Kapitel 7 Physische Datenorganisation. Speicherhierarchie Hintergrundspeicher / RAID Speicherstrukturen B-Bäume Hashing R-Bäume

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kapitel 7 Physische Datenorganisation. Speicherhierarchie Hintergrundspeicher / RAID Speicherstrukturen B-Bäume Hashing R-Bäume"

Transkript

1 Kapitel 7 Physische Datenorganisation Speicherhierarchie Hintergrundspeicher / RAID Speicherstrukturen B-Bäume Hashing R-Bäume

2 Überblick: Speicherhierarchie Register (L1/L2/L3) Cache Hauptspeicher Plattenspeicher Archivspeicher 2

3 Überblick: Speicherhierarchie Register Cache Hauptspeicher 8 Byte Compiler kbyte Cache-Controller 4+ GB Betriebssystem Plattenspeicher Archivspeicher Benutzer 3

4 Überblick: Speicherhierarchie 1ns Register 1-10ns Cache ns Hauptspeicher 10 ms Plattenspeicher Zugriffslücke 10 5 sec Archivspeicher 4

5 Magnetplattenspeicher 7

6 rpm ~ 4 ms pro Umdre 1 TB Kapazität 100 MB/s Transferrate 8

7 Lesen von Daten von der Platte Seek Time: Arm positionieren 5ms Latenzzeit: ½ Plattenumdrehung (im Durchschnitt) Umdrehungen / Minute Ca 2ms Transfer von der Platte zum Hauptspeicher 100 MB/s 9

8 Random versus Chained IO 1000 Blöcke à 4KB sind zu lesen Random I/O Jedesmal Arm positionieren Jedesmal Latenzzeit 1000 * (5 ms + 2 ms) + Transferzeit von 4 MB > 7000 ms + 40ms 7s Chained IO Einmal positionieren, dann von der Platte kratzen 5 ms + 2ms + Transferzeit von 4 MB 7ms + 40 ms 1/20 s Also ist chained IO mindestens zwei Größenordnungen schneller als random IO in Datenbank-Algorithmen unbedingt beachten! 10

9 Disk Arrays RAID-Systeme 11

10 12

11 RAID 0: Striping Datei A B C D A C B D Lastbalancierung wenn alle Blöcke mit gleicher Häufigkeit gelesen/geschrieben werden Doppelte Bandbreite beim sequentiellen Lesen der Datei bestehend aus den Blöcken ABCD... Aber: Datenverlust wird immer wahrscheinlicher, je mehr Platten man verwendet (Stripingbreite = Anzahl der Platten, hier 2) 13

12 RAID 1: Spiegelung (mirroring) A B A B C D C D Datensicherheit: durch Redundanz aller Daten (Engl. mirror) Doppelter Speicherbedarf Lastbalancierung beim Lesen: z.b. kann Block A von der linken oder der rechten Platte gelesen werden Aber beim Schreiben müssen beide Kopien geschrieben werden Kann aber parallel geschehen Dauert also nicht doppelt so lange wie das Schreiben nur eines Blocks 14

13 RAID 0+1: Striping und Spiegelung A A B B C C D D Kombiniert RAID 0 und RAID 1 Immer noch doppelter Speicherbedarf Zusätzlich zu RAID 1 erzielt man hierbei auch eine höhere Bandbreite beim Lesen der gesamten Datei ABCD... Wird manchmal auch als RAID 10 bezeichnet 15

14 RAID 2: Striping auf Bit-Ebene Anstatt ganzer Blöcke, wie bei RAID 0 und RAID 0+1, wird das Striping auf Bit- (oder Byte-) Ebene durchgeführt Datei Es werden zusätzlich auf einer Platte noch Fehlererkennungsund Korrekturcodes gespeichert In der Praxis nicht eingesetzt, da Platten sowieso schon Fehlererkennungscodes verwalten 16

15 RAID 3: Striping auf Bit-Ebene, zusätzliche Platte für Paritätsinfo Datei Parität Das Striping wird auf Bit- (oder Byte-) Ebene durchgeführt Es wird auf einer Platte noch die Parität der anderen Platten gespeichert. Parität = bit-weise xor Dadurch ist der Ausfall einer Platte zu kompensieren Das Lesen eines Blocks erfordert den Zugriff auf alle Platten Verschwendung von Schreib/Leseköpfen Alle marschieren synchron 17

16 RAID 3: Plattenausfall Datei Parität Reparatur

17 RAID 4: Striping von Blöcken A E B F C G D H P A-D P E-H Bessere Lastbalancierung als bei RAID 3 Flaschenhals bildet die Paritätsplatte Bei jedem Schreiben muss darauf zugegriffen werden Bei Modifikation von Block A zu A wird die Parität P A-D wie folgt neu berechnet: P A-D := P A-D A A D.h. bei einer Änderung von Block A muss der alte Zustand von A und der alte Paritätsblock gelesen werden und der neue Paritätsblock und der neue Block A geschrieben werden 19

18 RAID 4: Striping von Blöcken Datei Paritäts block Flaschenhals bildet die Paritätsplatte Bei jedem Schreiben muss darauf zugegriffen werden Bei Modifikation von Block A zu A wird die Parität P A-D wie folgt neu berechnet: P A-D := P A-D A A D.h. bei einer Änderung von Block A muss der alte Zustand von A und der alte Paritätsblock gelesen werden und der neue Paritätsblock und der neue Block A geschrieben werden 20

19 RAID 5: Striping von Blöcken, Verteilung der Paritätsblöcke A E B F C G D P E-H P A-D H I M J P M-P P I-L N K O L P Bessere Lastbalancierung als bei RAID 4 die Paritätsplatte bildet jetzt keinen Flaschenhals mehr Wird in der Praxis häufig eingesetzt Guter Ausgleich zwischen Platzbedarf und Leistungsfähigkeit 21

20 RAID 6: Wie RAID5, aber zwei Paritätsblöcke P E-H A E F C G D P A-D H P I-L P A-D M J P M-P P I-L N K O L P P E-H I B P M-P Recovery bei RAID 5 kann mehrere Stunden dauern Ausfall während Recovery führt zu Totalverlust der Daten RAID6 kann auch einen Ausfall während der Recovery-Phase verkraften 22

21 Systempuffer-Verwaltung einlagern verdrängen Hauptspeicher Platte ~ persistente DB 26

22 Ein- und Auslagern von Seiten Systempuffer ist in Seitenrahmen gleicher Größe aufgeteilt Ein Rahmen kann eine Seite aufnehmen Überzählige Seiten werden auf die Platte ausgelagert Hauptspeicher 0 4K 8K 12K 16K 32K 20K 36K 24K 40K 28K 44K Platte(swap device) P123 P480 48K 52K 56K 60K Seitenrahmen Seite 27

23 Adressierung von Tupeln auf dem Hintergrundspeicher 28

24 Verschiebung innerhalb einer Seite 29

25 Verschiebung von einer Seite auf eine andere Forward 30

26 Verschiebung von einer Seite auf eine andere Bei der nächsten Verschiebung wird der Forward auf Seite 4711 geändert (kein Forward auf Seite 4812) 31

