Lösungen zu den Hausaufgaben zur Analysis II

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lösungen zu den Hausaufgaben zur Analysis II"

Transkript

1 Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin ψ) cos φ, (a+b sin ψ) sin φ, b cos ψ cos φ 2, b cos ψ sin φ 2 ) (φ, ψ) R 2 }. Zeigen Sie, dass M eine Fläche ist. Geben Sie im Fall a) eine Karte um e 3 sowie die Gleichung von T e3 M an und zeigen Sie, dass M homöomorph zu S 2 ist. Geben Sie im Fall b) die Gleichung von T (1,1,1) M an und zeigen Sie, dass M homöomorph zu R 2 ist. Wenn Sie wollen, versuchen Sie (mit Computergraphik?) im Fall c) ein Bild von M (der Kleinschen Flasche) zu entwerfen. Die Kleinsche Flasche liegt zwar im vierdimensionalen Raum, aber vielleicht finden Sie eine Realisierung im R 3, die dann allerdings Selbstdurchdringungen besitzen wird. Lösung: a) Sei f(x, y, z) = x 2 + y 4 + z 4 1. Es ist grad f(x, y, z) = (2x, 4y 3, 4z 3 ) = (0, 0, 0) genau dann, wenn (x, y, z) = (0, 0, 0), aber dieser Punkt liegt nicht auf M. Also ist M eine zweidimensionale Mannigfaltigkeit, d.h. eine Fläche. Sei nun U := {(x, y, z) M z > 0} und u : U R 2 definiert durch u(x, y, z) := (x, y). Dann ist u stetig und überdies injectiv, denn wäre u(x, y, z) = u(x, y, w), so wäre z 4 = w 4, was wegen z > 0, w > 0 nur geht, wenn z = w. Offensichtlich ist u(u) = {(x, y) x 2 + y 2 < 1}. Ist nämlich (x, y) in dieser Menge, so wird durch z := 4 1 x 2 y 4 ein Punkt mit u(x, y, z) = (x, y) definiert. Schließlich ist u 1 eine Immersion, da u 1 (x, y) = (x, y, 4 1 x 2 y 4 ), und die ersten beiden Komponenten schon für die Injectivität der Ableitung sorgen. Weiter ist T e3 M = {v R 3 v, grad f(0, 0, 1) = 0} = {v R 3 v, e 3 = 0} = {(v 1, v 2, v 3 ) v 3 = 0}, womit die Gleichung für T e3 M gefunden ist. Ist schließlich a M, so ist a 0, also φ(a) := 1 a a S2. Offensichtlich ist φ stetig. Weiter ist φ auch injectiv: Ist nämlich a = (x, y, z) S 2, so schneidet {ta t > 0} M in genau einem Punkt, weil die Abbildung (0, ) (0, ) t t 2 x 2 +t 4 y 4 +t 4 z 4 streng monoton wachsend ist. Dasselbe Argument zeigt auch, dass φ surjectiv ist. Nun ist M (als Nullstellenmenge der stetigen Abbildung f) abgeschlossen und (als Teilmenge der Einheitskugel) beschränkt, also kompakt. Nach ist f also ein Homöomorphismus.

