3. Das Reinforcement Lernproblem

Größe: px
Ab Seite anzeigen:

Download "3. Das Reinforcement Lernproblem"

Transkript

1 3. Das Reinforcement Lernproblem 1. Agierender Agent in der Umgebung 2. Discounted Rewards 3. Markov Eigenschaft des Zustandssignals 4. Markov sche Entscheidung 5. Werte-Funktionen und Bellman sche Optimalität F. Schwenker Reinforcement Learning 29

2 Agent und Umgebung - das Bild Agent State Reward Action s t r t a t r t+1 Environment s t+1 F. Schwenker Reinforcement Learning 30

3 Aktion-Zustand-Reward Agent führt eine Aktion a t aus. Umwelt ändert hierdurch ihren Zustand s t und erteilt dem Agenten einen Reward r t R, s t und r t werden vom Agenten wahrgenommen. Agent führt nächste Aktion a t+1 aus. S die Menge der Zustände (diskret/endlich) A die Menge der Aktionen (diskret/endlich) A(s t ) Menge der Aktion die im Zustand s t möglich sind. Zeit ist diskret, d.h. t = 1, 2, 3,.... F. Schwenker Reinforcement Learning 31

4 Der Agent führt die Aktion gemäß einer Strategie/Taktik/Vorgehensweise (policy) aus, bezeichnet mit π t. π t (s, a) ist hier die Wahrscheinlichkeit, dass die Aktion a t = a ausgeführt wird, falls der Zustand s t = s war. Reinforcement Lernverfahren adaptieren direkt oder indirekt die policy π t des Agenten. Agent soll die in der Zukunft zu erwartenden Rewards maximieren, also den mittleren Reward 1 T T i=t+1 r i maximieren. Problem: T = ist möglich F. Schwenker Reinforcement Learning 32

5 Discounted Rewards Wie könnnen die (in der Zukunft) zu erwartenden Rewards maximiert werden? In einigen Anwendungen ist ein endlicher Zeithorizont T bekannt (z.b. beim Tic-Tac-Toe). In diesen Fällen sind die Rewards bis zur Zeit T zu berücksichtigen. Also einfach den Mitterlwert berechnen. In vielen Fällen ist T a priori unbekannt (auch im Verlauf der Zeit nicht), sondern es ist möglicherweise erst kurz vor Schluss T zu schätzen (kontinuierlich durchgeführte Aufgaben). Für diese Aufgabe nehmen wir T = an. Dann kann aber kein Erwartungswert berechnet werden. F. Schwenker Reinforcement Learning 33

6 Ausweg: Rewards in der weiteren Zukunft abschwächen mit Konstante γ [0, 1] und dann R t = γ i r t+1+i i=0 γ < 1, so konvergiert R t bei beschränkten Rewards (geometrische Reihe anwenden). γ = 0, so wird nur r t+1 berücksichtigt. γ = 1, so muss T < sein. Je näher γ bei 1, desto stärker werden die weit in der Zukunft liegenden Rewards berücksichtigt. F. Schwenker Reinforcement Learning 34

7 Wir betrachten also die Summe der discounted Rewards R t = T γ i r t+1+i i=0 Also Grenzfälle können T = oder γ = 1 auftreten, aber nicht beide zusammen. F. Schwenker Reinforcement Learning 35

8 Markov Eigenschaft Als Zustand der Umgebung kann natürlich alles aufgefasst werden, was der Agent wahrnehmen kann. Dies können einfache Sensorwerte sein oder irgendeine symbolische Repräsentation einer Belegtheitskarte eines Raumes oder Gebäudes. Für den Aufbau einer solchen Karte sind umfangreiche sensorische Eingaben zuverarbeiten. Wir nehmen an, dass der Zustand den der Agent wahrnehmen kann, alle für die Aufgabe relevanten Ereignisse der Vergangenheit enthält. Beispiel: Die Positionen der Figuren zu einem Zeitpunkt t geben die vollständige Information über den bisherigen Spielverlauf. Wie diese Stellung zustande kam, kann natürlich nützlich sein, für die Berechnung des optimalen nächsten Zuges ist diese Information nicht nötig. Der aktuelle Zustand wird betrachtet, nicht der Weg dort hin! F. Schwenker Reinforcement Learning 36

