12

Einführung in die digitale Signalverarbeitung WS11/12 Einführung in die digitale Signalverarbeitung WS11/12 Prof. Dr. Stefan Weinzierl Musterlösung 11. Aufgabenblatt 1. IIR-Filter 1.1 Laden Sie in Matlab eine Audiodatei mit Sampling-Frequenz von fs = 44100

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 4., durchgesehene und aktualisierte Auflage Mit 388 Abbildungen

Mehr

Übung 6: Analyse LTD-Systeme

Übung 6: Analyse LTD-Systeme ZHAW, DSV, FS2009, Übung 6: Analyse LTD-Systeme Aufgabe : Pol-Nullstellendarstellung, UTF und Differenzengleichung. Die folgenden Pol-Nullstellen-Darstellungen charakterisieren verschiedene LTD- Systeme,

Mehr

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1. ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale

Mehr

Einführung in die digitale Signalverarbeitung

Einführung in die digitale Signalverarbeitung Einführung in die digitale Signalverarbeitung Prof. Dr. Stefan Weinzierl 1. Aufgabenblatt 1. Eigenschaften diskreter Systeme a. Erläutern Sie die Begriffe Linearität Zeitinvarianz Speicherfreiheit Kausalität

Mehr

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012 FB ET/IT Digitale Signalverarbeitung SS 0 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner ein mathematisches Formelwerk eine selbsterstellte Formelsammlung Wichtige Hinweise:

Mehr

5. Beispiele - Filter Seite 15

5. Beispiele - Filter Seite 15 5. Beispiele - Filter Seite 15 5.2 Entwurf digitaler Filter Zur Demonstration eines rekursiv implementierten Tiefpasses (FIR Finite Impulse Response bzw. IIR Infinite Impulse Response) soll dieses Beispiel

Mehr

filter Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015

filter Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015 1 Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015 2 Beschreibung Übertragungsfunktion H(z), H(ω) Differenzengleichung y[n] Impulsantwort h[n]: Finite Infinite Impulse Response (FIR) Impulse Response

Mehr

Übungseinheit 3. FIR und IIR Filter

Übungseinheit 3. FIR und IIR Filter Übungseinheit 3 FIR und IIR Filter In dieser Übungseinheit sollen verschiedene Effekte mittels FIR (finite impulse response) und IIR (infinite impulse response) Filter implementiert werden. FIR Filter

Mehr

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...

Mehr

Die Eigenschaften von Systemen. S gesendet. S gesendet. S gesendet. Ideales System (idealer Wandler): Die Signaleigenschaften werden nicht verändert

Die Eigenschaften von Systemen. S gesendet. S gesendet. S gesendet. Ideales System (idealer Wandler): Die Signaleigenschaften werden nicht verändert Die Eigenschaften von Systemen Ideales System (idealer Wandler): Die Signaleigenschaften werden nicht verändert S gesendet IDEALER WANDLER S gesendet Reales System (realer Wandler): Es entstehen Verzerrungen

Mehr

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie?

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie? Das wissen Sie: 1. Wann ist eine Funktion (Signal) gerade, ungerade, harmonisch, periodisch (Kombinationsbeispiele)? 2. Wie lassen sich harmonische Schwingungen mathematisch beschreiben und welche Beziehungen

Mehr

In Zusammenarbeit mit dem VDE-Bezirksverein Württemberg e.v. (VDE)

In Zusammenarbeit mit dem VDE-Bezirksverein Württemberg e.v. (VDE) TAE Technische Akademie Esslingen Ihr Partner für Weiterbildung seit 60 Jahren! In Zusammenarbeit mit dem VDE-Bezirksverein Württemberg e.v. (VDE) Unterstützt durch das Ministerium für Wirtschaft, Arbeit

Mehr

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB Abb. 6 Dreidimensionale Darstellung des Frequenzgangs G ATP () s, Achsteilungen s 2 π in Hz Prof. Dr. Höcht 1/29 18.06.2006 11:13 Z_ Abb. 7 Einfluß des Pols bei s imaginären Achse, Achsteilungen in Hz

Mehr

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note: ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750

Mehr

Eigenschaften und Anwendung zeitdiskreter Systeme

Eigenschaften und Anwendung zeitdiskreter Systeme Fakultät Informatik Institut für Angewandte Informatik, Professur für Technische Informationssysteme Eigenschaften und Anwendung zeitdiskreter Systeme Dresden, den 3.8.2 Gliederung Vorbemerkungen Eigenschaften