2 b) Sei f(x, y, z) = x 3 +y 3 +z 3 3. Dann ist grad f(x, y, z) = 3(x 2, y 2, z 2 ), was nur in 0 verschwindet, aber 0 / M. Also ist M eine Fläche. Sei p = (1, 1, 1), so ist T p M = {v R 3 v, grad f(1, 1, 1) = 0} = {v R 3 3 (v 1, v 2, v 3 ), (1, 1, 1) = 0} = {v R 3 v 1 + v 2 + v 3 = 0}, womit die Gleichung für T p M gefunden ist. Nun definieren wir φ : M R 2 durch φ(x, y, z) = (x, y). Als lineare Abbildung ist φ stetig. φ ist injectiv: Sind (x, y, z), (x, y, z ) M, so ist z 3 = 3 x 3 y 3 = z 3. Da z z 3 injectiv ist, ist auch φ injectiv. φ ist surjectiv: Sei (x, y) R 2, dann setze z := 3 3 x 3 y 3. Außerdem sehen wir nun, dass ψ : R 2 M mit ψ(x, y) = (x, y, 3 3 x 3 y 3 eine stetige Umkehrfunktion von φ ist. c) Hier sind lokale Parameter gegeben, also verwenden wir Vorab bemerken wir, dass wegen sin 1 und b < a der Ausdruck (a + b sin ψ) stets positiv ist. Wir zeigen zunächst, dass die Abbildung F : R 2 R 4 mit F (φ, ψ) = ((a + b sin ψ) cos φ, (a + b sin ψ) sin φ, b cos ψ cos φ 2, b cos ψ sin φ 2 ) eine Immersion ist. Die Jacobimatrix ist df (φ, ψ) = (a + b sin ψ) sin φ b cos ψ cos φ (a + b sin ψ) cos φ b cos ψ sin φ b 2 cos ψ sin φ 2 b sin ψ cos φ. 2 b 2 cos ψ cos φ 2 b sin ψ sin φ 2 Angenommen, v := λd 1 F (φ, ψ) + µd 2 F (φ, ψ) = 0, wo λ, µ R nicht beide 0 sind, so finden wir für die euklidische Norm von (v 3, v 4 ), wenn wir den positiven Faktor b 2 kürzen: λ 2 4 cos2 ψ + µ 2 sin 2 ψ = 0. Dieser Ausdruck verschwindet, wenn entweder λ = 0 und ψ = kπ aber dann ist v 1 = ±µb cos φ, v 2 = ±µb sin φ, was nicht gleichzeitig verschwinden kann. Oder es ist µ = 0 und ψ = 2k+1 2 π aber dann v 1 = λ(a ± b) sin φ, v 2 = λ(a ± b) cos φ, was ebenfalls nicht gleichzeitig verschwinden kann. Wir überlegen uns nun, dass F auf jedem offenen Quadrat der Seitenlänge π injectiv ist. Ist F (φ, ψ) = F (φ, ψ ), so finden wir durch Addition von F3 2 und F 4 2, dass cos2 ψ = cos 2 ψ, also ψ = ψ + kπ. Wenn k gerade ist, liefert die erste Komponente cos φ = cos φ, also φ = φ + 2kπ. Wenn k ungerade ist, haben wir (a + b sin ψ) cos φ = (a b sin ψ) cos φ und (a + b sin ψ) sin φ = (a b sin ψ) sin φ. Wenn cos φ 0 dividieren wir die zweite durch die erste Komponente, wenn sin φ 0 dividieren wir die erste durch die zweite Komponente und finden in jedem Falle, dass φ = φ + kπ. Seien nun (φ 0, ψ 0 ) R 2 ; gesucht ist eine Karte von M um F (φ 0, ψ 0 ). Statt langwierig die Umkehrfunktion zu bestimmen (was zahlreiche Fallunterscheidungen nötig macht), argumentieren wir so: Sei i = 1 oder i = 3. Dann haben wir oben gesehen, dass für eine dieser Wahlen von i die Ableitungen der i-ten und (i + 1)-ten Komponente von F

