= 0 i n S ( ) ) Aufgabe 2. Aufgabe 2. Aufgabe 2. Aufgabe 4. E. Tilgungsrechnungen. E. Tilgungsrechnungen

Größe: px
Ab Seite anzeigen:

Download "= 0 i n S ( ) ) Aufgabe 2. Aufgabe 2. Aufgabe 2. Aufgabe 4. E. Tilgungsrechnungen. E. Tilgungsrechnungen"

Transkript

1 Aufgabe Ee chuld vo 4. se 5 Jahre m kosae Tlgugsrae zu lge; de Verzsug erfolge zu 7,5% p.a. a) Welche Zahluge sd sgesam zu lese? umme der Tlgugszahluge chuldsumme 4. Zszahluge: arhmesche Folge (Raeschuld) a a * 4.,75 ( ( ) ) ges. Dr. A. Brk Dr. A. Brk Aufgabe Ee chuld vo 4. se 5 Jahre m kosae Tlgugsrae zu lge; de Verzsug erfolge zu 7,5% p.a. b) ) We hoch s de Resschuld ach Jahre? T ( ) ) 4. (5 ) Dr. A. Brk Dr. A. Brk Aufgabe Ee chuld vo 4. se 5 Jahre m kosae Tlgugsrae zu lge; de Verzsug erfolge zu 7,5% p.a. c) ) We vel Zse müsse m. Jahr gezahl werde? Z T ( ) 4. Z (5 ), Aufgabe 4 E Kred vo 35. soll m % p.a. verzs werde. Folgede Tlguge sd verebar: Ede Jahr : 7. Ede Jahr 4: 63. Ede Jahr 6: 4.5 Ede Jahr 7: Reslgug. Am Ede des 3. ud 5. Jahres erfolge keerle Zahluge des chulders, vel- mehr erfolg Ede des 5. Jahres ee Neuverschuldug um 75.. I alle adere Jahre (außer 3. ud 5. Jahr) werde ebe de verebare Tlguge zusäzlch de fällge Zse bezahl. elle e de Tlgugspla auf. Dr. A. Brk Dr. A. Brk 3 3 Dr. A. Brk Dr. A. Brk 4 4

2 Tlgugspla: gsp T - Z T R () () (3)(), ( ) (4) (5)(3)(4) ( ) ( ) (6)()-(4) ( ) ( ) Aufgabe 6 Ee Alehe vo, Mo. soll zum Jahreszsfuß 8% halbjährlch verzs ud ach lgugsfree Jahre durch glechblebede Tlgugsrae erhalb der ächse 3 Jahre halbjährlch gelg werde. We gesale sch der Tlgugspla? Jahreszsfuß: 8%,8 Halbjahreszsfuß: om 4 % rel m Dr. A. Brk Dr. A. Brk 5 5 Dr. A. Brk Dr. A. Brk 6 6 k k-, Z k, T k, R k, k, () () (3) (4) (3),4 4 (5) (6)(4)(5)(4)(5) (6)(3)-(4)(3) (4) Aufgabe 8 m T, a Z, rel 8.,.8 a [ m { ( ) m ( v )}] rel Z T 6, Dr. A. Brk Dr. A. Brk 7 7 Dr. A. Brk Dr. A. Brk 8 8

3 a a Z 6, T [ m { ( ) m ( v ) } ] rel [,5 { ( ) ( 6 ) } ], 6 6. * a a ges. 8.6 Aufgabe R R R ( ) Dr. A. Brk Dr. A. Brk 9 9 Dr. A. Brk Dr. A. Brk Aufgabe log R R log 5, [Jahre] 5, ,, 5..65,94 5, , Dr. A. Brk Dr. A. Brk Dr. A. Brk Dr. A. Brk