Mehr

Tontechnik 2. DA-Wandlung. DA-Wandlung (Übersicht) Hold-Schaltung. Prof. Oliver Curdt Audiovisuelle Medien HdM Stuttgart

Tontechnik 2. DA-Wandlung. DA-Wandlung (Übersicht) Hold-Schaltung. Prof. Oliver Curdt Audiovisuelle Medien HdM Stuttgart Tontechnik 2 DA-Wandlung Audiovisuelle Medien HdM Stuttgart Quelle: Michael Dickreiter, Handbuch der Tonstudiotechnik DA-Wandlung (Übersicht) Hold-Schaltung 1 DA-Wandlung Rückgewinnung analoger Spannungswerte

Mehr

Warum z-transformation?

Warum z-transformation? -Transformation Warum -Transformation? Die -Transformation führt Polynome und rationale Funktionen in die Analyse der linearen eitdiskreten Systeme ein. Die Faltung geht über in die Multiplikation von

Mehr

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Name:... Bachelor ET Master TI Vorname:... Diplom KW Magister...

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Name:... Bachelor ET Master TI Vorname:... Diplom KW Magister... Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Bachelor ET Master TI Vorname:......................... Diplom KW Magister.............. Matr.Nr:..........................

Mehr

Einführung in die digitale Signalverarbeitung WS11/12

Einführung in die digitale Signalverarbeitung WS11/12 Einführung in die digitale Signalverarbeitung WS11/12 Prof. Dr. Stefan Weinzierl usterlösung 1. Aufgabenblatt 1. Digitale Filter 1.1 Was ist ein digitales Filter und zu welchen Zwecken wird die Filterung

Mehr

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!)

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Teil 1: Fragen und Kurzaufgaben (Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Frage 1 (6 Punkte) Es wird ein analoges

Mehr

Verzerrungsfreies System

Verzerrungsfreies System Verzerrungsfreies System x(n) y(n) n n x(n) h(n) y(n) y(n) A 0 x(n a) A 0 x(n) (n a) h(n) A 0 (n a) H(z) A 0 z a Digitale Signalverarbeitung Liedtke 8.1.1 Erzeugung einer linearen Phase bei beliebigem

Mehr

Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11

Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11 Filterentwurf IIR-Filter Beispiele für die verschiedenen Filtertypen FIR-Filter Entwurf mit inv. Fouriertransformation und Fensterfunktion Filter mit Tschebyscheff-Verhalten Vorgehensweise bei Matlab /

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 2005 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 3 Zeitkontinuierliche

Mehr

Übungen in Gruppen (max. 3 Personen) gemeinschaftlich durchgeführt Pro Gruppe ein Protokoll Übungsprotokolle:

Übungen in Gruppen (max. 3 Personen) gemeinschaftlich durchgeführt Pro Gruppe ein Protokoll Übungsprotokolle: Assoc.-Prof. DI Dr. Michael Seger Institute of Electrical, Electronic and Bioengineering / UMIT Institute of Automation and Control Engineering / UMIT Eduard-Wallnöfer-Zentrum 1, 6060 Hall i. Tirol 2.

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Einführung in die Systemtheorie Von Professor Dr.-Ing. Bernd Girod Priv.-Doz. Dr.-Ing. habil. Rudolf Rabenstein und Dipl.-Ing. Alexander Stenger Universität Erlangen-Nürnberg Mit 259 Bildern B.G. Teubner

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...

Mehr

Digitale Signalverarbeitungssysteme II: Praktikum 2

Digitale Signalverarbeitungssysteme II: Praktikum 2 Digitale Signalverarbeitungssysteme II: Praktikum 2 Emil Matus 10. Dezember 2010 Technische Universität Dresden Mobile Communications Systems Chair Tel.: +49 351 463 41021 Fax : +49 351 463 41099 Mail:

Mehr

Frequenzanalyse Praktischer Leitfaden zur Anwendung der Frequenzanalyse. Filter

Frequenzanalyse Praktischer Leitfaden zur Anwendung der Frequenzanalyse. Filter Filter Filter! Hochpassfilter! Tiefpassfilter! Bandpassfilter (Bandsperrfilter)! FIRFilter! Oktav/Terz... nteloktavfilter wird Titel 2 Hochpassfilter LowCutFilter HighPassFilter Trittschallfilter BassCutFilter