3 in (φ 0, ψ 0 ) linear unabhängig sind. Wir können also den Umkehrsatz auf f := (F i, F i+1 ) : R 2 R 2 anwenden und finden eine Umgebung U (φ 0, ψ 0 ), die von f diffeomorph auf eine offene Menge V abgebildet wird. Der Einfachheit halber bezeichne jetzt f : U V diese Einschränkung. Dann sei F := F f 1. Weil df ein Isomorphismus ist, ist auch F eine Immersion und F hat entweder die Form F (u, v) = (u, v, F3 (u, v), F 4 (u, v)) oder F (u, v) = (F1 (u, v), F 2 (u, v), u, v)). Im ersten Fall ist die Projektion auf die ersten beiden Faktoren und im zweiten die Projektion auf die letzten beiden Faktoren die gesuchte Karte. 2. Sei E ein endlich dimensionaler euklidischer Vektorraum und e 1,..., e n eine Orthonormalbasis von E. Sei F der Vektorraum der linearen Abbildungen von E nach E und X die Menge aller A F mit Ae i, Ae i 1 für i = 1,..., n. Bestimmen Sie die lokalen und globalen Maxima und Minima der Funktion det : A det A auf X. (Vorsicht: Nach einiger Überlegung kommen Sie vielleicht darauf, die Extrema auf dem Rand von X zu suchen. Der Rand selbst ist aber keine Mannigfaltigkeit, Sie brauchen eine geeignete Teilmenge!) Lösung: Seien a 1 := Ae 1,..., a n := Ae n die Spalten von A. 1) a) Zunächst liegt in 0 kein lokales Extremum vor, weil es beliebig nahe bei 0 Vektoren a 1,..., a n beliebig kleiner Norm gibt mit det(a 1,..., a n ) > 0 und auch solche mit det(a 1,..., a n ) < 0 (z.b. a 1 = ±ɛe 1, a i = ɛe i für i = 2,..., n mit ɛ > 0). b) Sodann liegt im Innern von X überhaupt kein lokales Extremum. Für ein Extremum in A muss d det A = 0 sein, also (*) det(x 1, a 2,..., a n) + det(a 1, x 2, a 3,..., a n) + + det(a 1,..., a n 1, x n) = 0 für alle x 1,..., x n E nach , da det eine Multilinearform ist. Setzen wir nun x 1 := a 1,..., x n := a n, so sehen wir, dass det A = 0. c) Wir zeigen nun: Ist det A = 0, so liegt in A kein lokales Extremum vor. Bew: Sei also det A = 0 und H der von a 1,..., a n aufgespannte Unterraum. Dann ist also dim H n 1. i) Es ist dim H < n 1. Wäre dim H = n 1, so numerieren wir so, dass a 2,..., a n eine Basis von H sind und ergänzen sie durch x 1 zu einer Basis von E. Nun setzen wir in (*) x 2 = = x n = a 1 und erhalten 0 = det(x 1, a 2,..., a n ). Widerspruch. ii) Sei also dim H < n 1. Wir führen nun beliebig nahe bei A Elemente B mit det B > 0 und solche mit det B < 0 vor. Sei also ɛ > 0. Sei H von a k+1,..., a n aufgespannt, wobei k 2. Wähle Vektoren b 1,..., b k der Länge 1, die senkrecht auf H stehen, und δ > 0 so dass ((1

4 δ)a 1 + δb 1,..., (1 δ)a k + δb k, a k+1,..., a n ) in X GL(E) liegt und von A einen Abstand von weniger als ɛ hat. Die Determinante dieses Elements ist D = δ k det(b 1,..., b k, a k+1,..., a n ). Andererseits wählen wir ((1 δ)a 1 + δb 2, (1 δ)a 2 + δb 2,..., (1 δ)a k + δb k, a k+1,..., a n ) mit der Determinante δ k det(b 2, b 1,..., b k, a k+1,..., a n ) = D. q. e. d. 2) a) Nun ist X kompakt und det stetig; also muss det in X ein Extremum annehmen, das nach 1) nur auf dem Rand liegen kann. Der Rand ist X = {(a 1,..., a n ) E n a i = 1 für ein i {1,..., n}}. Bedauerlicherweise ist das aber keine Mannigfaltigkeit. Die definierende Gleichung ist nämlich f(x 1,..., x n ) = ( x 1 2 1) ( x n 2 1), und diese hat nicht überall den Rang 1. Wenn aber A = (a 1,..., a n ) X und ein a i = 0, so haben wir oben gesehen, dass in A kein Extremum liegt. Wenn 0 < a i < 1 für ein i, so ersetzen wir a i durch 1 a i a i, wodurch die Determinante mit dem Faktor 1/ a i > 1 multipliziert wird. Wir sehen also: Extrema können nur in Punkten A = (a 1,..., a n ) mit a 1 = = a n = 1 angenommen werden. Sei also M = {(a 1,..., a n ) X a 1 = = a n = 1}. Wir behaupten, dass M eine Mannigfaltigkeit ist. Sei φ : F R n definiert durch φ(x 1,..., x n ) = ( x 1 2 1,..., x n 2 1). Wir müssen zeigen, dass φ in jedem Punkt von X den Rang n hat. Es ist dφ(a 1,..., a n )(x 1,..., x n ) = 2( x 1, a 1,..., x n, a n ). Ist aber (c 1,..., c n ) R n, so müssen wir (für i = 1,..., n) nur x i = c i 2 a i setzen. b) Damit det auf M in A ein Extremum besitzt, muss es also λ 1,..., λ n R geben, die (**) det(a 1,..., a i 1, x i, a i+1,..., a n ) λ i x i, a i = 0 i=1 für alle (x 1,..., x n ) E n erfüllen, wo wir die Lagrange-Multiplikatoren der Bequemlichkeit wegen in der Form λ i /2 angesetzt haben. Nun setzen wir x j = 0 für j i und finden i=1 det(a 1,..., a i 1, x, a i+1,..., a n ) = λ i x, a i für alle x E. Mit x = a i also λ i = det A und mit x = a j und j i a i, a j = 0. Also sehen wir: Damit in A ein Extremum vorliegt, muss A eine orthogonale Matrix sein. Wenn det A = 1, haben wir ein globales Maximum, und wenn det A = 1 ein globales Minimum. Umgekehrt erfüllt jede orthogonale Matrix (**). Schreibe nämlich x = n i=1 x, a i a i, so wird det(a 1,..., a i 1 x, a i+1,..., a n ) = x, a i det A = λ x, a i. 3. Sei A GL(n), A = ( ), und b R n. Sei b i j =, wenn i j, und b i j = 0, wenn i < j and C = B A. Es sei auch B GL(n) und T : R n R n definiert durch T x = B 1 Cx + B 1 b. Für i = 1,..., n sei σ i := n und γ i := i 1 γ j + σ i.