4 Aufgabe 4 AZ.65,94, 67,8 Dr. A. Brk Dr. A. Brk 3 3

5 Aufgabe 3 Aufgabe 3 R 4,4 4.,4.9, 6 4,4 r R m ( m ).9,6, ,9 Dr. A. Brk Dr. A. Brk Dr. A. Brk Dr. A. Brk k k-, r k, T k, Z k, Zse () () (3) (4) (5)(4)-(6) ( ) ( ) (6) (7)(3)-(5) ( ) () (8)(3)*, 4.,.74,9.74, , ,85.74,9.74, ,6 37, ,6.74,9.74, ,43 345, ,43.74,9.77,4.437,5 3.58,39 38, , ,9 9.74, , 35, ,.74,9.74,9 5.5, 78, ,.74,9.74,9.437,8 5, ,8.74,9.653,83.6,36.783,99 4, ,99.74,9.74,9 8.69,8 7, ,8.74,9.74, ,6 8, ,6.74,9.74,9.64,4 53, ,4 4.74,9 9.45,68 668,5.595,74 6, ,74.74,9.74,9 7.88,55 5, ,55.74,9.74,9 5.67,36 78, ,36.74,9.74,9.453,7 5,67 Dr. A. Brk Dr. A. Brk ,7.74,9.453, 6,98,4 4,53 Aufgabe 3 Z m r,4 [ 3] m m r r 4.74,9 Dr. A. Brk Dr. A. Brk 4 4

6 m m r r m mr r ,9, ,9 3.58, , ,9 9, , , ,99 Aufgabe 3 Z Z m r,4 [ 3] 4,4.783,99.74, ,9 668,5 Dr. A. Brk Dr. A. Brk 5 5 Dr. A. Brk Dr. A. Brk 6 6 Aufgabe 3 3 mr r 3.595,74 m Aufgabe 5 E Darlehe über 5. soll m Quaralszahluge.H.v..5 gelg werde. Be eem Jahreszssaz vo 7% erfolg de Zsverrechug jährlch. We hoch s de Resschuld des Darlehes ach 5 Jahre? mr m r m 3 m r r , Dr. A. Brk Dr. A. Brk 7 7 Dr. A. Brk Dr. A. Brk 8 8

7 Aufgabe 5 E Darlehe über 5. soll m Quaralszahluge.H.v..5 gelg werde. Be eem Jahreszssaz vo 7% erfolg de Zsverrechug jährlch. We hoch s de Resschuld des Darlehes ach 5 Jahre? , , ,89974 Aufgabe 6 Ee Auäeschuld vo 5. s moalch achschüssg m 49,38 zurückzuzahle. De jährlche Verzsug beräg 5%. Bereche e de Laufze. R r m ( m ) m ( m ) 5.,63 Dr. A. Brk Dr. A. Brk 9 9 Dr. A. Brk Dr. A. Brk Aufgabe 6 Ee Auäeschuld vo 5. s moalch achschüssg m 49,38 zurückzuzahle. De jährlche Verzsug beräg 5%. Bereche e de Laufze.,5 5.,5,5 49,38,5 ( ) Aufgabe 9 Ee Bak gewähr ee Kred vo.. Das Darlehe s m 5 % zu verzse ud m 8 % durch Auäelgug zurückzuzahle. Nach we vel Jahre s de Hälfe des Darlehes gelg? Zssaz 5%, Tlgug (zu Beg) 8%, Auä 3% Frage ach der Resschuld (gesuch: ) R,5, [Jahre] Dr. A. Brk Dr. A. Brk Dr. A. Brk Dr. A. Brk

8 Aufgabe 9 Ee Bak gewähr ee Kred vo.. Das Darlehe s m 5 % zu verzse ud m 8 % durch Auäelgug zurückzuzahle. Nach we vel Jahre s de Hälfe des Darlehes gelg? g,5 5..,5 3.,5 5, [Jahre] Dr. A. Brk Dr. A. Brk 3 3

Ein Kredit von 350.000 soll mit 10% p.a. verzinst werden. Folgende Tilgungen sind vereinbart:

Ein Kredit von 350.000 soll mit 10% p.a. verzinst werden. Folgende Tilgungen sind vereinbart: E. Tlgugsechuge Aufgabe E Ked vo 350.000 soll 0% p.a. vezs wede. Folgede Tlguge sd veeba: Ede Jah : 70.000 Ede Jah : 63.000 Ede Jah 6:.500 Ede Jah 7: Reslgug. A Ede des 3. ud 5. Jahes efolge keele Zahluge

Mehr

n 4 Dr. A. Brink Dr. A. Brink 1

n 4 Dr. A. Brink Dr. A. Brink 1 E. Tlgugsechuge Aufgabe E/3 E Ked ee chuldsue vo. s übe Jahe ach de Mehode de quaalswese-achschüssge Auäelgug zuückzuzahle. Eel e de Jahesauä sowe de Rückzahlugsae ud eselle e ee Fazpla fü ee Jaheszssaz

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Tilgungsrechnung 2. Bearbeitet von Martin Kubsch. 12.01.2005 Tilgungsrechnung 2 1. Formelsammlung. Jahres-, Quartals,- Halbjahres oder Monatsrechnung

Tilgungsrechnung 2. Bearbeitet von Martin Kubsch. 12.01.2005 Tilgungsrechnung 2 1. Formelsammlung. Jahres-, Quartals,- Halbjahres oder Monatsrechnung Tlgugsrechug Bearbetet vo Mart Kubsch.0.00 Tlgugsrechug Formelsammlug Uterjährge Tlgug a) m r = m z Azahl glech Jahres-, Quartals,- Halbjahres oder Moatsrechug b) m z > m r (mehr Zs- als Tlgugsperode)

Mehr

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen .. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

D. Rentenrechnungen 4 Progressive Renten 4.1 Geometrisch fortschreitende Renten. Formel: D. Rentenrechnung 3. Progressive Renten.

D. Rentenrechnungen 4 Progressive Renten 4.1 Geometrisch fortschreitende Renten. Formel: D. Rentenrechnung 3. Progressive Renten. Fazmathematk Thema: Reterechuge Dr. Alfred Brk Fazmathematk A Eführug B Fazmathematsche Grudlage C Zsrechuge D Reterechuge Systematserug vo Retevorgäge 2 Edlche Rete 3 Ewge Rete 4 Progressve Rete 5 Aufgabe

Mehr

Finanzmathematik II: Barwert- und Endwertrechnung

Finanzmathematik II: Barwert- und Endwertrechnung D. habl. Bukhad Uech Beufsakademe Thüge Saalche Sudeakademe Sudeabelug Eseach Sudebeech Wschaf Wschafsmahemak Wesemese 004/0 Fazmahemak II: Bawe- ud Edweechug. Bawee ud Edwee vo Zahlugsehe. Effekve Jaheszssaz

Mehr

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden Oeserrechsche Korollbak AG esoskasse erformaceberechug Asse Allocao Berechugsmehode Jul 200 Ihal erformaceberechug der OeKB...3 2 erformace...3 2. Defo der erformace...3 2.2 Berechugsmehode...4 2.3 Formel...4

Mehr

Finanzmathematik Folien zur Vorlesung

Finanzmathematik Folien zur Vorlesung Fazmahemak Fole zu Volesug FINANZMAHEMAI. Zsechug.. Gudbegffe de Zsechug.. De ve Fageselluge de Zsechug.3. Beechug des Edkapals.4. Beechug vo Afagskapal, Zssaz ud Laufze.5. Uejähge Vezsug.6. Sege Vezsug.

Mehr

Übungsaufgaben zur Finanzmathematik - Lösungen

Übungsaufgaben zur Finanzmathematik - Lösungen Wshfsmhemk II Übugsufgbe zu Fzmhemk - Lösuge. Ee Bk lok m dem Agebo " W vedoppel h pl Jhe!! ". ) Welhe Vezsug bee Ihe de Bk? ( ) Edkpl od. Ede : Lufze od. Läge des Algezeumes Zse " Zseszsehug" z. B.: (