Mehr

Regelungstechnik für Ingenieure

Regelungstechnik für Ingenieure Manfred Reuter Regelungstechnik für Ingenieure 7., überarbeitete und erweiterte Auflage Mit 322 Bildern Friedr. Vieweg & Sohn Braunschweig/Wiesbaden Inhaltsverzeichnis Formelzeichen 1 Einführung 1 1.1

Mehr

Fourierreihen periodischer Funktionen

Fourierreihen periodischer Funktionen Fourierreihen periodischer Funktionen periodische Funktion: (3.1) Fourierkoeffizienten und (3.2) (3.3) Fourier-Reihenentwicklungen Cosinus-Reihe: (3.4) (3.5) Exponentialreihe: (3.6) (3.7-3.8) Bestimmung

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2008/2009 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Kenngrößen und Eigenschaften zeitdiskreter LTI-Systeme

Kenngrößen und Eigenschaften zeitdiskreter LTI-Systeme Arbeit zum Seminar Digitale Signalverarbeitung Kenngrößen und Eigenschaften zeitdiskreter LTI-Systeme Thomas Wilbert thowil@uni-koblenz.de 29.06.2005 Zusammenfassung Dieses Dokument befasst sich mit der

Mehr

Regelungstechnik I. Heinz JUnbehauen. Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme. 3., durchgesehene Auflage

Regelungstechnik I. Heinz JUnbehauen. Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme. 3., durchgesehene Auflage Heinz JUnbehauen Regelungstechnik I Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme 3., durchgesehene Auflage Mit 192 Bildern V] Friedr. Vieweg & Sohn Braunschweig/Wiesbaden

Mehr

3.3.1 Digitale Filter

3.3.1 Digitale Filter Leseprobe Digitale Signalverarbeitung Abschnitt aus Algorithmische Bausteine 3.3.1 Digitale Filter In den folgenden Abschnitten sollen die digitalen Filter im Gegensatz zum Abschnitt Grundlagen der DSV

Mehr

Digitale Systeme zur Signalverarbeitung

Digitale Systeme zur Signalverarbeitung H.V\I. Schüßler Digitale Systeme zur Signalverarbeitung Mit Beiträgen von D. Achilles, O. Herrmann, W. Winkelnkernper Springer-Verlag Berlin Heidelberg GmbH 1973 o. Professor Dr.-Ing. HANS-WILHELM SCHOßLER

Mehr

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter. 7., verbesserte Auflage. Mit 161 Abbildungen und 20 Tabellen

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter. 7., verbesserte Auflage. Mit 161 Abbildungen und 20 Tabellen Signalverarbeitung Martin Meyer Signalverarbeitung Analoge und digitale Signale, Systeme und Filter 7., verbesserte Auflage Mit 161 Abbildungen und 20 Tabellen Prof. Dr. Martin Meyer Fachhochschule Nordwestschweiz

Mehr

Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf

Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf 5. Dezember 2016 Siehe begleitend: Kammeyer / Kroschel, Digitale Signalverarbeitung, 7. Auflage, Kapitel 4.2 1 Filterentwurfsstrategien 2 Diskretisierung

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN BEDEUTUNG DER GEWICHTSFUNKTION UND

Mehr

In diesem Kapitel werden wir eine weitere Klasse von diskreten Filtern kennen lernen, die Infinite Impulse Response Filter.

In diesem Kapitel werden wir eine weitere Klasse von diskreten Filtern kennen lernen, die Infinite Impulse Response Filter. Kapitel IIR-Filter In diesem Kapitel werden wir eine weitere Klasse von diskreten Filtern kennen lernen, die Infinite Impulse Response Filter.. Vom FIR- zum IIR-Filter FIR Filter verwenden zur Berechnung

Mehr

SV1: Aktive RC-Filter

SV1: Aktive RC-Filter Signal and Information Processing Laboratory Institut für Signal- und Informationsverarbeitung. September 6 Fachpraktikum Signalverarbeitung SV: Aktive RC-Filter Einführung In diesem Versuch wird ein aktives

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

2. Der Tiefpass. Filterschaltungen

2. Der Tiefpass. Filterschaltungen 130 2. Der Tiefpass Wirksamkeit Schaltungsvarianten Der Tiefpass ist die in der EMV am häufigsten eingesetzte Filterschaltung. Zum besseren Verständnis und zur Abschätzung der Wirksamkeit des Filters können