27 B-Bäume Balancierte Mehrwege-Suchbäume Für den Hintergrundspeicher

28 D.. Weitere Daten S.. Suchschlüssel V.. Verweise (SeitenNr) 44

29 45

30 46

31 Einfügen eines neuen Objekts (Datensatz) in einen B-Baum 47

32 Sukzessiver Aufbau eines B-Baums vom Grad k=

33 Sukzessiver Aufbau eines B-Baums vom Grad k=

34 Sukzessiver Aufbau eines B-Baums vom Grad k=2?

35 Sukzessiver Aufbau eines B-Baums vom Grad k=2?

36 Sukzessiver Aufbau eines B-Baums vom Grad k=2 10?

37 Sukzessiver Aufbau eines B-Baums vom Grad k=2 10?

38 Sukzessiver Aufbau eines B-Baums vom Grad k=2 1 10?

39 Sukzessiver Aufbau eines B-Baums vom Grad k=2 1 10?

40 Sukzessiver Aufbau eines B-Baums vom Grad k=2 10?

41 Sukzessiver Aufbau eines B-Baums vom Grad k=2 10?

42 Sukzessiver Aufbau eines B-Baums vom Grad k=2 2 10?

43 Sukzessiver Aufbau eines B-Baums vom Grad k=2 2 10?

44 Sukzessiver Aufbau eines B-Baums vom Grad k=2 2 10?

45 Sukzessiver Aufbau eines B-Baums vom Grad k=2 4 10?

46 Sukzessiver Aufbau eines B-Baums vom Grad k=2 4 10?

47 Sukzessiver Aufbau eines B-Baums vom Grad k=2 4 10?

48 Sukzessiver Aufbau eines B-Baums vom Grad k= ?

49 Sukzessiver Aufbau eines B-Baums vom Grad k=2 4 4?

50 Sukzessiver Aufbau eines B-Baums vom Grad k=2?

51 Sukzessiver Aufbau eines B-Baums vom Grad k=2 11?

52 Sukzessiver Aufbau eines B-Baums vom Grad k=2?

53 Sukzessiver Aufbau eines B-Baums vom Grad k=2 21?

54 Sukzessiver Aufbau eines B-Baums vom Grad k=2 21?

55 Sukzessiver Aufbau eines B-Baums vom Grad k=2 12?

56 Sukzessiver Aufbau eines B-Baums vom Grad k=2 12?

57 Sukzessiver Aufbau eines B-Baums vom Grad k=2 12?

58 Sukzessiver Aufbau eines B-Baums vom Grad k=2 12?

59 Sukzessiver Aufbau eines B-Baums vom Grad k=2 12?

60 Sukzessiver Aufbau eines B-Baums vom Grad k=2 12?

61 Sukzessiver Aufbau eines B-Baums vom Grad k=2 12?

62 Sukzessiver Aufbau eines B-Baums vom Grad k=2 14?

63 Sukzessiver Aufbau eines B-Baums vom Grad k=2 14?

64 Sukzessiver Aufbau eines B-Baums vom Grad k=2 15?

65 Sukzessiver Aufbau eines B-Baums vom Grad k=2 20?

66 Sukzessiver Aufbau eines B-Baums vom Grad k=2 20?

67 Sukzessiver Aufbau eines B-Baums vom Grad k=2 20?

68 Sukzessiver Aufbau eines B-Baums vom Grad k=2 20?

69 Sukzessiver Aufbau eines B-Baums vom Grad k=2 20?

70 Sukzessiver Aufbau eines B-Baums vom Grad k=2 5?

71 Sukzessiver Aufbau eines B-Baums vom Grad k=2 5?

72 Sukzessiver Aufbau eines B-Baums vom Grad k=2 5?

73 Sukzessiver Aufbau eines B-Baums vom Grad k=2 6?

74 Sukzessiver Aufbau eines B-Baums vom Grad k=2 6?

75 91

76 Sukzessiver Aufbau eines B-Baums vom Grad k=2 8?

77 Sukzessiver Aufbau eines B-Baums vom Grad k=2 8?

78 Sukzessiver Aufbau eines B-Baums vom Grad k=2 8?

79 Sukzessiver Aufbau eines B-Baums vom Grad k=2 8?

80 Sukzessiver Aufbau eines B-Baums vom Grad k=2 8?

81 Sukzessiver Aufbau eines B-Baums vom Grad k=2 6?

82 Sukzessiver Aufbau eines B-Baums vom Grad k=2 6?

83 Sukzessiver Aufbau eines B-Baums vom Grad k=2 6?

84 Sukzessiver Aufbau eines B-Baums vom Grad k=2 6?

85 Sukzessiver Aufbau eines B-Baums vom Grad k= ?

86 Sukzessiver Aufbau eines B-Baums vom Grad k= ?

87 Sukzessiver Aufbau eines B-Baums vom Grad k= ?

88 Sukzessiver Aufbau eines B-Baums vom Grad k= ?

89 Sukzessiver Aufbau eines B-Baums vom Grad k=2 10 B-Baum mit Minimaler Speicherplatzausnutzung ?

90 Sukzessiver Aufbau eines B-Baums vom Grad k=2 10 B-Baum mit Minimaler Speicherplatzausnutzung ?

91 107

92 Sukzessiver Aufbau eines B-Baums vom Grad k= ?

93 Sukzessiver Aufbau eines B-Baums vom Grad k= ?

94 Sukzessiver Aufbau eines B-Baums vom Grad k= ?

95 Sukzessiver Aufbau eines B-Baums vom Grad k= ? 19 Unterlauf

96 Sukzessiver Aufbau eines B-Baums vom Grad k= ? 19 Unterlauf

97 Sukzessiver Aufbau eines B-Baums vom Grad k= ?

98 Sukzessiver Aufbau eines B-Baums vom Grad k= ?

99 Sukzessiver Aufbau eines B-Baums vom Grad k= ? Unterlauf

100 Sukzessiver Aufbau eines B-Baums vom Grad k= ? merge

101 Sukzessiver Aufbau eines B-Baums vom Grad k= ? merge

102 Sukzessiver Aufbau eines B-Baums vom Grad k=2 Unterlauf ?

103 Sukzessiver Aufbau eines B-Baums vom Grad k=2 merge ?

104 Sukzessiver Aufbau eines B-Baums vom Grad k=2 merge ?

105 Sukzessiver Aufbau eines B-Baums vom Grad k= ?

106 Sukzessiver Aufbau eines B-Baums vom Grad k=2 Schrumpfung, Freie Knoten ?

107 Speicherstruktur eines B-Baums auf dem Hintergrundspeicher 4 Speicherblock Nr 4 123

108 Speicherstruktur eines B-Baums auf dem Hintergrundspeicher 0*8KB 1*8KB 2*8KB 3*8KB 4*8KB 8 KB-Blöcke 3 0 Block- Nummer Datei 124

109 Speicherstruktur eines B-Baums auf dem Hintergrundspeicher 0*8KB 1*8KB 2*8KB 3*8KB 4*8KB 8 KB-Blöcke 3 0 Block- Nummer Datei 125

110 Speicherstruktur eines B-Baums auf dem Hintergrundspeicher 0*8KB 1*8KB 2*8KB 3*8KB 4*8KB Block- Nummer 0 8 KB-Blöcke Datei

111 Zusammenspiel: Hintergrundspeicher -- Hauptspeicher Hintergrundspeicher Hauptspeicher- Puffer 4 4 Zugriffslücke

112 B + -Baum Referenzschlüssel Suchschlüssel 128

113 129

114 130

115 Mehrere Indexe auf denselben Objekten B-Baum Mit (PersNr, Daten) Einträgen B-Baum Mit (Alter,???) Einträgen Name, Alter, Gehalt... Alter, PersNr 131

116 Mehrere Indexe auf denselben Objekten Wer ist 20? B-Baum Mit (PersNr, Daten) Einträgen B-Baum Mit (Alter,???) Einträgen Name, Alter, Gehalt... 20, 007 Alter, PersNr 132

117 Mehrere Indexe auf denselben Objekten Wer ist 20? B-Baum Mit (PersNr, Daten) Einträgen B-Baum Mit (Alter,???) Einträgen 007,Bond,20,... Name, Alter, Gehalt... 20, 007 Alter, PersNr 133

118 Eine andere Möglichkeit: Referenzierung über Speicheradressen PersNr Alter 007,... 20, , Bond, 20,

119 Realisierungstechnik für Hintergrundspeicher-Adressen Seiten / Blöcke (ca 8 KB) 135

120 Adressierung von Tupeln auf dem Hintergrundspeicher 136

121 Verschiebung innerhalb einer Seite 137

122 Verschiebung von einer Seite auf eine andere Forward 138

123 Verschiebung von einer Seite auf eine andere Bei der nächsten Verschiebung wird der Forward auf Seite 4711 geändert (kein Forward auf Seite 4812) 139

124 Statische Hashtabellen À priori Allokation des Speichers Nachträgliche Vergrößerung der Hashtabelle ist teuer Hashfunktion h(...) =... mod N Rehashing der Einträge h(...) =... mod M In Datenbankanwendungen viele GB Erweiterbares Hashing Zusätzliche Indirektion über ein Directory Ein zusätzlicher Zugriff auf ein Directory, das den Zeiger (Verweis, BlockNr) des Hash-Bucket enthält Dynamisches Wachsen (und Schrumpfen) ist möglich Der Zugriff auf das Directory erfolgt über einen binären Hashcode 140

125 Statisches Hashing 141

126 binärer Trie, Entscheidungsbaum Directory Bucket Bucket Bucket Bucket Bucket Bucket 142

127 Hashfunktion für erweiterbares Hashing h: Schlüsselmenge {0,1}* Der Bitstring muss lang genug sein, um alle Objekte auf ihre Buckets abbilden zu können Anfangs wird nur ein (kurzer) Präfix des Hashwertes (Bitstrings) benötigt Wenn die Hashtabelle wächst wird aber sukzessive ein längerer Präfix benötigt Beispiel-Hashfunktion: gespiegelte binäre PersNr h(004) = (4= ) h(006) = (6= ) h(007) = (7 = ) h(013) = (13 = ) h(018) = (18 = ) h(032) = (32 = ) H(048) = (48 = ) 143