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F B - - Überführgszahle d Wadergsgeschwdgke fgabe: Besmmg der orfsche Überführgszahle vo - d O - -oe 0N O oder vo 2 - d SO 4 -oe 0N 2SO 4 d Berechg hrer oeäqvalelefähgkee 2 Besmmg der Wadergsgeschwdgkee

Mehr

1 Elementare Finanzmathematik

1 Elementare Finanzmathematik Elemetare Fazmathemat 4 Elemetare Fazmathemat Zel: Bewertug ud Verglech atueller ud zuüftger Geldströme. Determstsche Zahlugsströme Defto: E determstscher Zahlugsstrom st ee Futo Z: N R, de jedem Zetput

Mehr

Zum Problem unterjähriger Zinsen und Zahlungen in der Zinseszinsrechnung

Zum Problem unterjähriger Zinsen und Zahlungen in der Zinseszinsrechnung Zu Proble urjährger Zse ud Zahluge der Zsessrechug Gewöhlch geht a der Zsessrechug davo aus, dass de Zse ach ee Jahr de Kapl ugeschlage werde ud da weder Zse trage. Der Zssat, t de das Kapl ultplert wrd,

Mehr

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

Tutorium Investition & Finanzierung Tutorium 1: Kostenvergleichs und Gewinnvergleichsrechnung

Tutorium Investition & Finanzierung Tutorium 1: Kostenvergleichs und Gewinnvergleichsrechnung Fachhochschule Schmalkalde Fakulä Iformak Professur Wrschafsformak, sb. Mulmeda Markeg Prof. Dr. rer. pol. Thomas Urba Tuorum Iveso & Fazerug Tuorum : oseverglechs ud Gewverglechsrechug T : Der Tu Fru

Mehr

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion AG Kstrut KONTRUKTION Plaetegetrebe (Umlaufgetrebe) rpt TU Berl, AG Kstrut Plaetegetrebe Vrtele Plaetegetrebe: e Achsversatz z.t. sehr grße Über-/Utersetzuge möglch grße Tragraft guter Wrugsgrad Rhlff

Mehr

b) Rentendauer Anzahl der Rentenzahlungen 1) endliche Renten 2) ewige Renten (z.b. Verpachtung an Verpächter bzw. seinen Rechtsnachfolgern)

b) Rentendauer Anzahl der Rentenzahlungen 1) endliche Renten 2) ewige Renten (z.b. Verpachtung an Verpächter bzw. seinen Rechtsnachfolgern) HTL Jebach. eeechug Maheak Sask.. Gudbegffe ee = egeläßg wedekehede Zahlug 4 weselche Mekale ee ee a) eehöhe ) glechblebede ee ) veädelche ee a) egeläßg (z.b. Idex-ageaß) ) egellos b) eedaue Azahl de eezahluge

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

Finanzmathematische Grundlagen zur Zins- und Rentenrechnung

Finanzmathematische Grundlagen zur Zins- und Rentenrechnung Fazmahemasche Grudlage zur Zs- ud Reerechug Fazmahemasche Grudlage zur Zs- ud Reerechug (Fassug - November 008) /3 Markus Scheche Emal: mal@markus-scheche.de Homepage: www.markus-scheche.de Fazmahemasche

Mehr

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien?

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien? Fiazmathematik Aufgabesammlug. Ei Kapital vo 5000 ist zu 6,5% ud ei Kapital vo 4500 zu 7% auf 2 Jahre agelegt. Wie groß ist der Uterschied der Edkapitalie? 2. Wa erreicht ei Kapital eie höhere Edwert,

Mehr

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik Prof. Dr. Güter Hellig lausureskript Fiazatheatik Ihalt: lausur vo WS 9/. Eifache Zise: Vorschüssigkeit ud Nachschüssigkeit. Reterechug: Reteedwert ud Retebarwert 3. Tilgugsrechug: Tilgugspla bei Ratetilgug

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien: Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet

Mehr

a) p% = 3% b) p% = 7% c) p% = 4,2% d) p% = 3,6% e) p% = 5,3% f) p% = 5,5% g) p% = 6,75% h) p% = 2,2%

a) p% = 3% b) p% = 7% c) p% = 4,2% d) p% = 3,6% e) p% = 5,3% f) p% = 5,5% g) p% = 6,75% h) p% = 2,2% Berufskolleg aufmäische Schule des reises Düre Mathematik-Übugsaufgabe Thema: Ziseszisrechug Schulform: Höhere Hadelsschule Ziseszisrechug eimalige Zahluge 1. Löse die Formel = 0 q ach 0, q bzw. auf. 2.