Mehr

Die Beschreibung von Signalen und Systemen kann in verschiedenen Bereichen erfolgen:

Die Beschreibung von Signalen und Systemen kann in verschiedenen Bereichen erfolgen: 1 Grundlegende Begriffe 1.1 Signale und Systeme ein Signal: ein System: ist ein Satz von Daten setzt Signale in Beziehung Darstellung: Die Beschreibung von Signalen und Systemen kann in verschiedenen Bereichen

Mehr

R. Oldenbourg Verlag München Wien 1997

R. Oldenbourg Verlag München Wien 1997 Systemtheorie 1 Allgemeine Grundlagen, Signale und lineare Systeme im Zeit- und Frequenzbereich von Professor Dr.-Ing. Rolf Unbehauen 7., überarbeitete und erweiterte Auflage Mit 260 Abbildungen und 148

Mehr

Digitale Signalverarbeitung. Prof. Dr. Sigmar Ries Fachhochschule Südwestfalen Abteilung Meschede

Digitale Signalverarbeitung. Prof. Dr. Sigmar Ries Fachhochschule Südwestfalen Abteilung Meschede Digitale Signalverarbeitung Prof. Dr. Sigmar Ries Fachhochschule Südwestfalen Abteilung Meschede September 23 2 Inhaltsverzeichnis Einleitung 7 2 Diskrete Signale und Systeme 2. Zeitdiskrete Elementarsignale...........................

Mehr

Digitale Filter. Martin Schlup. 8. Mai 2012

Digitale Filter. Martin Schlup. 8. Mai 2012 Digitale Filter Martin Schlup 8. Mai 2012 1. Filterstrukturen Dieser Beitrag ist eine kurz gehaltene Einführung in die Darstellung zeitdiskreter Systeme und soll einige elementare Hinweise geben, wie digitale

Mehr

Signale und Systeme Reaktion linearer Systeme auf stationäre stochastische Signale

Signale und Systeme Reaktion linearer Systeme auf stationäre stochastische Signale Signale und Systeme Reaktion linearer Systeme auf stationäre stochastische Signale Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Faculty of Engineering Fakultät Elektrotechnik Institute

Mehr

PRAKTIKUMSVERSUCH M/S 2

PRAKTIKUMSVERSUCH M/S 2 Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme PRAKTIKUMSVERSUCH M/S 2 Betreuer: Dipl.-Ing. Burkhard Hensel Dr.-Ing. Alexander Dementjev ALLGEMEINE BEMERKUNGEN

Mehr

B Anhang B: Enhanced Resolution

B Anhang B: Enhanced Resolution B Anhang B: Enhanced Resolution Digitales Filtern (Enhanced Resolution) Vorteile Realisierung Die verfügbare Abtastrate der LeCroy-Oszilloskope ist oft höher, als für die Bandbreite des zu analysierenden

Mehr

EAH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Filterentwurf WS 12/13

EAH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Filterentwurf WS 12/13 FB ET/IT Filterentwurf WS 2/3 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbsterstellte Formelsammlung ein mathematisches Formelwerk Wichtige Hinweise: Ausführungen,

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

5. Laplacetransformation

5. Laplacetransformation 5. Laplacetransformation 5. Übersicht Laplacetransformation Die Laplacetransformation ist eine Verallgemeinerung der Fouriertransformation. Vorteile: Es können auch Transformierte für Signale angegeben

Mehr

Prüfungsklausur Digitale Signalverarbeitung Ergebnis der Klausur

Prüfungsklausur Digitale Signalverarbeitung Ergebnis der Klausur Fakultät für Mathematik und Informatik Elektronische Schaltungen 58084 Hagen 02331 987 1166 Prüfungsklausur Digitale Signalverarbeitung 21411 Datum: 19. März 2011 (Bearbeitungszeit 120 Minuten, 6 Blätter)

Mehr

Digitale Signalverarbeitung Übungsaufgaben

Digitale Signalverarbeitung Übungsaufgaben Kapitel : Einleitung -: Analoger Tiefpass Dieser Tiefpass mit den Werten R = Ω, L =.5mH R L und C =.5µF ist wie folgt zu analysieren: U e C R. Es springe U e bei t =.5ms auf 5V und bei t = ms wieder auf.