9 Im Allgemeinen basiert die Bestimmung von Zustand und Reward auf Wahrscheinlichkeiten der Form prob{s t+1 = s, r t+1 = r s t, a t, r t, s t 1, a t 1, r t 1,..., s 0, a 0 } (1) Markov Eigenschaft: Die Ausgabe der Umgebung hängt nur ab von a t, der letzten Aktion des Agent, sowie von s t, dem letzten Zustand der Umgebenung: prob{s t+1 = s, r t+1 = r s t, a t } (2) Wir sagen das Zustandssignal hat die Markov-Eigenschaft, gdw. (1) gleich (2) ist für alle s und r und für alle Vergangenheiten s t, a t, r t, s t 1, a t 1, r t 1,..., s 0, a 0. Wir nehmen diese Markov-Eigenschaft des Zustandssignals immer an, in diesem Fall sagen wir auch, das Umgebung und RL-Aufgabe die Markov- Eigenschaft erfüllen. F. Schwenker Reinforcement Learning 37

10 Markov sche Entscheidung Reinforcement-Aufgabe mit der Markov-Eigenschaft wird auch als Markovscher Entscheidungsprozess (MDP=Markov decision process) bezeichnet. Falls A und S endlich sind, auch als finiter MDP. Hiermit beschäftigen wir uns. Ein endlicher MDP ist definiert durch A und S und die Dynamik der Umgebung. Gegeben a A und s S, die Wahrscheinlichkeit des nächsten Zustands s ist P a s s = prob{s t+1 = s s t = s, a t = a} Dieses sind die Übergangswahrscheinlichkeiten. F. Schwenker Reinforcement Learning 38

11 Gegeben a A und s S, sowie der nächste Zustand s S der Erwartungswert für den nächsten Reward ist R a s s = E{r t+1 s t = s, a t = a, s t+1 = s } Durch P a s s und R a s s sind die wichtigsten Größen in einem endlichen MDP repräsentiert. Die präzise Verteilung der Rewards um die Erwartungswerte geht allerdings verloren. F. Schwenker Reinforcement Learning 39

12 Werte-Funktionen Policy des Agenten wird bezeichnet mit π t. Es ist π t (s, a) die Wahrscheinlichkeit, dass die Aktion a t = a ausgeführt wird, falls der Zustand s t = s vorlag. Der Wert eines Zustands s bzgl. der Policy π, bezeichnet mit V π (s), ist der Erwartungswert von R t = γ i r t+1+i, mit γ (0, 1] i=0 falls der Agent die Aktionen gemäß π ausführt, wobei er im Zustand s beginnt, also { V π (s) = E π Rt s t = s } { = E π γ i r t+1+i s t = s } i=0 F. Schwenker Reinforcement Learning 40

13 V π Wertfunktion der Zustände (state-value function for policy) π. Der Wert der Aktion a im Zustand s bzgl. Strategie π ist der Erwartungswert von R t falls der Agent im Zustand s die Aktion a ausführt und dann gemäß der Strategie π vorgeht, also { Q π (s, a) = E π {R t s t = a, a t = a} = E π γ i r t+1+i s t = s, a t = a } Q π Wertfunktion der Aktionen (action-value function for policy) π. V π und Q π können gelernt werden, beispielsweise durch Mittelwertbildung über die gesammelten Rewards. Dabei werden im Fall der Schätzung von V π Mittelwerte für jeden Zustand s gebildet (S endlich) und im Fall von Q π Mittelwerte für jede einzelne Aktionen a (A endlich). Für viele Zustände und/oder Aktionen müssen V π und Q π durch adaptive Abbildungen (z.b. neuronale Netze) gelernt. i=0 F. Schwenker Reinforcement Learning 41

14 Bellman Gleichung Die Wertfunktion V π erfüllen rekursive Bedingungen zwischen den Zuständen s und den Folgezuständen: V π (s) = E π {R t s t = s} } = E π {r t+1 + γ γ i r t+2+i s t = s = a i=0 π(s, a) s P a ss ( { }) R a ss + γe π γ k r t+2+k s t+1 = s k=0 = a π(s, a) s P a ss (R a ss + γv π (s )) V π ist eindeutige Lösung der Bellman Gleichung, sie ist Grundlage für Algorithmen zum Lernen von V π (entsprechende Gleichung gilt für Q π ). F. Schwenker Reinforcement Learning 42

15 Backup Diagramme (a) s (b) s,a a r s' r s' a' (a) die Situation für V π ; (b) die Situation für Q π Ausgehend von Zustand s kann der Agent Aktionen a ausführen (hier 3) Hierauf geht die Umgebung in Folgezustände über (hier 2), gleichzeitig wird ein Reward r erteilt. V π (s) durch Mittelung über alle möglichen Aktionen a und alle möglichen Folgezustände s. Über die Pfade in diesen Bäumen werden die Werte von Zuständen zur Aktualisierung der Werte vorherige Zustände propagiert. F. Schwenker Reinforcement Learning 43

16 Beispiel Gridworld A A' +10 (a) B +5 B' Actions (b) Agent bewegt sich im 2D-Gitter. Mögliche Aktionen sind Bewegungen nach Nord, Süd, West, Ost. F. Schwenker Reinforcement Learning 44

17 Aktionen werden zufällig und mit gleicher Wahrscheinlichkeit gewählt (random policy π). Reward ist 1, falls der Agent eine Aktion ausführt, die ihn hinaus befördern würde. In diesem Fall bleibt der Agent allerdings auf seiner Position im Grid. In den Zuständen (Zellen im Grid) A und B. Hier wird ein Reward von 10 bzw. 5 erteilt und zwar für alle Aktionen. Diese bringen den Agenten in den Zustand A bzw. B. Alle anderen Aktion erzielen Reward 0. Für γ = 0.9 ist V π in (b) dargestellt. Im unteren Bereich haben die Zustände negative Werte V (s). V π (A) ist das Maximum, allerdings V π (A) < 10, dagegen V π (B) > 5. Warum? F. Schwenker Reinforcement Learning 45

18 Optimale Wertfunktionen Für ein RL Problem suchen wir nach einer Strategie π für die der erwartete Reward (Return) möglichst groß ist. Die Menge der Strategien Π = {π π policy auf S A} ist teilweise geordnet durch π π gdw V π (s) V π (s) für alle s S Es gibt mindestens eine optimale policy π, möglicherweise gibt es mehrere optimale policies, diese haben aber alle die gleiche Zustandswertfunktion, nämlich die optimale Zustandswertefunktion V. Diese ist definiert durch V (s) = max π V π (s) F. Schwenker Reinforcement Learning 46

19 Alle optimalen policies π haben auch gleiche optimale Aktionswertefunktion Q, definiert durch Q (s, a) = max π Qπ (s, a) Für ein Paar aus Zustand und Aktion (s, a) gibt die Funktion Q (s, a) den erwarteten Return für die Aktion a im Zustand s an und nachfolgend die optimale policy angewendet wird, somit besteht der Zusammenhang zwischen Q und V : Q (s, a) = E {r t+1 + γv (s t+1 ) s t = s, a t = a} V ist die Wertefunktion einer optimalen policy π, somit erfüllt V die Bellman-Gleichung. F. Schwenker Reinforcement Learning 47

20 Die Bellman-Gleichung für V : V (s) = max a = max a = max a = max a = max a = max a Q π (s, a) E π {R t s t = s, a t = a} E π E π { } γ k r t+k+1 s t = s, a t = a { k=0 r t + γ } γ k r t+k+2 s t = s, a t = a k=0 E {r t + γv (s t+1 ) s t = s, a t = a} s P a ss (R a ss + γv (s )) F. Schwenker Reinforcement Learning 48

21 Die Bellman-Gleichung für Q : { } Q (s, a) = E r t+1 + γ max Q (s t+1, a ) s t = a, a t = a a = ) Pss (R a a ss + γ max Q (s, a ) s a (a) s (b) s,a max a r s' max r s' a' F. Schwenker Reinforcement Learning 49

22 Falls die Dynamik der Umgebung bekannt ist, dh. falls P a ss und R a ss bekannt sind, so besteht das Gleichungssystem für V aus S (nichtlinearen) Gleichungen mit S Unbekannten. Dieses kann prinzipiell auch gelöst werden. Falls V bekannt ist, so folgt daraus sehr einfach eine optimale policy. Im Zustand s ist π (s, a ) mit a = arg max s P a ss (R a ss + γv (s )) A B B' A' a) gridworld b) V* c) π* F. Schwenker Reinforcement Learning 50

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1. Allgemein Reinforcement Learning 2. Neuronales Netz als Bewertungsfunktion 3. Neuronales Netz als Reinforcement Learning Nils-Olaf Bösch 1 Allgemein Reinforcement Learning Unterschied

Mehr

Temporal Difference Learning

Temporal Difference Learning Temporal Difference Learning Das Temporal Difference (TD) Lernen ist eine bedeutende Entwicklung im Reinforcement Lernen. Im TD Lernen werden Ideen der Monte Carlo (MC) und dynamische Programmierung (DP)

Mehr

Reinforcement Learning

Reinforcement Learning VL Algorithmisches Lernen, Teil 3d Jianwei Zhang, Dept. of Informatics Vogt-Kölln-Str. 30, D-22527 Hamburg zhang@informatik.uni-hamburg.de 08/07/2009 Zhang 1 Terminübersicht: Part 3 17/06/2009 Dimensionsproblem,