5 (a) Geben Sie eine Formel an, mit der T x explizit berechnet werden kann. (b) Es seien alle γ i < 1, x 0 R n beliebig gewählt und x n+1 := T x n. Zeigen Sie, dass (x n ) n N gegen die Lösung von Ax = b konvergiert ( Gauß-Seidel Iteration ). (c) Zeigen Sie, dass die Gauß-Seidel Iteration insbesondere dann konvergiert, wenn n,j i < 1 für i = 1,..., n. (d) Wahrscheinlich haben Sie in b) den Kontraktionssatz und die Maximum-Norm verwendet. Konvergiert (x n ) n N auch in der euklidischen Norm gegen die Lösung von Ax = b? Lösung: Wir haben T x = B 1 Cx + B 1 b, also BT x = Cx + b, was für die i-te Komponente bedeutet i (T x) j = n x j + b i. Die gesuchte explizite Formel lautet also (T x) i = 1 i 1 (T x) j + x j + b i b) Damit finden wir i 1 (T x) i (T y) i Speziell für i = 1: (*) (T x) 1 (T y) 1 j=2 (T x) j (T y) j + a 1 j a 1 1 x j y j x j y j σ 1 x y = γ 1 x y Nehmen wir nun für einen Induktionsbeweis an, dass (**) (T x) j (T y) j γ j x y für j = 1,..., i 1, so finden wir i 1 (T x) i (T y) i γ j x y + i 1 ( ) γ j + σ i x y = γ i x y x j y j Also gilt (**) für j = 1,..., n. Mit k = max{γ 1,..., γ n } < 1 folgt also T x T y k x y. Nun ist R n vollständig, wir dürfen also den

6 Kontraktionssatz anwenden und sehen, dass das Iterationsverfahren gegen ein x mit T x = x konvergiert, also Bx = Cx + b, was Ax = b bedeutet. c) Wenn j i < 1, schätzen wir ab i 1 γ i = γ i 1 j + σ i = γ j + Nach Annahme ist γ 1 < 1. Wenn γ 1,..., γ i 1 < 1, sehen wir dass γ i < 1, also sind alle γ i < 1, und wir können b) anwenden. d) Alle Normen auf dem R n haben dieselben offenen Mengen ( ). Was für konvergiert, tut das auch für jede andere Norm..

Analysis II 14. Übungsblatt

Analysis II 14. Übungsblatt Jun.-Prof. PD Dr. D. Mugnolo Wintersemester 01/13 F. Stoffers 04. Februar 013 Analysis II 14. Übungsblatt 1. Aufgabe (8 Punkte Man beweise: Die Gleichung z 3 + z + xy = 1 besitzt für jedes (x, y R genau

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

Technische Universität München. Aufgaben Mittwoch SS 2012

Technische Universität München. Aufgaben Mittwoch SS 2012 Technische Universität München Andreas Wörfel Ferienkurs Analysis 2 für Physiker Aufgaben Mittwoch SS 2012 Aufgabe 1 Äquivalente Aussagen für Stetigkeit( ) Beweisen Sie folgenden Satz: Seien X und Y metrische