Mehr

Regelungstechnik für Ingenieure

Regelungstechnik für Ingenieure Manfred Reuter Regelungstechnik für Ingenieure 9., überarbeitete und erweiterte Auflage Mit 291 Bildern, 43 Beispiele und 27 Aufgaben vieweg VII Inhaltsverzeichnis Formelzeichen XI 1 Einleitung 1 1.1 Das

Mehr

Biosignalverarbeitung

Biosignalverarbeitung Peter Husar Biosignalverarbeitung Springer Inhaltsverzeichnis 1 Entstehung bioelektrischer Signale 9 1.1 Das Neuron 9 1.2 Elektrische Erregungsleitung und Projektion 15 2 Verstärkung und analoge Filterung

Mehr

Zeitdiskrete Signalverarbeitung

Zeitdiskrete Signalverarbeitung Alan V. Oppenheim, Ronald W. Schafer, John R. Buck Zeitdiskrete Signalverarbeitung 2., überarbeitete Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario

Mehr

Probeklausur Signale + Systeme Kurs TIT09ITA

Probeklausur Signale + Systeme Kurs TIT09ITA Probeklausur Signale + Systeme Kurs TIT09ITA Dipl.-Ing. Andreas Ströder 13. Oktober 2010 Zugelassene Hilfsmittel: Alle außer Laptop/PC Die besten 4 Aufgaben werden gewertet. Dauer: 120 min 1 Aufgabe 1

Mehr

Beschreibung linearer Systeme im Frequenzbereich

Beschreibung linearer Systeme im Frequenzbereich Beschreibung linearer Systeme im Frequenzbereich Jan Albersmeyer Seminar Regelungstechnik Ziel Man möchte das Verhalten linearer Systeme der Form in Abhängigkeit der Steuerungen u(t) beschreiben. 22.11.2002

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

Digitale Signalverarbeitung sehen, hören und verstehen

Digitale Signalverarbeitung sehen, hören und verstehen Digitale Signalverarbeitung sehen, hören und verstehen Hans-Günter Hirsch Hochschule Niederrhein, Krefeld email: hans-guenter.hirsch@hs-niederrhein.de http://dnt.kr.hs-niederrhein.de Folie 1 Gliederung

Mehr

Seminar Digitale Signalverarbeitung

Seminar Digitale Signalverarbeitung Universität Koblenz-Landau Institut für integrierte aturwissenschaften Abteilung Physik Dr. Merten Joost Seminar Digitale Signalverarbeitung Thema: Fast Fourier Transformation Praktische Durchführung einer

Mehr

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0.

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0. Aufgabe 1 Das periodische Signal x t) 0,5 sin(2 f t) 0,5 cos(2 f t) mit f 1000Hz und mit f 2000Hz ( 1 2 1 2 und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei

Mehr

Lineare Prädiktion. Stephan Arlinghaus 9. November 2006

Lineare Prädiktion. Stephan Arlinghaus 9. November 2006 Stephan Arlinghaus 9. November 2006 Gliederung 1 Einleitung Sprachanalyse... etwas Mathematik 2 Das autoregressive Modell (AR) (LP) 3 Kovarianzmethode Autokorrelationsmethode Methodenvergleich 4 5 Der

Mehr

Daniel Ch. von Grünigen. Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme. Digitale. 4.

Daniel Ch. von Grünigen. Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme. Digitale. 4. Daniel Ch. von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme 4. Auflage Grünigen Digitale Signalverarbeitung vbleiben Sie einfach auf dem Laufenden:

Mehr

Systemtheorie für Informatiker

Systemtheorie für Informatiker Systemtheorie für Informatiker Dr. Ch. Grimm Professur Technische Informatik, Univ. Frankfurt/Main Vorlesung Systemtheorie Vorlesung: Übung: Veranstalter: Dr. Christoph Grimm Professur Technische Informatik

Mehr

Aktive Filter ein Überblick

Aktive Filter ein Überblick Aktive Filter ein Überblick Der folgende Artikel soll dem mit aktiven Filtern nicht vertrauten Leser einen Überblick ve r- schaffen. Auf Vollständigkeit wird keinerlei Anspruch erhoben. Definitionen: Aktive

Mehr

Aufgabe 3. Signal Processing and Speech Communication Lab. Graz University of Technology

Aufgabe 3. Signal Processing and Speech Communication Lab. Graz University of Technology Signal Processing and Speech Communication Lab. Graz University of Technology Aufgabe 3 Senden Sie die Hausübung bis spätestens 15.06.2015 per Email an hw1.spsc@tugraz.at. Verwenden Sie MatrikelNummer1

Mehr

Operationsverstärker. Sascha Reinhardt. 17. Juli 2001

Operationsverstärker. Sascha Reinhardt. 17. Juli 2001 Operationsverstärker Sascha Reinhardt 17. Juli 2001 1 1 Einführung Es gibt zwei gundlegende Operationsverstärkerschaltungen. Einmal den invertierenden Verstärker und einmal den nichtinvertierenden Verstärker.