128 Bucket 6 Bucket Bucket 48 Bucket 7 13 Bucket Bucket 144

129 räfix 01 4 Bucket Bucket Bucket 48 7 Bucket 13 Bucket Bucket Präfix 1 145

130 Bucket Bucket Bucket Bucket Bucket Bucket

131 globale Tiefe: Directory lokale Tiefe: lokale Tiefe: 1 4 Bucket 6 Bucket 18 Bucket lokale Tiefe: 2 7 Bucket 13 Bucket Bucket 147

132 globale Tiefe: Directory Einfügen: 12 12=1100 h(12)= lokale Tiefe: lokale Tiefe: 1 4 Bucket 12 Bucket 6 18 Bucket lokale Tiefe: 2 7 Bucket 13 Bucket Bucket 148

133 globale Tiefe: 3 Directory Einfügen: 20 20=10100 h(20)= lokale Tiefe: lokale Tiefe: 1 Overflow 4 Bucket 12 Bucket 6 18 Bucket lokale Tiefe: 2 7 Bucket 13 Bucket Bucket 149

134 globale Tiefe: Directory h(12)= h(4) = h(20)= Overflow lokale Tiefe: lokale Tiefe: Bucket 1111 Bucket Bucket Bucket lokale Tiefe: 2 Bucket Ausgleich Bucket 150

135 globale Tiefe: Directory h(12)= h(4) = h(20)= Overflow lokale Tiefe: lokale Tiefe: Bucket 20 Bucket 1111 Bucket 12 Bucket lokale Tiefe: 2 Bucket Ausgleich Bucket 151

136 globale Tiefe: Directory lokale Tiefe: Overflow lokale Tiefe: Bucket 1111 Bucket Bucket Bucket lokale Tiefe: 2 Bucket Ausgleich Bucket 152

137 153

138 154

139 Mehrdimensionale Datenstrukturen Wertbasierter Zugriff auf der Grundlage mehrerer Attribute, dies einzeln oder in beliebigen Kombinationen. Typische Anforderungen aus CAD, VLSI-Entwurf, Kartographie,... Anfragen decken den Bereich ab zwischen mehrdimensionalem Punktzugriff (EMQ) und mehrdimensionalen Bereichsanfragen (RQ) Lösung mit eindimensionalen Indexen erfordert konjunktive Zerlegung der Anfrage in Einattributanfragen und Schnittmengenbildung bedingt hohe Speicherredundanz Problemstellung: Mehrdimensionale Nachbarschaftsverhältnisse 155

140 Grundlagen mehrdimensionaler Datenstrukturen Wertebereiche D 0,..., D k-1 : alle D i sind endlich, linear geordnet und besitzen kleinstes (- i ) und größtes ( i ) Element Datenraum D = D 0... D k-1 k-dimensionaler Schlüssel entspricht Punkt im Datenraum p D 156

141 Grundlagen mehrdimensionaler Datenstrukturen 1. Exact Match Query spezifiziert Suchwert für jede Dimension D i 2. Partial Match Query spezifiziert Suchwert für einen Teil der Dimensionen 3. Range Query spezifiziert ein Suchintervall [ug i, og i ] für alle Dimensionen 4. Partial Range Query spezifiziert ein Suchintervall für einen Teil der Dimensionen 157

142 Charakterisierung mehrdimensionaler Datenstrukturen Mehrdimensionale Zugriffsstrukturen können gemäß der Art der Aufteilung des Datenraums in Gebiete charakterisiert werden: 1. nur atomare Gebiete (beschreibbar durch ein Rechteck) 2. vollständig (die Vereinigung aller Gebiete ergibt den gesamten Datenraum) 3. disjunkt (die Gebiete überlappen nicht) Grid-File (Gitter-Datei): atomar, vollständig, disjunkt 158

143 Charakterisierung mehrdimensionaler Datenstrukturen Mehrdimensionale Zugriffsstrukturen können gemäß der Art der Aufteilung des Datenraums in Gebiete charakterisiert werden: 1. nur atomare Gebiete (beschreibbar durch ein Rechteck) 2. vollständig (die Vereinigung aller Gebiete ergibt den gesamten Datenraum) 3. disjunkt (die Gebiete überlappen nicht) K-D-B-Baum: atomar, vollständig, disjunkt 159

144 Charakterisierung mehrdimensionaler Datenstrukturen Mehrdimensionale Zugriffsstrukturen können gemäß der Art der Aufteilung des Datenraums in Gebiete charakterisiert werden: 1. nur atomare Gebiete (beschreibbar durch ein Rechteck) 2. vollständig (die Vereinigung aller Gebiete ergibt den gesamten Datenraum) 3. disjunkt (die Gebiete überlappen nicht) R + -Baum: atomar, disjunkt 160

145 Charakterisierung mehrdimensionaler Datenstrukturen Mehrdimensionale Zugriffsstrukturen können gemäß der Art der Aufteilung des Datenraums in Gebiete charakterisiert werden: 1. nur atomare Gebiete (beschreibbar durch ein Rechteck) 2. vollständig (die Vereinigung aller Gebiete ergibt den gesamten Datenraum) 3. disjunkt (die Gebiete überlappen nicht) R-Baum: atomar 161

146 Charakterisierung mehrdimensionaler Datenstrukturen Mehrdimensionale Zugriffsstrukturen können gemäß der Art der Aufteilung des Datenraums in Gebiete charakterisiert werden: 1. nur atomare Gebiete (beschreibbar durch ein Rechteck) 2. vollständig (die Vereinigung aller Gebiete ergibt den gesamten Datenraum) 3. disjunkt (die Gebiete überlappen nicht) Buddy-Hash-Baum: atomar, disjunkt 162

147 Charakterisierung mehrdimensionaler Datenstrukturen Mehrdimensionale Zugriffsstrukturen können gemäß der Art der Aufteilung des Datenraums in Gebiete charakterisiert werden: 1. nur atomare Gebiete (beschreibbar durch ein Rechteck) 2. vollständig (die Vereinigung aller Gebiete ergibt den gesamten Datenraum) 3. disjunkt (die Gebiete überlappen nicht) Z-B-Baum: vollständig,disjunkt 163

148 Alter R-Baum: Urvater der baum-strukturierten mehrdimensionalen Zugriffsstrukturen [18,60] [60,120] K Bond 20 80K Mini 43 70K Mickey 18 60K Duck 60 Bond 40 Mickey 20 Duck Mini 40K 60K 80K 100K 120K Gehalt 164

149 Alter Alter Gute versus schlechte Partitionierung gute Partitionierung schlechte Partitionierung Mickey Bond Mickey Bond Speedy Speedy Duck Mini Duck Mini Gehalt Gehalt 165

150 Alter Nächste Phase in der Entstehungsgeschichte des R-Baums [18,43] [60,80] [40,60] [100,120] 20 80K Mini 43 70K Mickey 18 60K Duck K Bond K Speedy Bert (noch nicht eingefügt) Mickey Bond Speedy Duck Mini Gehalt 166

151 Nächste Phase [18,20] [60,80] [25,60] [110,120] [41,45] [45,70] [40,65] [95,100] 20 80K Mini 18 60K Duck K Bond K Urmel K Bill 43 70K Mickey 45 55K Bert 41 45K Ernie K Speedy 65 95K Lucie 167

152 Alter Datenraum Bert Lucie Mickey Bond Duck Ernie Speedy Mini Urmel Bill Gehalt 168

153 Wachsen des Baums: nach oben wie im B-Baum [18,50] [25,65] [45,80] [95,120] [18,20] [60,80] [41,45] [45,55] [41,50] [60,70] [41,45] [45,70] [40,65] [95,100] 43 70K Mickey 41 60K Jan 50 65K Sepp

154 Alter Datenraum Lucie Sepp Bert Mickey Ernie Jan Speedy Urmel Duck Mini Bill Gehalt 170

155 Überblick Alter [18,50] [45,80] [25,65] [95,120] Sepp Lucie Bond [18,20] [60,80] 43 70K Mickey [41,45] [45,55] 41 60K Jan [41,50] [60,70] 50 65K Sepp [25,60] [110,120] [40,65] [95,100] Bert Ernie Duck Jan Mickey Speedy Mini Gehalt Urmel Bill 171

156 172 [60,80] [18,20] [45,55] [41,45] [60,70] [41,50] [110,120] [25,60] [95,100] [40,65] [45,80] [18,50] [95,120] [25,65] Jan 60K 41 Sepp 65K 50 Mickey 70K 43 Speedy 100K 40 Lucie 95K 65 Mini 80K 20 Duck 60K 18 Bond 120K 60 Urmel 112K 35 Bert 55K 45 Ernie 45K 41 Bill 110K 25