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrangetex,v 18 01/11/09 14:07:08 hk Exp $ $Id: untermfgtex,v 14 01/11/1 10:00:34 hk Exp hk $ Extrema unter Nebenbedingungen Lagrange-Multiplikatoren In der letzten Sitzung hatten wir begonnen die

Mehr

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte Aufgabe ( Es seien e =, e = Untervektorraum (, e = ( R und U := [e, e ] der von e, e erzeugte Weiter sei G := {A GL(, R A e = e und A U U} (a Zeigen Sie, dass G eine Untergruppe von GL(, R ist (b Geben

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

55 Lokale Extrema unter Nebenbedingungen

55 Lokale Extrema unter Nebenbedingungen 55 Lokale Extrema unter Nebenbedingungen Sei f : O R mit O R n differenzierbar. Notwendige Bescheinigung für ein lokales Extremum in p 0 ist dann die Bedingung f = 0 (siehe 52.4 und 49.14). Ist nun F :

Mehr

r i w i (siehe (3.7)). r i v, w i = 0.

r i w i (siehe (3.7)). r i v, w i = 0. Orthogonales Komplement und Orthogonalprojektion Wir betrachten weiterhin einen euklidischen Vektorraum V,,. (6.13) Def.: Ist M V, so heißt das orthogonale Komplement von M. (6.14) Fakt. (i) M ist Untervektorraum

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a). Aufgabe Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = Es gilt det(λa = (λ n det(a det I n = n? Nein (außer für n = Es gilt deti n = det(ab = det A det B? Ja det(a =

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker (Analysis ) MA90 http://www-m5matumde/allgemeines/ma90 06S Sommersem 06 Lösungsblatt (606) Zentralübung Z

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch TECHNISCHE UNIVERSITÄT BERLIN SS 07 Institut für Mathematik Stand: 3. Juli 007 Ferus / Garcke Lösungsskizzen zur Klausur vom 6.07.07 Analysis II. Aufgabe (5 Punkte Der metrische Raum (X, d ist gegeben.

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

Grundlagen der Mathematik 2 Nachklausur

Grundlagen der Mathematik 2 Nachklausur Andreas Gathmann und Yue Ren Sommersemester 6 Grundlagen der Mathematik Nachklausur Bearbeitungszeit: 8 Minuten Aufgabe (6 Punkte): Es sei f : R R, (x,y) xye (x+y). (a) Bestimme alle lokalen Maxima und

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

Kuhn-Tucker-Bedingung

Kuhn-Tucker-Bedingung Kuhn-Tucker-Bedingung Ist x ein lokales Minimum einer skalaren Funktion f unter den Nebenbedingungen g i (x) 0 und sind die Gradienten der aktiven Gleichungen g i (x ) = 0, i I, linear unabhängig, dann

Mehr

Vortrag 20: Kurze Vektoren in Gittern

Vortrag 20: Kurze Vektoren in Gittern Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

3 Lineare Differentialgleichungen

3 Lineare Differentialgleichungen 3 Lineare Differentialgleichungen In diesem Kapitel behandeln wir die allgemeine Theorie linearer Differentialgleichungen Sie werden zahlreiche Parallelen zur Theorie linearer Gleichungssysteme feststellen,

Mehr

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen 11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 }

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 } A Analsis, Woche Implizite Funktionen A Implizite Funktionen in D A3 Wenn man den Kreis mit Radius um, beschreiben möchte, dann ist { x, ; x + = } eine Möglichkeit Oft ist es bequemer, so eine Figur oder

Mehr

3 Definition: 1. Übungsblatt zur Vorlesung Lineare Algebra I. im WS 2003/2004 bei Prof. Dr. S. Goette

3 Definition: 1. Übungsblatt zur Vorlesung Lineare Algebra I. im WS 2003/2004 bei Prof. Dr. S. Goette 1. Übungsblatt zur Vorlesung Abgabe Donnerstag, den 30.10.03 1 Finden 2 Sei Sie reelle Zahlen a, b, c, so dass a (2, 3, 1) + b (1, 2, 2) + c (2, 5, 3) = (3, 7, 5). (V,, ) ein euklidischer Vektorraum. Zeigen