Mehr

Prof. Dr. Stefan Weinzierl SNR V = P signal P noise

Prof. Dr. Stefan Weinzierl SNR V = P signal P noise Audiotechnik II Digitale Audiotechnik: 5. Tutorium Prof. Dr. Stefan Weinzierl 0.11.01 Musterlösung: 1. November 01, 15:50 1 Dither a) Leiten sie den SNR eines idealen, linearen -bit Wandlers her. Nehmen

Mehr

5. Meßfehler. Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar

5. Meßfehler. Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar 5. Meßfehler Man unterscheidet... zufällige Meßfehler systematische Meßfehler Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar

Mehr

Mathematica - Notebooks als Bonusmaterial zum Lehrbuch

Mathematica - Notebooks als Bonusmaterial zum Lehrbuch R. Brigola, TH Nürnberg Georg Simon Ohm, 2014 Mathematica - Notebooks als Bonusmaterial zum Lehrbuch [1] Rolf Brigola Fourier-Analysis und Distributionen, Eine Einführung mit Anwendungen, edition swk,

Mehr

Elektrotechnik für Informatiker

Elektrotechnik für Informatiker Reinhold Paul Elektrotechnik für Informatiker mit MATLAB und Multisim Teubner B. G. Teubner Stuttgart. Leipzig. Wiesbaden Inhalt Hinweise zur Arbeit mit dem Lehrbuch. Studienmethodik... 7 1 Schaltungsvariable

Mehr

Einsatz von digitalen Filtern für die Ultraschallprüfung

Einsatz von digitalen Filtern für die Ultraschallprüfung DGZfP-Jahrestagung 2 - Poster 53 Einsatz von digitalen Filtern für die Ultraschallprüfung Elmar DOHSE, Thomas ERTHNER, Roy PLOIGT, Gottfried SCHENK BAM Bundesanstalt für Materialforschung und -prüfung

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.

Mehr

Mikroelektronische Filter

Mikroelektronische Filter Mikroelektronische Filter Herausgegeben von Prof. Dr. sc. techn. Hans Eigler Verlag Technik GmbH Berlin Inhaltsverzeichnis Abkürzungen, Formelzeichen, Schreibweise 12 Zum Inhalt des Buches 17 Theorie,

Mehr

Verfremdung von Stimmen, Instrumenten Manipulation von Geräuschen Erzeugen einer virtuellen Akustik

Verfremdung von Stimmen, Instrumenten Manipulation von Geräuschen Erzeugen einer virtuellen Akustik Tontechnik 2 Effektgeräte Audiovisuelle Medien HdM Stuttgart Digitale Effektgeräte Ziel: Verfremdung von Stimmen, Instrumenten Manipulation von Geräuschen Erzeugen einer virtuellen Akustik Anwendungsbereiche:

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

Betrachtetes Systemmodell

Betrachtetes Systemmodell Betrachtetes Systemmodell Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort h(t), an dessen Eingang das Signal x(t) anliegt. Das Ausgangssignal y(t) ergibt sich dann als das Faltungsprodukt

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 9. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Abtastung und Rekonstruktion Abtastung: Wandelt bandbegrenzte kontinuierliche

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Inhalt. Nichtlineare Systeme Voltera Reihenexpansion Statische quasi-nichtlineare Systeme Dynamikprozessoren

Inhalt. Nichtlineare Systeme Voltera Reihenexpansion Statische quasi-nichtlineare Systeme Dynamikprozessoren 1 Inhalt Nichtlineare Systeme Voltera Reihenexpansion Statische quasi-nichtlineare Systeme Dynamikprozessoren Kontrollparameter Anwendungen Frequenzabhängige nichtlineare Systeme Signalverfremdung Messparameter

Mehr