157 173 Bereichsanfragen auf dem R-Baum Alter Gehalt Mickey Duck Mini Speedy Bert Ernie Bill Lucie Urmel Jan Sepp [60,80] [18,20] [45,55] [41,45] [60,70] [41,50] [110,120] [25,60] [95,100] [40,65] [45,80] [18,50] [95,120] [25,65] Jan 60K 41 Sepp 65K Mickey 70K 43 Speedy 100K 40 Lucie 95K 65 Anfragefenster Bond

158 174 [60,80] [18,20] [45,55] [41,45] [60,70] [41,50] [110,120] [25,60] [95,100] [40,65] [45,80] [18,50] [95,120] [25,65] Jan 60K 41 Sepp 65K 50 Mickey 70K 43 Speedy 100K 40 Lucie 95K 65 Mini 80K 20 Duck 60K 18 Bond 120K 60 Urmel 112K 35 Bert 55K 45 Ernie 45K 41 Bill 110K 25

159 Indexierung räumlicher Objekte (anstatt Punkten) mit dem R-Baum 175

160 Indexierung räumlicher Objekte (anstatt Punkten) mit dem R-Baum 176

161 Indexierung räumlicher Objekte (anstatt Punkten) mit dem R-Baum 177

162 Objektballung / Clustering logisch verwandter Daten 187

163 188

164 189

165 190

166 Unterstützung eines Anwendungsverhaltens Select Name From Professoren Where PersNr = 2136 Select Name From Professoren Where Gehalt >= and Gehalt <=

167 Indexe in SQL Create index SemsterInd on Studenten (Semester) drop index SemsterInd 192

Kapitel 7 Physische Datenorganisation. Speicherhierarchie Hintergrundspeicher / RAID B-Bäume Hashing R-Bäume

Kapitel 7 Physische Datenorganisation. Speicherhierarchie Hintergrundspeicher / RAID B-Bäume Hashing R-Bäume Kapitel 7 Physische Datenorganisation Speicherhierarchie Hintergrundspeicher / RAID B-Bäume Hashing R-Bäume Überblick: Speicherhierarchie Register (L1/L2/L3) Cache Hauptspeicher Plattenspeicher Archivspeicher

Mehr

Physische Datenorganisation

Physische Datenorganisation Physische atenorganisation Speicherhierarchie Hintergrundspeicher / RI ( -äume Hashing R-äume ) Überblick: Speicherhierarchie Register ache 1 8 yte ompiler 8 128 yte ache-ontroller Plattenspeicher rchivspeicher

Mehr

Physische Datenorganisation

Physische Datenorganisation Web Science & Technologies University of Koblenz Landau, Germany Grundlagen der Datenbanken Dr. Jérôme Kunegis Wintersemester 2013/14 Zugriffshierarchie 2 Eigenschaften der Datenträger 8 32 Mb CPU Cache

Mehr

Physische Datenorganisation

Physische Datenorganisation Physische Datenorganisation Physische Datenorganisation 2002 Prof. Dr. Rainer Manthey Informationssysteme 1 Übersicht Datenbanken, Relationen und Tupel werden auf der untersten Ebene der bereits vorgestellten

Mehr

Kapitel 6 Anfragebearbeitung

Kapitel 6 Anfragebearbeitung LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Skript zur Vorlesung: Datenbanksysteme II Sommersemester 2014 Kapitel 6 Anfragebearbeitung Vorlesung: PD Dr. Peer Kröger

Mehr

Die allerwichtigsten Raid Systeme

Die allerwichtigsten Raid Systeme Die allerwichtigsten Raid Systeme Michael Dienert 4. Mai 2009 Vorbemerkung Dieser Artikel gibt eine knappe Übersicht über die wichtigsten RAID Systeme. Inhaltsverzeichnis 1 Die Abkürzung RAID 2 1.1 Fehlerraten

Mehr

Kapitel 8: Physischer Datenbankentwurf

Kapitel 8: Physischer Datenbankentwurf 8. Physischer Datenbankentwurf Seite 1 Kapitel 8: Physischer Datenbankentwurf Speicherung und Verwaltung der Relationen einer relationalen Datenbank so, dass eine möglichst große Effizienz der einzelnen

Mehr

! DBMS organisiert die Daten so, dass minimal viele Plattenzugriffe nötig sind.

! DBMS organisiert die Daten so, dass minimal viele Plattenzugriffe nötig sind. Unterschiede von DBMS und files Speichern von Daten! DBMS unterstützt viele Benutzer, die gleichzeitig auf dieselben Daten zugreifen concurrency control.! DBMS speichert mehr Daten als in den Hauptspeicher

Mehr

Datenbanksysteme II: Implementation of Database Systems Storage, Discs, and Raid

Datenbanksysteme II: Implementation of Database Systems Storage, Discs, and Raid Datenbanksysteme II: Implementation of Database Systems Storage, Discs, and Raid Material von Prof. Johann Christoph Freytag Prof. Kai-Uwe Sattler Prof. Alfons Kemper, Dr. Eickler Content of this Lecture

Mehr

Anfragebearbeitung. Vorlesung: Dr. Matthias Schubert

Anfragebearbeitung. Vorlesung: Dr. Matthias Schubert Kapitel l5 Anfragebearbeitung Vorlesung: Dr. Matthias Schubert Skript 2009 Matthias Schubert Dieses Skript basiert auf dem Skript zur Vorlesung Datenbanksysteme II von Prof. Dr. Christian Böhm gehalten

Mehr

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP B-Bäume I Annahme: Sei die Anzahl der Objekte und damit der Datensätze. Das Datenvolumen ist zu groß, um im Hauptspeicher gehalten zu werden, z.b. 10. Datensätze auf externen Speicher auslagern, z.b. Festplatte

Mehr

Betriebssysteme K_Kap11C: Diskquota, Raid

Betriebssysteme K_Kap11C: Diskquota, Raid Betriebssysteme K_Kap11C: Diskquota, Raid 1 Diskquota Mehrbenutzer-BS brauchen einen Mechanismus zur Einhaltung der Plattenkontingente (disk quotas) Quota-Tabelle enthält Kontingenteinträge aller Benutzer

Mehr

OPERATIONEN AUF EINER DATENBANK

OPERATIONEN AUF EINER DATENBANK Einführung 1 OPERATIONEN AUF EINER DATENBANK Ein Benutzer stellt eine Anfrage: Die Benutzer einer Datenbank können meist sowohl interaktiv als auch über Anwendungen Anfragen an eine Datenbank stellen:

Mehr

DBS: Administration und Implementierung Klausur

DBS: Administration und Implementierung Klausur Prof. Dr. Stefan Brass 12.06.2001 Institut für Informatik Universität Gießen Hinweise DBS: Administration und Implementierung Klausur Die Bearbeitungszeit ist 1 Stunde, 30 Minuten (von 8 30 bis 10 00 ).

Mehr

Übung Datenbanksysteme II Physische Speicherstrukturen. Thorsten Papenbrock

Übung Datenbanksysteme II Physische Speicherstrukturen. Thorsten Papenbrock Übung Datenbanksysteme II Physische Speicherstrukturen Thorsten Papenbrock Organisatorisches: Übung Datenbanksysteme II 2 Übung Thorsten Papenbrock (thorsten.papenbrock@hpi.uni-potsdam.de) Tutoren Alexander

Mehr

Seminar Datenbanken Martin Gerstmann

Seminar Datenbanken Martin Gerstmann Seminar Datenbanken Martin Gerstmann Gliederung 1. Ziele 2. Arten 2.1. erweiterbares Hashing 2.2. lineares Hashing 2.3. virtuelles Hashing 3. Bewertung 1. Ziele wachsende/schrumpfende Datenmengen verwalten

Mehr

Datenbanksysteme II: Storage, Discs, and Raid. Ulf Leser

Datenbanksysteme II: Storage, Discs, and Raid. Ulf Leser Datenbanksysteme II: Storage, Discs, and Raid Ulf Leser Content of this Lecture Storage hierarchy Seek times and throughput RAID level Some guidelines Ulf Leser: Implementation of Database Systems, Winter

Mehr

Aufgabe 1 Indexstrukturen

Aufgabe 1 Indexstrukturen 8. Übung zur Vorlesung Datenbanken im Sommersemester 2006 mit Musterlösungen Prof. Dr. Gerd Stumme, Dr. Andreas Hotho, Dipl.-Inform. Christoph Schmitz 25. Juni 2006 Aufgabe 1 Indexstrukturen Zeichnen Sie

Mehr

wichtigstes Betriebsmittel - neben dem Prozessor: Speicher

wichtigstes Betriebsmittel - neben dem Prozessor: Speicher Speicherverwaltung Aufgaben der Speicherverwaltung wichtigstes Betriebsmittel - neben dem Prozessor: Speicher Sowohl die ausführbaren Programme selbst als auch deren Daten werden in verschiedenen Speicherbereichen

Mehr

Wegweiser. Gegenstand und Begriffe. Dateien und Verzeichnisse. Implementationsaspekte. Ablauf eines Dateizugriffs. Plattenspeicher

Wegweiser. Gegenstand und Begriffe. Dateien und Verzeichnisse. Implementationsaspekte. Ablauf eines Dateizugriffs. Plattenspeicher Wegweiser Gegenstand und Begriffe Dateien und Verzeichnisse Implementationsaspekte Ablauf eines Dateizugriffs Plattenspeicher Persistenz bei Auftreten von Fehlern Betriebssysteme WS 2008, Dateisysteme

Mehr

Physischer Datenbankentwurf: Datenspeicherung

Physischer Datenbankentwurf: Datenspeicherung Datenspeicherung.1 Physischer Datenbankentwurf: Datenspeicherung Beim Entwurf des konzeptuellen Schemas wird definiert, welche Daten benötigt werden und wie sie zusammenhängen (logische Datenbank). Beim

Mehr

4.3 Hintergrundspeicher

4.3 Hintergrundspeicher 4.3 Hintergrundspeicher Registers Instr./Operands Cache Blocks Memory Pages program 1-8 bytes cache cntl 8-128 bytes OS 512-4K bytes Upper Level faster Disk Tape Files user/operator Mbytes Larger Lower

Mehr

Hauptspeicher- Datenbanksysteme. Hardware-Entwicklungen Column- versus Row-Store...

Hauptspeicher- Datenbanksysteme. Hardware-Entwicklungen Column- versus Row-Store... Hauptspeicher- Datenbanksysteme Hardware-Entwicklungen Column- versus Row-Store... Hauptspeicher-Datenbanksysteme Disk is Tape, Tape is dead Jim Gray Die Zeit ist reif für ein Re-engineering der Datenbanksysteme

Mehr

Hard & Software Raid

Hard & Software Raid Hard & Software Raid Werner von Siemens Schule Präsentation Inhaltsverzeichnis Hardware Raid Raid 0 Raid 1 Parity Raid 0+1 & 2 Raid 3 & 4 Raid 5 & 6 Raid 7 Software Raid Fragen, Schlusswort 2 Hardware

Mehr

Alle Metadaten werden in Dateien gehalten

Alle Metadaten werden in Dateien gehalten 6 Beispiel: Windows NT (NTFS) 6.3 Metadaten 6.3 Metadaten Alle Metadaten werden in Dateien gehalten Indexnummer 0 1 2 3 4 5 6 7 8 16 17 MFT MFT Kopie (teilweise) Log File Volume Information Attributtabelle

Mehr

Fakten statt Bauchgefühl: RAID Mathematik für Admins

Fakten statt Bauchgefühl: RAID Mathematik für Admins Fakten statt Bauchgefühl: RAID Mathematik für Admins Heinlein Professional Linux Support GmbH Holger Uhlig h.uhlig@heinlein support.de Agenda: Was will ich? MB/s vs. IOPS Berechnung von Durchsatz und IOPS

Mehr

RAID. Name: Artur Neumann

RAID. Name: Artur Neumann Name: Inhaltsverzeichnis 1 Was ist RAID 3 1.1 RAID-Level... 3 2 Wozu RAID 3 3 Wie werden RAID Gruppen verwaltet 3 3.1 Software RAID... 3 3.2 Hardware RAID... 4 4 Die Verschiedenen RAID-Level 4 4.1 RAID

Mehr

Anleitung zur Installation von SATA- Festplatten und zur RAID-Konfiguration

Anleitung zur Installation von SATA- Festplatten und zur RAID-Konfiguration Anleitung zur Installation von SATA- Festplatten und zur RAID-Konfiguration 1. Anleitung für Installation von TA-Festplatten... 2 1.1 Serial ATA- (SATA-) Festplatteninstallation... 2 2. Anleitung zur RAID-Konfiguration...

Mehr

Betriebssysteme WS 2012/13 Peter Klingebiel, DVZ. Zusammenfassung Kapitel 4 - Datenträger/Dateiverwaltung

Betriebssysteme WS 2012/13 Peter Klingebiel, DVZ. Zusammenfassung Kapitel 4 - Datenträger/Dateiverwaltung Betriebssysteme WS 2012/13 Peter Klingebiel, DVZ Zusammenfassung Kapitel 4 - Datenträger/Dateiverwaltung Zusammenfassung Kapitel 4 Dateiverwaltung 1 Datei logisch zusammengehörende Daten i.d.r. permanent

Mehr

Was machen wir heute? Betriebssysteme Tutorium 12. Organisatorisches. Frage 12.1.a. Programmieraufgaben Vorstellung. Antwort

Was machen wir heute? Betriebssysteme Tutorium 12. Organisatorisches. Frage 12.1.a. Programmieraufgaben Vorstellung. Antwort Was machen wir heute? Betriebssysteme Tutorium 12 1 Organisatorisches Philipp Kirchhofer philipp.kirchhofer@student.kit.edu http://www.stud.uni-karlsruhe.de/~uxbtt/ Lehrstuhl Systemarchitektur Universität

Mehr

Aufbau Datenbanksysteme

Aufbau Datenbanksysteme Aufbau Datenbanksysteme Lehrveranstaltung Datenbanktechnologien Prof. Dr. Ingo Claßen Prof. Dr. Martin Kempa Hochschule für Technik und Wirtschaft Berlin Speichersystem c Ingo Claßen, Martin Kempa Softwarearchitektur

Mehr

Gleichheitsanfrage vs. Bereichsanfrage

Gleichheitsanfrage vs. Bereichsanfrage Datenbank Indexe Gleichheitsanfrage vs. Bereichsanfrage Gleichheitsanfrage (single key-value) : Abfragen, die eine Bedingung mit = haben Finde den Namen des Studenten mit Alter = 20 Bereichsanfrage (range

Mehr

Datenbanksysteme II Physische Speicherstrukturen (Kapitel 11) 18.4.2007 Felix Naumann. Datenmodellebene. Logischer Zugriff. Speicherstrukturen

Datenbanksysteme II Physische Speicherstrukturen (Kapitel 11) 18.4.2007 Felix Naumann. Datenmodellebene. Logischer Zugriff. Speicherstrukturen Datenbanksysteme II Physische Speicherstrukturen (Kapitel 11) 18.4.2007 Felix Naumann Zoom in die interne Ebene: Die 5- Schichten Architektur 2 Mengenorientierter Zugriff Satzorientierter Zugriff Interne

Mehr

Cluster-Bildung. VL Datenbanken II 4 107

Cluster-Bildung. VL Datenbanken II 4 107 Cluster-Bildung gemeinsame Speicherung von Datensätzen auf Seiten wichtige Spezialfälle: Ballung nach Schlüsselattributen. Bereichsanfragen und Gruppierungen unterstützen: Datensätze in der Sortierreihenfolge

Mehr

Informatik II Datenorganisation Datenbanken

Informatik II Datenorganisation Datenbanken Informatik II Datenorganisation Datenbanken Studiengang Wirtschaftsingenieurwesen (2. Semester) Prof. Dr. Sabine Kühn Tel. (0351) 462 2490 Fachbereich Informatik/Mathematik skuehn@informatik.htw-dresden.de

Mehr

Konzepte von Betriebssystemkomponenten Disk-Caches und Dateizugriff

Konzepte von Betriebssystemkomponenten Disk-Caches und Dateizugriff Konzepte von Betriebssystemkomponenten Disk-Caches und Dateizugriff von Athanasia Kaisa Grundzüge eines Zwischenspeichers Verschiedene Arten von Zwischenspeicher Plattenzwischenspeicher in LINUX Dateizugriff

Mehr

Datenbanksysteme II Indexstrukturen Felix Naumann

Datenbanksysteme II Indexstrukturen Felix Naumann Datenbanksysteme II Indexstrukturen (Kapitel 13) 5.5.2008 Felix Naumann Klausur 2 Mittwoch, 23.7. 9 13 Uhr 4 Stunden Umfang auf 1,5 Stunden ausgelegt Keine Hilfsmittel Motivation 3 Platzierung der Tupel

Mehr

STORAGE. Martin Schmidt Berufsschule Obernburg

STORAGE. Martin Schmidt Berufsschule Obernburg STORAGE Martin Schmidt Berufsschule Obernburg Storage Begriffserklärung Storage ist die Bezeichnung für eine große Menge zusammenhängenden Speicherplatz in einem Netzwerk. Storage heißen auch die große

Mehr

Physische Datenorganisation

Physische Datenorganisation Herbstsemester 2011 CS241 Datenbanken mit Übungen Kapitel 9: Speicher- und Zugriffssystem H. Schuldt Physische Datenorganisation Im Zentrum des konzeptuellen Datenbankentwurfs steht die Frage, welche Daten