Mehr

i j m f(y )h i h j h m

i j m f(y )h i h j h m 10 HÖHERE ABLEITUNGEN UND ANWENDUNGEN 56 Speziell für k = 2 ist also f(x 0 + H) = f(x 0 ) + f(x 0 ), H + 1 2 i j f(x 0 )h i h j + R(X 0 ; H) mit R(X 0 ; H) = 1 6 i,j,m=1 i j m f(y )h i h j h m und passendem

Mehr

3. Mai Zusammenfassung. g x. x i (x).

3. Mai Zusammenfassung. g x. x i (x). 3. Mai 2013 Zusammenfassung 1 Hauptsatz Satz 1.1 Sei F C 1 (D) für eine offene Teilmenge D von R q+1 = R q R. Für (x 0, u 0 ) D gelte F (x 0, u 0 ) = 0, (x 0, u 0 ) 0. Dann gibt es eine Umgebung V von

Mehr

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW Lineare Gleichungssysteme Lösen Sie folgende Gleichungssysteme über R: a) x + x + x = 6x + x + x = 4 x x x = x 7x x = 7 x x = b) x + x 4x + x 4 = 9 x + 9x x x

Mehr

Musterlösung 7 Lineare Algebra für die Naturwissenschaften

Musterlösung 7 Lineare Algebra für die Naturwissenschaften Musterlösung 7 Lineare Algebra für die Naturwissenschaften Aufgabe Entscheiden Sie, ob folgende Abbildungen linear sind, und geben sie für die linearen Abbildungen eine Matrixdarstellung (in einer Basis

Mehr

Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen

Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen Kapitel XII Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen 53 Implizite Funktionen und allgemeine partielle Differenzierbarkeit 54 Der Umkehrsatz 55 Lokale Extrema unter Nebenbedingungen,

Mehr

Analysis II. 8. Klausur mit Lösungen

Analysis II. 8. Klausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis II 8. Klausur mit en 1 2 Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Eine Metrik auf einer Menge M. 2) Die Kurvenlänge

Mehr

Übungen zur Analysis II Blatt 27 - Lösungen

Übungen zur Analysis II Blatt 27 - Lösungen Prof. Dr. Torsten Wedhorn SoSe 22 Daniel Wortmann Übungen zur Analysis II Blatt 27 - Lösungen Aufgabe 5: 6+6+6* Punkte Bestimme alle lokalen Extrema der folgenden Funktionen: a b c* f : R 3 R g : R 2 R

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

9 Höhere partielle Ableitungen und die Taylorformel

9 Höhere partielle Ableitungen und die Taylorformel Vorlesung SS 29 Analsis 2 Prof Dr Siegfried Echterhoff 9 Höhere partielle Ableitungen und die Talorformel Definition 91 Sei U R n offen, f : U R m eine Funktion Dann heißt f 2-mal partiell differenzierbar,

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge

Mehr

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN 8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN (vi) Konvergenz von Folgen ist in topologischen Räumen folgendermaßen definiert: Ist (a n ) M eine Folge, so heißt sie konvergent gegen a M, wenn es

Mehr

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops 15. DETERMINANTEN 1 Für n Vektoren b 1,..., b n im R n definiert man ihre Determinante det(b 1,..., b n ) Anschaulich gilt det(b 1,..., b n ) = Orientierung der Vektoren b 1,..., b n Volumen des von den

Mehr

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R, B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Anwendungen des Satzes über implizite Funktionen 2. Stationäre Punkte implizit definierter Funktionen 3. Reguläre Punkte 4. Singuläre Punkte Ausblick auf die heutige

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

7.11. Extrema unter Nebenbedingungen

7.11. Extrema unter Nebenbedingungen 7.11. Extrema unter Nebenbedingungen Randextrema Wir haben schon bemerkt, daß die üblichen Tests mit Hilfe von (eventuell höheren) Ableitungen nur Kriterien für (lokale) Extrema im Inneren des Definitionsgebietes

Mehr

Lineare Algebra II Lösungen der Aufgaben 42 und 43

Lineare Algebra II Lösungen der Aufgaben 42 und 43 D Blottière SS 7 P Schützdeller Universität Paderborn Lineare Algebra II Lösungen der Aufgaben 4 und 43 Aufgabe 4 : Bemerkungen : Es sei V ein n-dimensionaler Vektorraum über einem Körper K und β : V V

Mehr

1, 0 < y < x 2 0, sonst f besitzt alle Richtungsableitungen in (0, 0), ist aber unstetig dort