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Name: Vorame: Matrkel-Nr.: BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Itegrerter Studegag Wrtshaftswsseshaft Klausuraufgabe zur Hauptprüfug Prüfugsgebet: BWW 2.8

Mehr

F 6-2 π. Seitenumbruch

F 6-2 π. Seitenumbruch 6 trebsauslegug Für dese ckelprozess üsse de otore so ausgelegt werde, dass dese Fahrbetreb cht überlastet werde. Herfür üsse de ezele asseträghetsoete [7] der Bautele (otor, etrebe, ckler ud Ulekrolle)

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58.

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58. eometrische Optik 1 58 Übugsaufgabe zur Vertiefug V1. Beschrifte Sie die Kostruktioe! ' ' ' ' ' ' ' ' Lehrerversio eometrische Optik 1 59 V2. Bei eiem Brillekroglas tritt Licht a der Rückfläche des lases

Mehr

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf Das Verfahre vo Goduov Semar Numerk 5..00 Aja Beedorf Das Verfahre vo Goduov Übersch Goduov - Goduovs Verfahre für Leare Syseme Aweduge & Folgeruge aus Goduovs Verfahre - De Numersche Fluss-Fuko m Goduov

Mehr

Deskriptive Statistik - Aufgabe 3

Deskriptive Statistik - Aufgabe 3 Desrptve Statst - Aufgabe 3 De Überachtugszahle der Fremdeverehrsgemede "Bachstadt" für de Moate ud zege auf de erste Blc scho deutlche Uterschede de ezele Ortschafte. We seht e etsprecheder Verglech der

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quattatve BWL. el: Fazwtschaft Mag. oáš Sedlačk Lehstuhl fü Fazdestlestuge Uvestät We Quattatve BWL: Fazwtschaft Ogasatosches Isgesat wd es 6 ee gebe (5 Ehete + Klausu Klausu fdet a D 7. Jaua 009 statt

Mehr

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7 Strtte Auffassue zu Aforderusrofl ud Betrebsart be der Neufassu der IEC 6508-3 ud -7 Vortra a der TU Brauschwe m November 205 vo Wolfa Ehreberer, Hochschule Fulda 7..205 Ehreberer, IEC 6508, Strtte Auffassue...

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,

Mehr

Physikalisch-Technische Bundesanstalt, Braunschweig

Physikalisch-Technische Bundesanstalt, Braunschweig Üerscht üer essuscherhetserechuge vo der Darstellug der Ehet des Drehmometes üer de Wetergae s h zur Aedug ud Bespel eer Ope-ource-Aedug dafür Drk Röske Physkalsch-Techsche Budesastalt, Brauscheg Darstellug

Mehr

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß Ivesiiosud Fiazierugsplaug miels Kapialwermehode, Ierer Zisfuß Bearbeie vo Fraka Frid, Chrisi Klegel WI. Aufgabe: Eie geplae Ivesiio mi Aschaffugsausgabe vo.,- läss jeweils zum Jahresede die folgede Eiahme

Mehr

Versicherungsmathematische Formeln und Sätze WS 2001/02

Versicherungsmathematische Formeln und Sätze WS 2001/02 Pof. D. Detma Pfefe Vescheugsmathematsche Fomel ud Stze WS 200/02 Zsechug effete Zssatz: totale Zsetag aus dem fagsaptal "" ehalb ees Jahes Bawet des ach eem Jah fllge Kaptals "" Edwet des ach eem Jah