Mehr

Technische Informatik II Wintersemester 2002/03 Sommersemester 2001. Heiko Holtkamp Heiko@rvs.uni-bielefeld.de

Technische Informatik II Wintersemester 2002/03 Sommersemester 2001. Heiko Holtkamp Heiko@rvs.uni-bielefeld.de Technische Informatik II Wintersemester 2002/03 Sommersemester 2001 Heiko Holtkamp Heiko@rvs.uni-bielefeld.de Speicher ist eine wichtige Ressource, die sorgfältig verwaltet werden muss. In der Vorlesung

Mehr

Anleitung zur Installation von SATA- Festplatten und zur RAID-Konfiguration

Anleitung zur Installation von SATA- Festplatten und zur RAID-Konfiguration Anleitung zur Installation von SATA- Festplatten und zur RAID-Konfiguration 1. Anleitung für Installation von TA-Festplatten...2 1.1 Serial ATA- (SATA-) Festplatteninstallation...2 2. Anleitung zur RAID-Konfi

Mehr

Bedeutung der Metadateien. Alle Metadaten werden in Dateien gehalten. NTFS ist ein Journal-File-System

Bedeutung der Metadateien. Alle Metadaten werden in Dateien gehalten. NTFS ist ein Journal-File-System 6 Beispiel: Windows NT (NTFS) 6.3 Metadaten 6 Beispiel: Windows NT (NTFS) 6.3 Metadaten 6.3 Metadaten 6.3 Metadaten (2) Alle Metadaten werden in Dateien gehalten Indexnummer 0 1 2 3 4 5 6 7 8 16 17 MFT

Mehr

Datenbanken: Architektur & Komponenten 3-Ebenen-Architektur

Datenbanken: Architektur & Komponenten 3-Ebenen-Architektur Datenbanken: Architektur & Komponenten 3-Ebenen-Architektur Moderne Datenbanksysteme sind nach der 3-Ebenen-Architektur gebaut: Anwendung 1 Web-Anwendung Anwendung 2 Java-Programm... Anwendung n Applikation

Mehr

KAPITEL 2 VERWALTUNG DES HINTERGRUNDSPEICHERS

KAPITEL 2 VERWALTUNG DES HINTERGRUNDSPEICHERS KAPITEL 2 VERWALTUNG DES HINTERGRUNDSPEICHERS h_da Prof. Dr. Uta Störl Architektur von DBMS WS 2015/16 Kapitel 2: Verwaltung des Hintergrundspeichers 1 Verwaltung des Hintergrundspeichers Inhalte des Kapitels

Mehr

Non-Standard-Datenbanken

Non-Standard-Datenbanken Non-Standard-Datenbanken Multidimensionale Indizierung Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Non-Standard-Datenbanken Von der Volltextsuche zur multidimensionalen

Mehr

Teil VII Indexstrukturen für Data Warehouse

Teil VII Indexstrukturen für Data Warehouse Teil VII Indexstrukturen für Data Warehouse Indexstrukturen für Data Warehouse 1 Klassifikation von Indexstrukturen c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung: 19.09.2012 7

Mehr

6. Formaler Datenbankentwurf 6.1. Rückblick. Datenbanken und Informationssysteme, WS 2012/13 22. Januar 2013 Seite 1

6. Formaler Datenbankentwurf 6.1. Rückblick. Datenbanken und Informationssysteme, WS 2012/13 22. Januar 2013 Seite 1 6. Formaler Datenbankentwurf 6.1. Rückblick 3. Normalform Ein Relationsschema R = (V, F) ist in 3. Normalform (3NF) genau dann, wenn jedes NSA A V die folgende Bedingung erfüllt. Wenn X A F, A X, dann

Mehr

Dateiorganisation und Zugriffsstrukturen

Dateiorganisation und Zugriffsstrukturen Dateiorganisation und Zugriffsstrukturen Prof. Dr. T. Kudraß 1 Mögliche Dateiorganisationen Viele Alternativen existieren, jede geeignet für bestimmte Situation (oder auch nicht) Heap-Dateien: Geeignet

Mehr

Betriebssysteme K_Kap11B: Files, Filesysteme Datenstrukturen

Betriebssysteme K_Kap11B: Files, Filesysteme Datenstrukturen Betriebssysteme K_Kap11B: Files, Filesysteme Datenstrukturen 1 Files als lineare Liste File angeordnet als verkette Liste von Blöcken Jeder Block enthält Zeiger zum Nachfolger Zeiger = Adresse des Blocks

Mehr

Moderne RAID Technologie

Moderne RAID Technologie Moderne RAID Technologie Grundlagen der modernen RAID Technologie Vortrag von Jan Neuser CN1WS04 CS Moderne RAID Technologie Überblick Was bedeutet RAID? RAID Level Organisation von Laufwerken Physikalischer

Mehr

RAID Systeme. Redundant Array of Independent Disks. Stefan Berntheisel. Stand: Dezember 2003

RAID Systeme. Redundant Array of Independent Disks. Stefan Berntheisel. Stand: Dezember 2003 RAID Systeme Redundant Array of Independent Disks Autoren: Klasse: Timm Schöning Stefan Berntheisel 11IT3b Stand: Dezember 2003-1 - Inhaltsverzeichnis Inhaltsverzeichnis...2 Einleitung...3 Die Bezeichnung

Mehr

Moderne RAID Technologie. Grundlagen technisches Wissen, verständlich erklärt

Moderne RAID Technologie. Grundlagen technisches Wissen, verständlich erklärt Moderne RAID Technologie Grundlagen technisches Wissen, verständlich erklärt K o m p e t e n z i n C o n t r o l l e r Moderne RAID Technologie RAID Primer Grundlagen Technisches Wissen, verständlich

Mehr

Felix Großkreuz Philipps-Universität Marburg Fachbereich 12 Seminar IT-Administration SS2011

Felix Großkreuz Philipps-Universität Marburg Fachbereich 12 Seminar IT-Administration SS2011 Felix Großkreuz Philipps-Universität Marburg Fachbereich 12 Seminar IT-Administration SS2011 Griff in die Geschichte Erste Festplatte, SLED, ab 1988 RAID-Level 0, 1 5, 6 Kombinationen Einrichten von RAID

Mehr

Sichere Daten mit OSL Storage Cluster

Sichere Daten mit OSL Storage Cluster Sichere Daten mit OSL Storage Cluster Alternative Konzepte für die Datensicherung und Katastrophenvorsorge Dipl.-Ing. Torsten Pfundt Gliederung Voraussetzungen für die Konzepte und Lösungen restorefreies

Mehr

Verlässliche Systeme

Verlässliche Systeme Verlässliche Systeme RAID, Teil 2 Rachid El Abdouni Khayari Universität der Bundeswehr München, Neubiberg, Fakultät für Informatik, Institut für Technische Informatik Herbsttrimester 2004 Datenorganisation

Mehr

Kapitel VI. Speicherverwaltung. Speicherverwaltung

Kapitel VI. Speicherverwaltung. Speicherverwaltung Kapitel VI Speicherverwaltung 1 Speicherverwaltung Computer exekutiert Programme (mit Daten) im Hauptspeicher. Hauptspeicher: Großes Array von Wörtern (1 oder mehrere Bytes) Jedes Wort hat eine eigene

Mehr

Datenbanksysteme II Physische Speicherstrukturen. 24.04.2008 Felix Naumann

Datenbanksysteme II Physische Speicherstrukturen. 24.04.2008 Felix Naumann Datenbanksysteme II Physische Speicherstrukturen (Kapitel 11) 24.04.2008 Felix Naumann Zoom in die interne Ebene: Die 5- Schichten Architektur 2 Mengenorientierter Zugriff Satzorientierter Zugriff Interne

Mehr

Datenbanksysteme II Klausurvorbereitung. 18.7.2007 Felix Naumann

Datenbanksysteme II Klausurvorbereitung. 18.7.2007 Felix Naumann Datenbanksysteme II Klausurvorbereitung 18.7.07 Felix Naumann Kurzüberblick aus erster VL 2 1. Einführung 2. Physische Speicherstrukturen (2 2) 3. Physische Repräsentation von Daten (1 1) 4. Indexstrukturen

Mehr

Basiseinheit Cluster. Rückgrat des gesamten Systems. Basiseinheit Strom. entsprechender Eintrag für

Basiseinheit Cluster. Rückgrat des gesamten Systems. Basiseinheit Strom. entsprechender Eintrag für 1 Dateiverwaltung 2 Master-File-Table Basiseinheit Cluster 512 Bytes bis 4 Kilobytes (beim Formatieren festgelegt) wird auf eine Menge von hintereinanderfolgenden Blöcken abgebildet logische Cluster-Nummer

Mehr

Weißbuch zur RAID-Technologie

Weißbuch zur RAID-Technologie Weißbuch zur RAID-Technologie Bei LaCie, einem auf Datenspeicherung spezialisiertem Unternehmen, ist man sich darüber im Klaren, dass fast alle Computerbenutzer Datenspeicher- bzw. Datensicherungslösungen

Mehr

4.1 Einführung. 4.2 Z-Ordnung. 4.3 R-Bäume. 4.4 Quadtrees. Kapitel 3: Räumliche Indexstrukturen. 4. Räumliche Indexstrukturen

4.1 Einführung. 4.2 Z-Ordnung. 4.3 R-Bäume. 4.4 Quadtrees. Kapitel 3: Räumliche Indexstrukturen. 4. Räumliche Indexstrukturen LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Kapitel 3: Räumliche Indexstrukturen Skript zur Vorlesung Geo-Informationssysteme Wintersemester 2011/12 Ludwig-Maximilians-Universität

Mehr

B+-Baum mit Z-Ordnung. B+-Baum mit Z-Ordnung. Anforderungen. 7.3 Räumliche Zugriffsstrukturen

B+-Baum mit Z-Ordnung. B+-Baum mit Z-Ordnung. Anforderungen. 7.3 Räumliche Zugriffsstrukturen B+-Baum mit Z-Ordnung Window Query: 1. Ansatz Benutze den gewöhnlichen Algorithmus für Bereichsanfragen im B + -Baum: Suche mit dem kleinsten Z-Wert des Suchrechtecks (entspricht dem linken unteren Eckpunkt)

Mehr

MS SQL Server: Index Management. Stephan Arenswald 10. Juli 2008

MS SQL Server: Index Management. Stephan Arenswald 10. Juli 2008 MS SQL Server: Index Management Stephan Arenswald 10. Juli 2008 Agenda 1. Einführung 2. Grundlagen Tabellen 3. Grundlagen Indexe 4. Indextypen 5. Index-Erstellung 6. Indexe und Constraints 7. Und Weiter...?

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Verteiltes Backup. Einleitung Grundlegende Backup Techniken Backup in Netzwerken. Client/Server Peer-to-Peer

Verteiltes Backup. Einleitung Grundlegende Backup Techniken Backup in Netzwerken. Client/Server Peer-to-Peer Verteiltes Backup Einleitung Grundlegende Backup Techniken Backup in Netzwerken Client/Server Peer-to-Peer Einleitung Backup: Das teilweise oder gesamte Kopieren der in einem Computersystem vorhandenen

Mehr

Lösungsskizzen zur Abschlussklausur Betriebssysteme

Lösungsskizzen zur Abschlussklausur Betriebssysteme Lösungsskizzen zur Abschlussklausur Betriebssysteme 24. Januar 2013 Name: Vorname: Matrikelnummer: Studiengang: Hinweise: Tragen Sie zuerst auf allen Blättern (einschlieÿlich des Deckblattes) Ihren Namen,

Mehr

Hardware, Fehlertoleranz, Am Beispiel Dateisysteme

Hardware, Fehlertoleranz, Am Beispiel Dateisysteme Hardware, Fehlertoleranz, Am Beispiel Dateisysteme Betriebssysteme Hermann Härtig TU Dresden Wegweiser Platten- und Flash-Speicher Prinzipien der Fehlertolerenz RAID als ein Beispiel Konsistenz in Dateisystemen

Mehr

4 LCN VCN 0 1 2 3 4 5 6 7 LCN 107 108 109 110 131 132 133 134. Extents werden außerhalb der MFT gespeichert

4 LCN VCN 0 1 2 3 4 5 6 7 LCN 107 108 109 110 131 132 133 134. Extents werden außerhalb der MFT gespeichert 3 Master File Table Eintrag für eine kurze Datei Standardinfo Dateiname Zugriffsrechte Daten leer Vorspann Eintrag für eine längere Datei Virtual Cluster Number (VCN) 0 LCN 107 131 VCN 0 1 2 3 5 6 7 LCN

Mehr

Datensicherung. David Baumgartner Matthias Kalischnig

Datensicherung. David Baumgartner Matthias Kalischnig Datensicherung David Baumgartner Matthias Kalischnig 1 GFS - Grandfather - Father - Son Prinzip Sicherungsarten Inkrementelles Backup Vorteile Nachteile Differentielles Backup Vorteile Nachteile Vollbackup

Mehr

Inhalt. Datenbanken Vertiefung. Literatur und Quellen. Inhalt. Physische Datenorganisation I. Nikolaus Augsten. Wintersemester 2013/14

Inhalt. Datenbanken Vertiefung. Literatur und Quellen. Inhalt. Physische Datenorganisation I. Nikolaus Augsten. Wintersemester 2013/14 Inhalt Datenbanken Vertiefung Physische Datenorganisation I Nikolaus Augsten nikolaus.augsten@sbg.ac.at FB Computerwissenschaften Universität Salzburg 1 Wintersemester 2013/14 Augsten (Univ. Salzburg)

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

stattdessen: geräteunabhängiges, abstraktes Format für Speicherung und Transfer von Daten Datei

stattdessen: geräteunabhängiges, abstraktes Format für Speicherung und Transfer von Daten Datei Dateiverwaltung Dateiverwaltung 2002 Prof. Dr. Rainer Manthey Informatik II 1 Dateien weitere zentrale Aufgabe des Betriebssystems: "Verbergen" der Details der Struktur von und der Zugriffe auf Sekundärspeicher-Medien

Mehr

Kapitel 7 Datenbank-Tuning

Kapitel 7 Datenbank-Tuning Kapitel 7 Datenbank-Tuning Flien zum Datenbankpraktikum Wintersemester 2012/13 LMU München 2008 Thmas Bernecker, Tbias Emrich 2010 Tbias Emrich, Erich Schubert unter Verwendung der Flien des Datenbankpraktikums

Mehr

Hardware & Fehlertoleranz, Beispiel: Dateisysteme

Hardware & Fehlertoleranz, Beispiel: Dateisysteme Hardware & Fehlertoleranz, Beispiel: Dateisysteme Betriebssysteme Hermann Härtig TU Dresden Wegweiser Platten- und Flash-Speicher Prinzipien der Fehlertoleranz RAID als ein Beispiel Konsistenz in Dateisystemen

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Maren Bennewitz Version 13.2.213 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Maren Bennewitz Version 5.2.214 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von

Mehr

Suchen in Listen und Hashtabellen

Suchen in Listen und Hashtabellen Kapitel 12: Suchen in Listen und Hashtabellen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Einleitung Lineare Suche Binäre Suche (in sortierten Listen) Hashverfahren

Mehr

0RGHUQH5$,'7HFKQRORJLH *UXQGODJHQ. 7HFKQLVFKHV:LVVHQYHUVWlQGOLFKHUNOlUW &RS\ULJKW ,&3YRUWH[&RPSXWHUV\VWHPH*PE+ )DOWHUVWUDVVH )OHLQ*HUPDQ\

0RGHUQH5$,'7HFKQRORJLH *UXQGODJHQ. 7HFKQLVFKHV:LVVHQYHUVWlQGOLFKHUNOlUW &RS\ULJKW ,&3YRUWH[&RPSXWHUV\VWHPH*PE+ )DOWHUVWUDVVH )OHLQ*HUPDQ\ 0RGHUQH5$,'7HFKQRORJLH *UXQGODJHQ 7HFKQLVFKHV:LVVHQYHUVWlQGOLFKHUNOlUW &RS\ULJKW,&3YRUWH[&RPSXWHUV\VWHPH*PE+ )DOWHUVWUDVVH )OHLQ*HUPDQ\ 2 hehughq$xwru Dr. Dipl.-Phys. Andreas Köpf ist Technical Support

Mehr

10 Datenträgerverwaltung, RAID

10 Datenträgerverwaltung, RAID 10 Datenträgerverwaltung, RAID Datenträger und Dateisysteme werden vom Dienst für virtuelle Datenträger verwaltet. 10.1 MMC-Snap-In Datenträgerverwaltung, Grundlagen Das Snap-In Datenträgerverwaltung sieht

Mehr

Bäume, Suchbäume und Hash-Tabellen

Bäume, Suchbäume und Hash-Tabellen Im folgenden Fokus auf Datenstrukturen, welche den assoziativen Zugriff (über einen bestimmten Wert als Suchkriterium) optimieren Bäume: Abbildung bzw. Vorberechnung von Entscheidungen während der Suche

Mehr

Lokales Storage Teil 1

Lokales Storage Teil 1 Lokales Storage Teil 1 Zinching Dang 08. Juli 2015 1 Lokales Storage im Allgemeinen Lokales Storage im Allgemeinen Datenträger, die direkt am Host angeschlossen sind Anbindung über verschiedene Bus-Systeme

Mehr

LVM AUSARBEITUNGEN ZUM THEMA A6: TIMO BÖLLINGER DOMINIC ECKART DOZENT: PROF. TISCHHHAUSER MANNHEIM 2004 VON UND

LVM AUSARBEITUNGEN ZUM THEMA A6: TIMO BÖLLINGER DOMINIC ECKART DOZENT: PROF. TISCHHHAUSER MANNHEIM 2004 VON UND 1 AUSARBEITUNGEN ZUM THEMA A6: LVM VON TIMO BÖLLINGER UND DOMINIC ECKART DOZENT: PROF. TISCHHHAUSER MANNHEIM 2004 2 INHALTSVERZEICHNIS 1. LOGICAL VOLUME MANAGEMENT EINFÜHRUNG...3 1.1. WAS KANN LVM?...4

Mehr

Leistungsanalyse von Rechnersystemen

Leistungsanalyse von Rechnersystemen Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH) Leistungsanalyse von Rechnersystemen Auf Ein-/Ausgabe spezialisierte Benchmarks Zellescher Weg 12 Willers-Bau A109 Tel. +49 351-463 - 32424

Mehr

Vorlesung 30.03.2009 1) Einführung

Vorlesung 30.03.2009 1) Einführung Vorlesung 30.03.2009 1) Einführung Was versteht man unter dem Begriff Datenbank? - Eine Datenbank ist eine Struktur zur Speicherung von Daten mit lesendem und schreibendem Zugriff - Allgemein meint man

Mehr

Hauptspeicherindexstrukturen. Stefan Sprenger Semesterprojekt Verteilte Echtzeitrecherche in Genomdaten 10. November 2015

Hauptspeicherindexstrukturen. Stefan Sprenger Semesterprojekt Verteilte Echtzeitrecherche in Genomdaten 10. November 2015 Hauptspeicherindexstrukturen Stefan Sprenger Semesterprojekt Verteilte Echtzeitrecherche in Genomdaten 10. November 2015 Agenda Einführung in Hauptspeichertechnologien Indexstrukturen in relationalen Datenbanken

Mehr

Kapitel 5 Anfragebearbeitung

Kapitel 5 Anfragebearbeitung LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATAASE Skript zur Vorlesung: Datenbanksysteme II Sommersemester 2013 Kapitel 5 Anfragebearbeitung Vorlesung: PD Dr. Peer Kröger

Mehr

Anleitung zur Installation von SATA- Festplatten und zur RAID-Konfiguration

Anleitung zur Installation von SATA- Festplatten und zur RAID-Konfiguration Anleitung zur Installation von SATA- Festplatten und zur RAID-Konfiguration 1. Anleitung für Installation von TA-Festplatten...2 1.1 Serial ATA- (SATA-) Festplatteninstallation...2 2. Anleitung zur RAID-Konfiguration...3

Mehr

Datenbanksysteme I WS 2012/13 - Übung 0 - Bernhard Pietsch Friedrich-Schiller-Universität Jena Lehrstuhl für Datenbanken und Informationssysteme

Datenbanksysteme I WS 2012/13 - Übung 0 - Bernhard Pietsch Friedrich-Schiller-Universität Jena Lehrstuhl für Datenbanken und Informationssysteme Datenbanksysteme I WS 2012/13 - Übung 0 - Bernhard Pietsch Friedrich-Schiller-Universität Jena Lehrstuhl für Datenbanken und Informationssysteme Organisatorisches (I) http://www.informatik.unijena.de/dbis/lehre/ws2012/dbs1/index.html

Mehr

Prüfung VO Betriebssysteme SS2008 / 7. Juli 2008

Prüfung VO Betriebssysteme SS2008 / 7. Juli 2008 Name: Matrikel-Nr: Prüfung VO Betriebssysteme SS2008 / 7. Juli 2008 Bitte schreiben Sie leserlich und antworten Sie kurz und präzise. 1. Zeichnen Sie das Schichten-Modell eines Computersystems und markieren

Mehr

PVFS (Parallel Virtual File System)

PVFS (Parallel Virtual File System) Management grosser Datenmengen PVFS (Parallel Virtual File System) Thorsten Schütt thorsten.schuett@zib.de Management grosser Datenmengen p.1/?? Inhalt Einführung in verteilte Dateisysteme Architektur

Mehr

Oracle Automatic Storage Management (ASM) Best Practices

Oracle Automatic Storage Management (ASM) Best Practices Oracle Automatic Storage Management (ASM) Best Practices Markus Michalewicz BU Database Technologies ORACLE Deutschland GmbH 2 Page 1 www.decus.de 1 Agenda ASM Funktionalität und Architektur Storage Management

Mehr

Kapitel 6 Speicherverwaltung Seite 1 zum Teil nach: Silberschatz&Galbin, Operating System Concepts, Addison-Wesley)

Kapitel 6 Speicherverwaltung Seite 1 zum Teil nach: Silberschatz&Galbin, Operating System Concepts, Addison-Wesley) Kapitel 6 Speicherverwaltung Seite 1 6 Speicherverwaltung 6.1 Hintergrund Ein Programm muß zur Ausführung in den Hauptspeicher gebracht werden und in die Prozeßstruktur eingefügt werden. Dabei ist es in

Mehr

Lokales Storage Teil 1

Lokales Storage Teil 1 Lokales Storage Teil 1 Linux-Kurs der Unix-AG Zinching Dang 08. Juli 2015 Lokales Storage im Allgemeinen Datenträger, die direkt am Host angeschlossen sind Anbindung über verschiedene Bus-Systeme möglich,

Mehr

KLAUSUR. zur Vorlesung Betriebssysteme SS 2004. Vorname Name Matrikelnummer

KLAUSUR. zur Vorlesung Betriebssysteme SS 2004. Vorname Name Matrikelnummer Johann Wolfgang Goethe-Universität Frankfurt am Main FB 15 Institut für Informatik Praktische Informatik PD Dr. R. Brause KLAUSUR zur Vorlesung Betriebssysteme SS 004 Vorname Name Matrikelnummer I) Multiple

Mehr

Wiederholung: Realisierung von Dateien

Wiederholung: Realisierung von Dateien Wiederholung: Realisierung von Dateien Zusammenhängende Belegung Datei A Datei C Datei E Datei G Datei B Datei D Datei F Belegung durch verkettete Listen (z.b. FAT) Dateiblock 0 Dateiblock 1 Dateiblock

Mehr

Datenbanken 16.1.2008. Die Entwicklung der Datenbanksysteme ist eng an die der Hardware gekoppelt und wird wie jene in Generationen eingeteilt:

Datenbanken 16.1.2008. Die Entwicklung der Datenbanksysteme ist eng an die der Hardware gekoppelt und wird wie jene in Generationen eingeteilt: Datenbanksysteme Entwicklung der Datenbanksysteme Die Entwicklung der Datenbanksysteme ist eng an die der Hardware gekoppelt und wird wie jene in Generationen eingeteilt: 1. Generation: In den fünfziger

Mehr

3. Stud.IP-Entwickler-Workshop 2. Juni 2006 Workshop 3c: Stud.IP-Enterprise-Edition André Noack, Frank Elsner

3. Stud.IP-Entwickler-Workshop 2. Juni 2006 Workshop 3c: Stud.IP-Enterprise-Edition André Noack, Frank Elsner 3. Stud.IP-Entwickler-Workshop 2. Juni 2006 Workshop 3c: Stud.IP-Enterprise-Edition André Noack, Frank Elsner Gliederung Das Problem: Skalierbarkeit LAMP Tuning Mehr als ein Server Stud.IP und shared nothing

Mehr

SQL. SQL: Structured Query Language. Früherer Name: SEQUEL. Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99

SQL. SQL: Structured Query Language. Früherer Name: SEQUEL. Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99 SQL Früherer Name: SEQUEL SQL: Structured Query Language Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99 SQL ist eine deklarative Anfragesprache Teile von SQL Vier große Teile:

Mehr

Alles Spricht von RAID-Verband

Alles Spricht von RAID-Verband Alles Spricht von RAID-Verband Der Begriff "RAID" fiel in der Vergangenheit lediglich in dem Zusammenhang von Server-PC's. Doch heutzutage, wo die PC-Hardware immer günstiger werden und das Interesse an

Mehr

4. Hashverfahren. geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D. Menge A von Speicheradressen; oft: A = {0,..., m 1}

4. Hashverfahren. geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D. Menge A von Speicheradressen; oft: A = {0,..., m 1} 105 4. Hashverfahren geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D Menge A von Speicheradressen; oft: A = {0,..., m 1} jedes Speicherverfahren realisiert h : D A mögliche Implementierungen

Mehr