1, 0 < y < x 2 0, sonst f besitzt alle Richtungsableitungen in (0, 0), ist aber unstetig dort ANALYSIS II Lösung der. Klausur vom /7 (von D. Reding Aufgabe (a Richtig sind die Aussagen (iii, (iv und (vii. (b Gegenbeispiel zu (i: f: R R, (x, y x ist stetig, aber nicht partiell differenzierbar nach

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Analysis II WS 11/12 Serie 9 Musterlösung

Analysis II WS 11/12 Serie 9 Musterlösung Analysis II WS / Serie 9 Musterlösung Aufgabe Bestimmen Sie die kritischen Punkte und die lokalen Extrema der folgenden Funktionen f : R R: a fx, y = x + y xy b fx, y = cos x cos y Entscheiden Sie bei

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Lineare Algebra II 11. Übungsblatt

Lineare Algebra II 11. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross 9 / Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest (Bearbeitung innerhalb von Minuten und ohne Benutzung des

Mehr

Seminarvortrag über die Euler-Charakteristik einer Fläche

Seminarvortrag über die Euler-Charakteristik einer Fläche Dies ist eine Ausarbeitung für einen Seminarvortrag, den ich im Sommersemester 2013/14 an der Humboldt-Universität im Proseminar Differentialgeometrie von Kurven und Flächen bei Christoph Stadtmüller gehalten

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

7 Orthogonale und unitäre Matrizen

7 Orthogonale und unitäre Matrizen $Id: orthogonal.tex,v.6 2/7/ 4::3 hk Exp $ $Id: mdiffb.tex,v.3 2/7/ 4::5 hk Exp hk $ 7 Orthogonale und unitäre Matrizen 7.2 Drehungen Wir wollen uns jetzt mit Drehungen im dreidimensionalen Raum beschäftigen.

Mehr

Analysis II. Vorlesung 52. Diffeomorphismen

Analysis II. Vorlesung 52. Diffeomorphismen Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 52 Diffeomorphismen Der Satz über die lokale Umkehrbarkeit gibt Anlass zu folgender Definition. Definition 52.1. EsseienV 1 undv 2 endlichdimensionalereellevektorräume

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Wir stellen uns das Ziel, wesentliche Information über. Determinanten haben auch eine geometrische Bedeutung: Volumenbestimmung eines Parallelepipeds

Wir stellen uns das Ziel, wesentliche Information über. Determinanten haben auch eine geometrische Bedeutung: Volumenbestimmung eines Parallelepipeds 39 Determinanten 391 Motivation Wir stellen uns das Ziel, wesentliche Information über die Invertierbarkeit einer n n-matrix das Lösungsverhalten zugehöriger linearer Gleichungssysteme möglichst kompakt

Mehr

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen a) Es ist < x, y > α + + β β ( + α) und y α + + β α + + ( + α) (α + α + ) 6 α + α, also α, ± 5 + ± 9 4 ± 3 Es gibt also Lösungen: α, β

Mehr

Grundlagen der Mathematik 1

Grundlagen der Mathematik 1 Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0.

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0. Analysis D-BAUG Dr Cornelia Busch FS 2016 Serie 3 1 a) Zeigen Sie, dass der Graph von f(x, y) = 9 (x 2) 2 (y 3) 2 eine Halbkugel beschreibt und bestimmen Sie ihren Radius und ihr Zentrum z = f(x, y) =

Mehr

3.1 Sukzessive Minima und reduzierte Basen: Resultate

3.1 Sukzessive Minima und reduzierte Basen: Resultate Gitter und Codes c Rudolf Scharlau 4. Juni 2009 202 3.1 Sukzessive Minima und reduzierte Basen: Resultate In diesem Abschnitt behandeln wir die Existenz von kurzen Basen, das sind Basen eines Gitters,

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

3 Vektorbündel und das Tangentialbündel

3 Vektorbündel und das Tangentialbündel $Id: vektor.tex,v 1.6 2014/06/30 10:20:57 hk Ex $ $Id: fluss.tex,v 1.2 2014/06/30 12:36:06 hk Ex hk $ 3 Vektorbündel und das Tangentialbündel 3.4 Ableitungen von C q -Funktionen In der letzten Sitzung

Mehr

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion.