Mehr

Datenblatt. Geber- und Geberkabelvergleich MOVIDRIVE MDX 61B DT..- / DV..-Motoren zu DR..-Motoren

Datenblatt. Geber- und Geberkabelvergleich MOVIDRIVE MDX 61B DT..- / DV..-Motoren zu DR..-Motoren Atrebstechk \ Atrebsautomatserug \ Systemtegrato \ Servces Dateblatt Geber- ud Geberkabelverglech MOVIDRIVE MDX B DT..- / DV..-Motore zu -Motore Ausgabe 02/200 0040 / DE SEW-EURODRIVE Drvg the world Geberverglech

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski Tel.:

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski   Tel.: MST Übug Mthemtk Prof.Dr.B.Grbowsk e-ml: grbowsk@htw-srld.de Tel.: 87- Iverse Mtrze ufgbe : Bereche Se de Iverse Mtr zu folgede Mtrze. Prüfe Se Ihr Ergebs, dem Se - bereche! b dg-,,-,,-, c 7 d ufgbe :

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.

Mehr

Formelsammlung Finanzmathematik

Formelsammlung Finanzmathematik ZÜHE HOHSHULE WINTETHU (ZHW) INSTITUT BNING & FINNE Fomelsammlug Fazmahema [ ] [ ] (X,Y) (x E x ) * (y E y ) D π V() m m m m m. Zsfome.... eefome... 3. Veschuldugsfome...4 4. useche...6 5. ede vo fesvezslche

Mehr

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Hadelsschule Abschlussprüfug Sommer Fach: MATHEMATIK Bearbeitugszeit: Erlaubte Hilfsmittel: Zeitstude Nicht-programmierbarer Tascherecher

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

T t Tilgungsrate im Jahr t Z t Kreditzinsen im Jahr t. Weitere S Kredit bei t = 0 ( ursprüngliche Schuld ) Symbole: RS t

T t Tilgungsrate im Jahr t Z t Kreditzinsen im Jahr t. Weitere S Kredit bei t = 0 ( ursprüngliche Schuld ) Symbole: RS t 6. Tilggsrechg 6.. Eiführg Gegesad der Tilggsrechg is die Feslegg der Rückzahlge für eimalig asgezahle Kredie eischließlich der Kredizise d -gebühre eweder a) am Fälligkeisag i eier mme (sog. gesamfällige

Mehr

17. Kapitel: Die Investitionsplanung

17. Kapitel: Die Investitionsplanung ABWL 17. Kapiel: Die Ivesiiosplaug 1 17. Kapiel: Die Ivesiiosplaug Leifrage des Kapiels: Welche Type vo Ivesiiosobjeke gib es? Wie läss sich die Voreilhafigkei eies Ivesiiosobjeks fesselle? Wie ka aus

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Ole- ud a de müdlche Prüfuge abgegebe sowet erforderlch. A der schrftlche Klausur (Ope-book-Prüfug)

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

19. Amortisierte Analyse

19. Amortisierte Analyse 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe.

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

Deskriptive Statistik und moderne Datenanalyse

Deskriptive Statistik und moderne Datenanalyse homas Cleff Destve tatst ud modee Dateaalse Ee comutegestützte Efühug mt Ecel ud AA 0XX /. Auflage Fomelsammlug Cleff Destve tatst ud modee Dateaalse Gable Velag Wesbade 0XX GableL Zusatzfomatoe zu Mede

Mehr

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung)

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung) 3 Die Außefiazierug durch Fremdkapital (Kreditfiazierug) 3.1 Die Charakteristika ud Forme der Kreditfiazierug Aufgabe 3.1: Idealtypische Eigeschafte vo Eige- ud Fremdkapital Stelle Sie die idealtypische

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkomme zur der Aufgabesammlug Um sich schell ierhalb der ca. 35. Mathematikaufgabe zu orietiere, beutze Sie ubedigt das Lesezeiche Ihres Acrobat Readers: Das Ico fide Sie i der liks stehede

Mehr

Preisindex. und. Mengenindex

Preisindex. und. Mengenindex Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk resdex ud Megedex Übuge Aufgabe ösuge www.f-lere.de resdex 1 De Etwcklug der rese wrd der Öffetlchket

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

Formelsammlung für Investition und Finanzierung

Formelsammlung für Investition und Finanzierung Formelsammlug für Ivesiio ud Fiazierug (Sad: 3.2.22) Seie vo 8 Formelsammlug für Ivesiio ud Fiazierug INHALSVERZEICHNIS. Mahemaische Grudlage...3 a) Auflösug quadraischer Gleichuge mi der pq-formel...3

Mehr

Formelsammlung gültig ab Einstellungstermin 1. April 2011 (Stand: 1. April 2011)

Formelsammlung gültig ab Einstellungstermin 1. April 2011 (Stand: 1. April 2011) Formelsammlug gülg ab Esellugserm. Aprl (Sad:. Aprl ) FACHHOCHSCHULE DER DEUTSCHEN BUNDESBANK - UNIVERSITY OF APPLIED SCIENCES - Schloss Hacheburg Fachsude für de gehobee Bades m Bachelorsudegag Fachhochschule

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Fomelsammlug tschaftsmathemat / Statst Fomelsammlug fü de Lehveastaltug tschaftsmathemat / Statst zugelasse fü de Klausue zu tschaftsmathemat ud Statst de Studegäge de Techsche Betebswtschaft Veso vom

Mehr

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Lorez' sche Kozetratoskurve ud Dspartätsdex ach G Übuge Aufgabe Lösuge www.f-lere.de Begrff Lorez'

Mehr

2. Arbeitsgemeinschaft (11.11.2002)

2. Arbeitsgemeinschaft (11.11.2002) Mat T. Kocbk G Fazeugs- & Ivesttostheoe Veastaltug m WS / Studet d. Wtschatswsseschat. betsgemeschat (..). Fshe-Sepaato Das Fshe-Sepaatostheoem sagt aus, daß ute bestmmte ahme heutge ud mogge Kosum substtueba

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Auf welches Endkapital wächst ein Kapital von 4352,40 bei 3,5 % Zinsverzinsung in 8 Jahren an?

Auf welches Endkapital wächst ein Kapital von 4352,40 bei 3,5 % Zinsverzinsung in 8 Jahren an? 2--3 Übugsblatt Lösuge. Aufgabe: Auf welches Edkapital wächst ei Kapital vo 432,4 bei 3, % Zisverzisug i Jahre a? K K q geg: K = 432,4 ; p = 3,; = Jahre ges: K K 432,4,3 K 73,2 Das Edkapital ach Jahre

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Prüfuge abgegebe sowet erforderlch. Stad 1. Jul 2010. Äderuge vorbehalte. Formelsammlug Fazplaer

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z)

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z) Mathematik 1 Test SELBSTTEST MATHEMATIK 1. Forme Sie die folgede Terme um: a) y y y y + y : ( ) ( ) b) ( 9 ) 18 c) 5 3 3 3 d) 6 5 4 ( 7 y ) 3 4 5 ( 14 y ) e) ( 4a + 8b + 9a + 18b ) : a + b f) log () +

Mehr

Investition und Finanzierung Skript III

Investition und Finanzierung Skript III Ivestto ud Fazerug Skrpt III zuletzt geädert am: 05.05.03 Ivestto ud Fazerug Skrpt III Quelle: Vorlesug Ivestto ud Fazerug 6. Semester, FH Erfurt, Prof. Dr. Waldhelm Copyrght 2003 BSTM Sete Alle Agabe

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Formelsammlug rtschaftsmathemat / Statst Formelsammlug für de Lehrverastaltug rtschaftsmathemat / Statst zugelasse für de Klausure zur rtschaftsmathemat ud Statst de Studegäge der Techsche Betrebswrtschaft

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

2 Integrierte Sicherheitstechnik

2 Integrierte Sicherheitstechnik Iegrere Scherhesechk Scherhesechsche Archekur o MOISAFE UCS..B 2 2 Iegrere Scherhesechk De acholged beschrebee Scherhesechk des MOISAFE UCS..B erüll olgede Scherhesaorderuge: Kaegore 4 ud erorace Leel

Mehr

Messung 3 MESSUNG EINES AUS OTTO MOTOR UND ELEKTRISCHEN GENERATOR BESTEHENDEN MASCHINENAGGREGATES

Messung 3 MESSUNG EINES AUS OTTO MOTOR UND ELEKTRISCHEN GENERATOR BESTEHENDEN MASCHINENAGGREGATES Messug 3 MESSUNG EINES AUS OTTO MOTOR UND ELEKTRISCHEN GENERATOR BESTEHENDEN MASCHINENAGGREGATES Ziel der Meßübug: Besimmug des Bresoffverbrauchs, des spezifische Bresoffverbrauchs, Aggregawirkugsgrades,

Mehr

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt 7.. Aufgbe zu Sklrprodukt ud Vektorprodukt Aufgbe : Sklrprodukt Bereche die folgede Produkte: ) Aufgbe : Läge eies Vektors Bestimme die Läge ud de etsprechede Eiheitsvektor der folgede Vektore. =, b =,

Mehr

Prof. Dr. Günter Hellmig. Aufgabenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Aufgabenskript Finanzmathematik Prof. Dr. Güter Hellmig Aufgabeskript Fiazmathematik Ihalt: Aufgabe -: Eifache achschüssige Zise Aufgabe : Eifache vorschüssige Zise Aufgabe 4-5: Ziseszise bei Zisasammlug Aufgabe 6-: Ziseszise bei Zisauszahlug

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

Bewertung von Anleihen

Bewertung von Anleihen Bewertug vo Aleihe Arithmetik der Aleihebewertug: Überblick Zerobods ud Koupoaleihe Ziskurve: Spot Zise ud Yield to Maturity Day cout Kovetioe Replikatio ud Arbitrage Forward Zise Yield ud ex post realisierte

Mehr

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen?

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen? Aufgabe 1 (60 Pukte) De Gesellschaft XYZ betet als prvate Reteverscherug ee Idepolce gege Emalbetrag a mt eer Aufschubfrst vo zwe Jahre. Ivestert wrd e so geates IdeZertfkat, das be Retebeg das folgede

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Wahrscheinlichkeit und Statistik

Wahrscheinlichkeit und Statistik ETH Zürich HS 2015 Prof. Dr. P. Embrechts Wahrscheilichkeit ud Statistik D-INFK Lösuge Serie 2 Lösug 2-1. (a Wir bereche P [W c B] auf zwei Arte: (a Wir betrachte folgede Tabelle: Azahl W W c B 14 6 B

Mehr

4. Auf welchen Betrag würde ein Kapital von 100,- anwachsen, wenn es bei jährlicher Verzinsung zu 6 % 30 Jahre lang auf Zinseszinsen steht.

4. Auf welchen Betrag würde ein Kapital von 100,- anwachsen, wenn es bei jährlicher Verzinsung zu 6 % 30 Jahre lang auf Zinseszinsen steht. Ziseszisechug. Auf welche Betag wächst ei Kapital vo K 0 bei jähliche Vezisug zu p % i Jahe a. a. K 0 5.200,- p 4 ½ % 6 Jahe b. K 0 3.250,- p 6 % 7 Jahe c. K 0 7.500,- p 5 ½ % 5 Jahe d. K 0 8.320,- p 5

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

1 s. 1 s. 1 k. n j. j = Wärmedurchgang durch eine mehrschichtige, ebene Wand:

1 s. 1 s. 1 k. n j. j = Wärmedurchgang durch eine mehrschichtige, ebene Wand: Wärmeurchgg urch ee mehrchchtge, ebee W: ugehe vo er Löug er Fourer'che Dfferetlglechug für e Wärmetrport urch ee ebee Wfläche : A T ergbt ch ru für ee mehrchchtge, ebee Wfläche: A ru wr e Wärmeurchggwertzhl

Mehr