Mehr

Einsatz von Reinforcement Learning in der Modellfahrzeugnavigation

Einsatz von Reinforcement Learning in der Modellfahrzeugnavigation Einsatz von Reinforcement Learning in der Modellfahrzeugnavigation von Manuel Trittel Informatik HAW Hamburg Vortrag im Rahmen der Veranstaltung AW1 im Masterstudiengang, 02.12.2008 der Anwendung Themeneinordnung

Mehr

Reinforcement Learning

Reinforcement Learning Effiziente Darstellung von Daten Reinforcement Learning 02. Juli 2004 Jan Schlößin Einordnung Was ist Reinforcement Learning? Einführung - Prinzip der Agent Eigenschaften das Ziel Q-Learning warum Q-Learning

Mehr

Übersicht. Künstliche Intelligenz: 21. Verstärkungslernen Frank Puppe 1

Übersicht. Künstliche Intelligenz: 21. Verstärkungslernen Frank Puppe 1 Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlussfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen VI Lernen 18. Lernen aus Beobachtungen 19. Wissen beim Lernen 20. Statistische

Mehr

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion Kapitel 2 Erwartungswert 2.1 Erwartungswert einer Zufallsvariablen Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion È ist definiert als Ü ÜÈ Üµ Für spätere

Mehr

Übersicht. 20. Verstärkungslernen

Übersicht. 20. Verstärkungslernen Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen VI Lernen 18. Lernen aus Beobachtungen 19. Lernen in neuronalen & Bayes

Mehr

Mathematische Grundlagen der dynamischen Simulation

Mathematische Grundlagen der dynamischen Simulation Mathematische Grundlagen der dynamischen Simulation Dynamische Systeme sind Systeme, die sich verändern. Es geht dabei um eine zeitliche Entwicklung und wie immer in der Informatik betrachten wir dabei

Mehr

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Michael Groß mdgrosse@sbox.tugraz.at 20. Januar 2003 0-0 Matrixspiel Matrix Game, Strategic Game, Spiel in strategischer Form.

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung In der linearen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Teil III. Komplexitätstheorie

Teil III. Komplexitätstheorie Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein

Mehr

Kapitel 6 Martingale

Kapitel 6 Martingale Kapitel 6 Martingale Martingale spielen eine große Rolle in der Finanzmathematik, und sind zudem ein wichtiges Hilfsmittel für die statistische Inferenz stochastischer Prozesse, insbesondere auch für Zählprozesse

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Ziel: Lernen von Bewertungsfunktionen durch Feedback (Reinforcement) der Umwelt (z.b. Spiel gewonnen/verloren). Anwendungen: Spiele: Tic-Tac-Toe: MENACE (Michie 1963) Backgammon:

Mehr

Eine Modulare Lösung zur Kombinatorischen Explosion in Multiagent Reinforcement Learning

Eine Modulare Lösung zur Kombinatorischen Explosion in Multiagent Reinforcement Learning Eine Modulare Lösung zur Kombinatorischen Explosion in Multiagent Reinforcement Learning Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Informatik 33095 Paderborn

Mehr

Verfeinerungen des Bayesianischen Nash Gleichgewichts

Verfeinerungen des Bayesianischen Nash Gleichgewichts Spieltheorie Sommersemester 007 Verfeinerungen des Bayesianischen Nash Gleichgewichts Das Bayesianische Nash Gleichgewicht für Spiele mit unvollständiger Information ist das Analogon zum Nash Gleichgewicht

Mehr

Künstliche Intelligenz - Optimierungsprobleme - Suche in Spielbäumen

Künstliche Intelligenz - Optimierungsprobleme - Suche in Spielbäumen Künstliche Intelligenz - Optimierungsprobleme - Suche in Spielbäumen Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Optimierungsprobleme

Mehr

5 Zwei spieltheoretische Aspekte

5 Zwei spieltheoretische Aspekte 5 Zwei spieltheoretische Aspekte In diesem Kapitel wollen wir uns mit dem algorithmischen Problem beschäftigen, sogenannte Und-Oder-Bäume (kurz UOB) auszuwerten. Sie sind ein Spezialfall von Spielbäumen,

Mehr

2.1 Importance sampling: Metropolis-Algorithmus

2.1 Importance sampling: Metropolis-Algorithmus Kapitel 2 Simulationstechniken 2.1 Importance sampling: Metropolis-Algorithmus Eine zentrale Fragestellung in der statistischen Physik ist die Bestimmung von Erwartungswerten einer Observablen O in einem

Mehr

Kapitel ML:IV (Fortsetzung)

Kapitel ML:IV (Fortsetzung) Kapitel ML:IV (Fortsetzung) IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-18 Statistical Learning c STEIN 2005-2011 Satz 3 (Bayes)

Mehr

Trennende Markov Ketten

Trennende Markov Ketten Trennende Markov Ketten (in Zusammenarbeit mit A. Martinsson) Timo Hirscher Chalmers Tekniska Högskola Seminarvortrag KIT 8. Mai 206 Übersicht Der Seminarvortrag ist wie folgt gegliedert: Einleitung Denitionen

Mehr

Reinforcement Learning 2

Reinforcement Learning 2 Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Reinforcement Learning 2 Uwe Dick Inhalt Erinnerung: Bellman-Gleichungen, Bellman-Operatoren Policy Iteration Sehr große oder kontinuierliche

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

γ(a, γ(b, c)) = γ(γ(a, b), c)). γ(e, x) = γ(x, e) = x.

γ(a, γ(b, c)) = γ(γ(a, b), c)). γ(e, x) = γ(x, e) = x. Algebraische Strukturen, insbesondere Gruppen 1 Verknüpfungen M sei eine Menge. Dann heißt jede Abbildung γ : M M M eine Verknüpfung (jedem Paar von Elementen aus M wird auf eindeutige Weise ein Element

Mehr

Unendliche Potenzen. Thomas Peters Thomas Mathe-Seiten 7. August 2010

Unendliche Potenzen. Thomas Peters Thomas Mathe-Seiten  7. August 2010 Unendliche Potenzen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 7. August 00 In diesem Artikel werden wir uns einem zunächst bizarr anmutenden Thema widmen, nämlich den unendlichen Kettenbrüchen,

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller

Mehr

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 19.12.2013 Allgemeine Problemstellung

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 7 11. Mai 2010 Kapitel 8. Vektoren Definition 76. Betrachten wir eine beliebige endliche Anzahl von Vektoren v 1, v 2,..., v m des R n, so können

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung 0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau

Mehr

2. Algorithmen und Algorithmisierung Algorithmen und Algorithmisierung von Aufgaben

2. Algorithmen und Algorithmisierung Algorithmen und Algorithmisierung von Aufgaben Algorithmen und Algorithmisierung von Aufgaben 2-1 Algorithmisierung: Formulierung (Entwicklung, Wahl) der Algorithmen + symbolische Darstellung von Algorithmen Formalismen für die symbolische Darstellung

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Kombinatorische Spiele mit Zufallselementen

Kombinatorische Spiele mit Zufallselementen Kombinatorische Spiele mit Zufallselementen Die Realität ist nicht so streng determiniert wie rein kombinatorische Spiele. In vielen Situationen spielt der Zufall (Risko) eine nicht zu vernachlässigende

Mehr

Inhalt. 1. Einführung in die Informatik. 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele.

Inhalt. 1. Einführung in die Informatik. 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele. 1. Einführung in die Informatik Inhalt 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele Peter Sobe 1 Einführende Beispiele 2. Algorithmen Täglich werden Verarbeitungsvorschriften

Mehr

12. Vorlesung. 19. Dezember 2006 Guido Schäfer

12. Vorlesung. 19. Dezember 2006 Guido Schäfer LETZTE ÄNDERUNG: 6. JANUAR 007 Vorlesung: Einführung in die Spieltheorie WS 006/007. Vorlesung 9. Dezember 006 Guido Schäfer 4 Bayesian Games Wir haben bisher immer angenommen, dass jeder Spieler vollständige

Mehr

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,.

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,. 2 Folgen, Reihen, Grenzwerte 2.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind (n N; auch

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Multiplizitätskorrektur bei Variablenselektion

Multiplizitätskorrektur bei Variablenselektion Multiplizitätskorrektur bei Variablenselektion Seminar: Multiples Testen Dozent: Prof. Dr. T. Dickhaus Referent: Maximilian Mönch - 22.11.2010 - Überblick 1) Einleitung 2) Multiplizitätskorrektur 3) Median

Mehr

Exkurs: Dynamische Optimierung

Exkurs: Dynamische Optimierung Exkurs: Dynamische Optimierung Kapitel 4 Literatur Optimierung Mathematical Methods and Models for Economists, Angel de la Fuente, Cambridge University Press Bibliothekssignatur: QH 000FUE Seite 549 580

Mehr

7. Die Brownsche Bewegung

7. Die Brownsche Bewegung 7. DIE BROWNSCHE BEWEGUNG 7 5 5 50 00 50 200 250 0 5 20 Abbildung 7.: Pfad einer Brownschen Bewegung 7. Die Brownsche Bewegung Definition 7.. Ein cadlag stochastischer Prozess {W t } mit W 0 = 0, unabhängigen

Mehr

Welche Verteilung sollte ich verwenden?

Welche Verteilung sollte ich verwenden? Welche Verteilung sollte ich verwenden? Die Auswahl eines Verteilungstyps für eine Annahme ist einer der schwierigsten Schritte beim Erstellen eines Crystal Ball-Modells. Crystal Ball verfügt über 21 kontinuierliche

Mehr

K2 MATHEMATIK KLAUSUR 3

K2 MATHEMATIK KLAUSUR 3 K2 MATHEMATIK KLAUSUR 3 NACHTERMIN 2..23 Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max 3 5 5 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 3 4 5 3 4 4 3 Punkte WT Ana a b c Summe P. (max 8 4 3

Mehr

Approximation der Binomialverteilung durch die Normalverteilung

Approximation der Binomialverteilung durch die Normalverteilung R. Brinkmann http://brinkmann-du.de Seite 4.0.007 Approimation der Binomialverteilung durch die Normalverteilung Histogramme von Binomialverteilungen sind für nicht zu kleine n glockenförmig. Mit größer

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Monte Carlo Methoden

Monte Carlo Methoden Monte Carlo Methoden im Verstärkungslernen [Spink] Bryan Spink 2003 Ketill Gunnarsson [ ketill@inf.fu-berlin.de ], Seminar zum Verstärkungslernen, Freie Universität Berlin [ www.inf.fu-berlin.de ] Einleitung

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 5. Zwei spieltheoretische Aspekte Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2015/2016 1 / 36 Überblick

Mehr

14 Lineare Differenzengleichungen

14 Lineare Differenzengleichungen 308 14 Lineare Differenzengleichungen 14.1 Definitionen In Abschnitt 6.3 haben wir bereits eine Differenzengleichung kennengelernt, nämlich die Gleichung K n+1 = K n q m + R, die die Kapitalveränderung

Mehr

Wima-Praktikum 2: Bildsynthese-Phong

Wima-Praktikum 2: Bildsynthese-Phong Wima-Praktikum 2: Bildsynthese-Phong Wima-Praktikum 2: Prof. Dr. Lebiedz, M. Sc. Radic 1 Inhaltsverzeichnis 1 Einleitung 3 2 Kurze Beschreibung der Aufgabenstellung und dem Phong- Modell 3 3 Modellierung

Mehr

Computer Vision: Kalman Filter

Computer Vision: Kalman Filter Computer Vision: Kalman Filter D. Schlesinger TUD/INF/KI/IS D. Schlesinger () Computer Vision: Kalman Filter 1 / 8 Bayesscher Filter Ein Objekt kann sich in einem Zustand x X befinden. Zum Zeitpunkt i

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

2.2 Allgemeine (vergleichsbasierte) Sortierverfahren

2.2 Allgemeine (vergleichsbasierte) Sortierverfahren . Allgemeine (vergleichsbasierte) Sortierverfahren Vergleichsbaum: Der Aufbau des Verbleichsbaum ist für jeden Algorithmus und jede Eingabelänge n gleich. Jede Permutation der Eingabe, muss zu einem anderen

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Hidden Markov Modelle - 2 - Idee Zu klassifizierende Merkmalvektorfolge wurde von einem (unbekannten) System erzeugt. Nutze Referenzmerkmalvektorfolgen um ein Modell Des erzeugenden Systems zu bauen

Mehr

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen Kapitel 8 Schätzung von Parametern 8.1 Schätzmethoden Gegeben seien Beobachtungen Ü Ü ¾ Ü Ò die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen ¾ Ò auffassen. Die Verteilung

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Würfelspiele und Zufall

Würfelspiele und Zufall Würfelspiele und Zufall Patrik L. Ferrari 29. August 2010 1 Random horse die Irrfahrt des Pferdchens Betrachte ein Schachbrett mit einem Pferd (Springer), welches sich nach den üblichen Springer-Regeln

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Etwas Topologie Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Literatur Abraham, Marsden, Foundations of Mechanics, Addison Wesley 1978, Seiten 3 17 Definition. Ein topologischer

Mehr

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 7 Folgen in einem angeordneten Körper Wir beginnen mit einem motivierenden Beispiel. Beispiel 7.1. Wir wollen die Quadratwurzel einer natürlichen

Mehr

Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL (Prof. Dr. Lutz Arnold) Wintersemester 2009/

Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL (Prof. Dr. Lutz Arnold) Wintersemester 2009/ Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL (Prof. Dr. Lutz Arnold) Wintersemester 2009/10 2.3.2010 Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt:

Mehr

Seminar. Knowledge Engineering und Lernen in Spielen. Reinforcement Learning to Play Tetris. TU - Darmstadt Mustafa Gökhan Sögüt, Harald Matussek 1

Seminar. Knowledge Engineering und Lernen in Spielen. Reinforcement Learning to Play Tetris. TU - Darmstadt Mustafa Gökhan Sögüt, Harald Matussek 1 Seminar Knowledge Engineering und Lernen in Spielen Reinforcement Learning to Play Tetris 1 Überblick Allgemeines zu Tetris Tetris ist NP-vollständig Reinforcement Learning Anwendung auf Tetris Repräsentationen

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Grundlagen der Objektmodellierung

Grundlagen der Objektmodellierung Grundlagen der Objektmodellierung Daniel Göhring 30.10.2006 Gliederung Grundlagen der Wahrscheinlichkeitsrechnung Begriffe zur Umweltmodellierung Bayesfilter Zusammenfassung Grundlagen der Wahrscheinlichkeitsrechnung

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie

Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie Fakultät für Mathematik Prof. Dr. Barbara Gentz SS 2013 Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie Mittwoch, 10.7.2013 13. Markoffketten 13.1 Beispiele 1. Irrfahrt auf dem zweidimensionalen

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +.

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +. Mathematik für Informatiker B, SS 202 Dienstag 2.6 $Id: reihen.tex,v.8 202/06/2 0:59:50 hk Exp $ 7 Reihen Eine Reihe ist eine unendliche Summe a + a 2 + a 3 +. Die Summanden a i können dabei reell oder

Mehr

Politische Ökonomie Agency

Politische Ökonomie Agency 4.3. Agency Wähler: Prinzipal, Politiker: Agent. Agency-Problem: Politiker möchten Ressourcen abschöpfen: Rent seeking. Können Wähler Politiker disziplinieren? Brennan/Buchanan (1980): Staat als Leviathan,

Mehr

Intelligente Agenten

Intelligente Agenten Intelligente Agenten Einige einfache Überlegungen zu Agenten und deren Interaktionsmöglichkeiten mit ihrer Umgebung. Agent benutzt: Sensoren Aktuatoren (Aktoren; Effektoren) zum Beobachten/Mess seiner

Mehr

Modellgestützte Analyse und Optimierung Übungsblatt 8

Modellgestützte Analyse und Optimierung Übungsblatt 8 Fakultät für Informatik Lehrstuhl 4 Peter Buchholz, Jan Kriege Sommersemester 2015 Modellgestützte Analyse und Optimierung Übungsblatt 8 Ausgabe: 25.05.2015, Abgabe: 01.06.2015 (12 Uhr) Aufgabe 8.1: Berechnung

Mehr

SS 2016 Torsten Schreiber

SS 2016 Torsten Schreiber SS 01 Torsten Schreiber 15 Ein lineares Gleichungssystem besteht immer aus einer Anzahl an Variablen und Gleichungen. Die Zahlen vor den Variablen werden in der sogenannten zusammen gefasst und die Zahlen

Mehr

= =

= = 9. Januar 2007 Arbeitsblatt 9 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/07 19.12.06 Präsenzaufgaben: 1. Zu Beginn

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik Informationsbestände analysieren Statistik 8. Statistik Nebst der Darstellung von Datenreihen bildet die Statistik eine weitere Domäne für die Auswertung von Datenbestände. Sie ist ein Fachgebiet der Mathematik

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SS 2012 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Alexander Breuer Dipl.-Math. Dipl.-Inf. Jürgen Bräckle Dr.-Ing. Markus

Mehr

LOOP-Programme: Syntaktische Komponenten

LOOP-Programme: Syntaktische Komponenten LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; :=

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

F u n k t i o n e n Gleichungssysteme

F u n k t i o n e n Gleichungssysteme F u n k t i o n e n Gleichungssysteme Diese Skizze ist aus Leonardo da Vincis Tagebuch aus dem Jahre 149 und zeigt wie sehr sich Leonardo für Proportionen am Menschen interessierte. Ob er den Text von

Mehr

Optimale Strategie für das Würfelspiel Zehntausend

Optimale Strategie für das Würfelspiel Zehntausend Optimale Strategie für das Würfelspiel Zehntausend David Peter 30. Oktober 2013 Um eine optimale Strategie für Zehntausend zu entwickeln, führen wir die Funktion E(p, n) ein, die den Erwartungswert an

Mehr

Seminar für Fragen der Festkörpertheorie. P.N. Racec

Seminar für Fragen der Festkörpertheorie. P.N. Racec Seminar für Fragen der Festkörpertheorie P.N. Racec WS2003/2004 2 Contents Spezialthemen in Festkörperphysik 5. Fermi-Dirac Verteilungsfunktion........................ 6.2 Bose-Einstein Verteilungsfunktion.......................

Mehr

Aufgabe 1 (23 Punkte)

Aufgabe 1 (23 Punkte) Aufgabe 1 (23 Punkte) Betrachtet werden zwei Personen 1 und 2, die in einer Wohngemeinschaft leben, mit den folgenden Nutzenfunktionen: sowie u 1 (x 1, G) = x 1 G u 2 (x 2, G) = x 2 G x 1 beziehungsweise

Mehr

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014 Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen

Mehr

Die Kopplung von Markovketten und die Irrfahrt auf dem Torus

Die Kopplung von Markovketten und die Irrfahrt auf dem Torus Die Kopplung von Markovketten und die Irrfahrt auf dem Torus Verena Monschang Vortrag 20.05.20 Dieser Seminarvortrag thematisiert in erster Linie die Kopplung von Markovketten. Zu deren besseren Verständnis

Mehr

5. Clusteranalyse. Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften

5. Clusteranalyse. Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften 5. Clusteranalyse Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften benennen und anwenden können, einen Test auf das Vorhandensein einer Clusterstruktur kennen, verschiedene

Mehr

Vorlesung 4: Lösungen der Transportgleichung Partikelverfahren Prof. Sabine Attinger, Jun-Prof. Anke Hildebrandt

Vorlesung 4: Lösungen der Transportgleichung Partikelverfahren Prof. Sabine Attinger, Jun-Prof. Anke Hildebrandt Vorlesung 4: Lösungen der Transportgleichung Partikelverfahren Prof. Sabine Attinger, Jun-Prof. Anke Hildebrandt 04.06.2012 Folie 1 Überblick 1. Einführung in Partikelverfahren- Lagrange vs. Eulersche

Mehr

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2007 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2007 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten Mathematik Arbeitszeit: 180 Minuten Es sind die drei Pflichtaufgaben und zwei Wahlpflichtaufgaben zu bearbeiten. Seite 1 von 6 Pflichtaufgaben Pflichtaufgabe 1 (erreichbare BE: 10) a) Formen Sie (3 2x)²

Mehr

Einführung in neuronale Netze

Einführung in neuronale Netze Einführung in neuronale Netze Florian Wenzel Neurorobotik Institut für Informatik Humboldt-Universität zu Berlin 1. Mai 2012 1 / 20 Überblick 1 Motivation 2 Das Neuron 3 Aufbau des Netzes 4 Neuronale Netze

Mehr

Und so weiter... Annäherung an das Unendliche Lösungshinweise

Und so weiter... Annäherung an das Unendliche Lösungshinweise Stefanie Anzenhofer, Hans-Georg Weigand, Jan Wörler Numerisch und graphisch. Umfang einer Quadratischen Flocke Abbildung : Quadratische Flocke mit Seitenlänge s = 9. Der Umfang U der Figur beträgt aufgrund

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Überblick Bessere Modelle, die nicht nur den Mittelwert von Referenzvektoren sondern auch deren Varianz berücksichtigen Weniger Fehlklassifikationen Mahalanobis Abstand Besseres Abstandsmaß basierend

Mehr

5. Lernregeln für neuronale Netze

5. Lernregeln für neuronale Netze 5. Lernregeln für neuronale Netze 1. Allgemeine Lokale Lernregeln 2. Lernregeln aus Zielfunktionen: Optimierung durch Gradientenverfahren 3. Beispiel: Überwachtes Lernen im Einschicht-Netz Schwenker NI1

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen Mathematik für Physiker I, WS 200/20 Freitag 0.2 $Id: folgen.tex,v. 200/2/06 :2:5 hk Exp $ $Id: reihen.tex,v. 200/2/0 4:4:40 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Cauchyfolgen Wir kommen nun

Mehr

Bachelorarbeit. Patrick Boekhoven Entwicklung eines Reinforcement Learning Frameworks auf Basis eines Agentensystems

Bachelorarbeit. Patrick Boekhoven Entwicklung eines Reinforcement Learning Frameworks auf Basis eines Agentensystems Bachelorarbeit Patrick Boekhoven Entwicklung eines Reinforcement Learning Frameworks auf Basis eines Agentensystems Fakultät Technik und Informatik Department Informatik Faculty of Engineering and Computer

Mehr