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion. Übungen zu Grundlagen der Mathematik Lösungen Blatt 1 SS 14 Prof. Dr. W. Decker Dr. M. Pleger Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion f : U R, (x, y) x y x + y, im Punkt (1, 1) bis einschließlich.

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3 Kapitel 5 Untermannigfaltigkeiten 5.1 Glatte Flächen in R 3 Bisher haben wir unter einem glatten Weg im R n stets eine differenzierbare Abbildung γ:i R n, definiert auf einem Intervall I R, verstanden.

Mehr

9. Übung zur Linearen Algebra II -

9. Übung zur Linearen Algebra II - 9. Übung zur Linearen Algebra II - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 00. Aufgabe 33 (i) Beweise oder widerlege: In einem euklidischen VR gilt x + y = x + y x y (Satz von Pythagoras).

Mehr

Klausur zu. Lineare Algebra II. Viel Erfolg! Fachbereich Mathematik WS 2012/13 Dr. habil. Matthias Schneider. Bonus Note. Aufgabe

Klausur zu. Lineare Algebra II. Viel Erfolg! Fachbereich Mathematik WS 2012/13 Dr. habil. Matthias Schneider. Bonus Note. Aufgabe Klausur zu Lineare Algebra II Fachbereich Mathematik WS 0/3 Dr. habil. Matthias Schneider Aufgabe 3 4 5 6 7 Bonus Note Punktzahl 4 3 3 3 3 0 erreichte Punktzahl Es sind keine Hilfsmittel zugelassen. Die

Mehr

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel 4 Orthogonalität 4. Motivation Im euklidischen Raum ist das euklidische Produkt zweier Vektoren u, v IR n gleich, wenn die Vektoren orthogonal zueinander sind. Für beliebige Vektoren lässt sich sogar der

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

2 Koordinatentransformationen

2 Koordinatentransformationen Mathematik für Ingenieure III, WS 9/ Mittwoch 8. $Id: transform.tex,v.8 //4 :9: hk Exp $ Koordinatentransformationen. Lineare Koordinatentransformationen Wir überlegen uns dies zunächst im Spezialfall

Mehr

4. Übungsblatt zur Differentialgeometrie

4. Übungsblatt zur Differentialgeometrie Institut für Mathematik Prof. Dr. Helge Glöckner Dipl. Math. Rafael Dahmen SoSe 11 06.05.2011 4. Übungsblatt zur Differentialgeometrie Aufgaben und Lösungen Gruppenübung Aufgabe G7 Der Tangentialraum an

Mehr

1 Liesche Gruppen: Grundlegendes und Beispiele

1 Liesche Gruppen: Grundlegendes und Beispiele 1 Liesche Gruppen: Grundlegendes und Beispiele In dieser Vorlesung verstehen wir unter einer differenzierbaren Mannigfaltigkeit einen Hausdorff- Raum mit abzählbarer Basis und mit einem maximalen C -Atlas.

Mehr

Vorlesung: Analysis I für Ingenieure

Vorlesung: Analysis I für Ingenieure Vorlesung: Analysis I für Ingenieure Michael Karow Thema: Satz von Taylor Die Taylor-Entwicklung I Satz von Taylor. Sei f : R D R an der Stelle x n-mal differenzierbar. Dann gilt für x D, n f (k) (x )

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Extremwertrechnung in mehreren Veränderlichen

Extremwertrechnung in mehreren Veränderlichen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 2014 14.05.2014 Höhere Mathematik II für die Fachrichtung Informatik 3. Saalübung (14.05.2014) Extremwertrechnung

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

1 Definition und Grundeigenschaften

1 Definition und Grundeigenschaften Christian Bönicke Vektorbündel I Im Folgenden sei immer F = R, C oder H. 1 Definition und Grundeigenschaften 1.1 Definition Ein k-dimensionales Vektorbündel ξ über F ist ein Bündel (E, p, B) mit folgenden

Mehr

42 Lokale Extrema mit Nebenbedingungen

42 Lokale Extrema mit Nebenbedingungen 4 Lokale Extrema mit Nebenbedingungen 09 4 Lokale Extrema mit Nebenbedingungen Lernziele: Resultate: Kriterien für lokale Extrema mit Nebenbedingungen Methoden: Lagrange-Multiplikatoren Kompetenzen: Bestimmung

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr