Übung 3 - Musterlösung

Größe: px
Ab Seite anzeigen:

Download "Übung 3 - Musterlösung"

Transkript

1 Experientalphysik 2 für Lehratskandidaten und Meteorologen 5. Mai 200 Übungsgruppenleiter: Heiko Dulich Übung 3 - Musterlösung Aufgabe 6: Wann funkt es? Eigene Koordinaten r 2, 2. Hohlkugel: Koordinaten r 2,, Radius r k c 0 2, Ladung µc 0 6 C. Durchschlagsfeldstärke in Luft E Blitz 3000/ /. a Spannung U φ k φ 0, it φ k 4πε 0 r k de Potential der Hohlkugel und φ 0 0 de Potential von ir Annahe: Ich bin geerdet und nicht statisch geladen. Einsetzen in U liefert: U φ k φ 0 Elektrisches Feld bei ir E r r 4πε 0 r k k. 4πε 0 r r 2 r r r r 4πε 0 r r 2 e r E r r 2 x + r r 2 y Einsetzen in E liefert: e r, it r r 4, 3 und E Der Betrag des elektrischen Feldes ist also E } {{ } e r b U die Entfernung zu bestien, ab de ein Blitz auftreten kann, ist die Durchschlagsfeldstärke E Blitz / entscheidend. Die Hohlkugel hat ein Potential von φ k und wir benötigen die Entfernung, an de die Spannung auf angestiegen ist. D.h x [in ] 3 06 x Wir erhalten eine Entfernung von ab der ein Blitz auftreten kann, wobei wir für die einfachere Berechnung der Koordinaten 0.3 annehen. Da wir uns über den direkten Weg nähern wollen, üssen wir den Einheitsvektor e r betrachten, den wir in a berechnet haben als e r 5 4, 3. Hieraus ergeben sich eine neuen Koordinaten aus

2 r Blitz r + x e r c Die Energie ist W 2 CU2. Die Spannung haben wir in a it U berechnet. Wir benötigen noch die Kapazität der Hohlkugel C k 4πε 0 r k F, u die Energie zu bestien. Diese ergibt sich soit zu: W 2 C ku J. d U das Dipolfeld berechnen zu können, benötigen wir die elektrischen Felder beider Hohlkugeln. Das elektrische Feld der ersten Hohlkugel E a Ort r 2, haben wir in a berechnet. Das elektrische Feld der zweiten geladenen Hohlkugel a Punkt r 2.3, bei ir a Ort r 2, 2 erhalten wir äquivalent zu der Rechnung in a. Elektrisches Feld bei ir r r E 2 4πε 0 r r e r r 2 4πε 0 r r 2 2 r E e r, it r r 2 3.3, 3 und r r Einsetzen in E 2 liefert: E Der Betrag des elektrischen Feldes ist also E } {{ } e r Für das Dipolfeld bei ir a Ort r 2, 2 ergibt sich it E Dipol E + E 2 E Dipol Für den Betrag des Dipolfeldes E Dipol folgt also: E Dipol

3 Betrachten wir nun die Fernfeldnäherung E FF r r Dipol 4πε 0 r r Dipol 3 3 p cos θ r r Dipol p, wobei r 2, 2 eine Koordinaten sind, r Dipol 2 r + r 2.65, der ektor zu Mittelpunkt des Dipols ist und p d 0 6 C 0.7, C,0C das elektrische Dipoloent it d r r 2 0.7,0 ist. Wir üssen noch den ektor zwischen ir und de Mittelpunkt des Dipols und dessen Betrag berechnen r r Dipol r r Dipol 3.65, , daraus folgt für den Einheitsvektor e r r r Dipol / r r Dipol , U den Ausdruck aus Gleichung auswerten zu können, üssen wir noch p cos θ berechnen: p cos θ p e r C. Wir können jetzt alle Tere in Gleichung einsetzen und erhalten für das Dipolfeld in der Fernfeldnäherung: E FF C C Für den Betrag ergibt sich E FF C 0C Die Abweichung zwischen Näherung und exakte Ausdruck beträgt in diese Fall also unter %, wobei die x-koponente für den exakten Fall geringer ist als für den Fernfeld Fall, jedoch bei der y-koponente ist dies genau ugekehrt. In Abhängigkeit der benötigten Genauigkeit kann an dann entscheiden, ob an sich bereits i Fernfeld befindet oder ob an exakt rechnen uss. Aufgabe 7: Energiespeicher Plattenkondensator it Fläche A 4 2, Plattenabstand d und Plexiglasplatte als Dielektriku it ε 3.4 füllt den Kondensator genau aus. a Kapazität des Plattenkondensators C ε ε 0 A d it Dielektriku. Ohne Dielektriku: C C F. it ε für den Fall ohne Dielektriku und ε 3.4 3

4 Mit Dielektriku: C ε F. b U die gespeicherte Energie zu berechnen benutzen wir W 2 CU2 it U 00, hieraus folgt: Aufladung it Dielektriku: W i 2 C εu J. Nach de Herausziehen: W f 2 C 0U J. Unterschied: W W f W i J, d.h. die gespeicherte Energie sinkt u den Faktor ε. c Zu Beginn hat der Kondensator die in b berechnete Energie W i J gespeichert. Die Ladung auf de Kondensator ist konstant C U const. C ε U ε F C, da er von der Spannungsquelle abgetrennt wurde. D.h. bei Herausziehen des Dielektrikus ändert sich die Spannung. Für den Kondensator it herausgezogene Dielektriku folgt dann also für die Spannung: U 0 C Für die Energie folgt soit für den Kondensator it herausgezogene Dielektriku W 2 2 C 0U J, it de Unterschied W W f W i J, d.h. die gespeicherte Energie steigt u den Faktor ε. d Wir haben 4 Kondensatoren und 4 Plexiglasplatten. Der gespeicherte Energiebetrag wird axiiert, wenn wir die Kondensatoren parallel schalten und die Plexiglasplatten in den Kondensatoren haben. Die Kapazität ergibt sich für die 4 parallel geschaltete Kondensatoren it Dielektriku Plexiglasplatte über C ges 4 C ε F, soit folgt für den gespeicherten Energiebetrag: W 2 C gesu J. Weiter gesteigert werden kann dies noch, wenn an die Prozedur wie in Aufgabenteil c durchführt und die Spannungsquelle von den Kondensatoren trennt und dann die Dielektrika aus den Kondensatoren entfernt. Dann kann ein Energiebetrag von W ax εw J, gespeichert werden. 4

5 Aufgabe 8: orsicht! Richtig oder falsch? a Durch Reibung eines Glasstabs it eine Katzenfell werden Ladungen getrennt und positive verbleiben auf de Glasstab. b I elektrischen Feld ist Energie gespeichert die in diversen Foren entnoen werden kann. c d Influenz und Polarisation ist nicht dasselbe. Influenz auf Leitern kopensiert das Feld vollständig, Polarisation in Isolatoren nur teilweise. e Ier wenn das Potenzial konstant ist, ist das elektrische Feld 0. f Alle Ladungen sind uellen oder Senken das elektrischen Feldes. g h Bei gleicher Spannung enthält ein Kondensator it großen Kapazität ehr Ladungen als einer it kleiner Kapazität. 5

Übungsaufgaben z. Th. Plattenkondensator

Übungsaufgaben z. Th. Plattenkondensator Übungsaufgaben z. Th. Plattenkondensator Aufgabe 1 Die Platten eines Kondensators haben den Radius r 18 cm. Der Abstand zwischen den Platten beträgt d 1,5 cm. An den Kondensator wird die Spannung U 8,

Mehr

Zusammenfassung v06 vom 2. Mai 2013

Zusammenfassung v06 vom 2. Mai 2013 Zusammenfassung v06 vom 2. Mai 2013 Ausflug in die Kernphysik: Atomkerne des Elements Sym werden durch Angabe der Massenzahl A und Kernladungszahl Z spezifiziert: A = Z + N, wobei N die Neutronenzahl ist.

Mehr

Physik I TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1

Physik I TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1 Physik I TU Dortmund SS18 Götz Uhrig Shaukat Khan Kapitel 1 Kugelkondensator Radien a (innen) und b (außen), Ladung ±. In der inneren Hohlkugel ist das E-Feld null (wie in jeder Hohlkugel, s. oben), außerhalb

Mehr

2 Das elektrostatische Feld

2 Das elektrostatische Feld Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche

Mehr

Grundlagen der Physik 2 Lösung zu Übungsblatt 6

Grundlagen der Physik 2 Lösung zu Übungsblatt 6 Grundlagen der Physik Lösung zu Übungsblatt 6 Daniel Weiss 17. Mai 1 Inhaltsverzeichnis Aufgabe 1 - Helholtz-Spulen 1 a) agnetische Feldstärke.............................. 1 b) hoogenes Feld..................................

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Übung 1 - Angabe Technische Universität München 1 Fakultät für Physik 1 Kupfermünze Die alte, von 1793 bis 1837 geprägte Pennymünze in den USA bestand aus reinem

Mehr

Übung 1 - Musterlösung

Übung 1 - Musterlösung Experimentalphysik für Lehramtskandidaten und Meteorologen 8. April 00 Übungsgruppenleiter: Heiko Dumlich Übung - Musterlösung Aufgabe Wir beginnen die Aufgabe mit der Auflistung der benötigten Formeln

Mehr

Gedächtnisprotokoll GGET 3 Klausur Vorwort:

Gedächtnisprotokoll GGET 3 Klausur Vorwort: Gedächtnisprotokoll GGET 3 Klausur 2010 Vorwort: Es handelt sich wieder einmal um ein Gedächtnisprotokoll, das direkt nach der Klausur erstellt wurde. Die Aufgaben entsprechen also in grober Näherung dem

Mehr

Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r

Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r Blatt 1 (von 2) 1. Ladung der Erde 6 BE a) Leite aus dem oulombpotential die Beziehung = 4πε o r für die Kapazität einer leitenden Kugel mit Radius r her. In der Atmosphäre herrscht nahe der Erdoberfläche

Mehr

K l a u s u r N r. 2 Gk Ph 12

K l a u s u r N r. 2 Gk Ph 12 0.2.2009 K l a u s u r N r. 2 Gk Ph 2 ) Leiten Sie die Formel für die Gesamtkapazität von drei in Serie geschalteten Kondensatoren her. (Zeichnung, Formeln, begründender Text) 2) Berechnen Sie die Gesamtkapazität

Mehr

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz 5 Elektrizität und Magnetismus 5.5 Elektrisches Zentralfeld, Coulombsches Gesetz Elektrisches Zentralfeld Kugel mit Radius r um eine Punktladung = ǫ 0 Ed A = ǫ 0 E E d A Kugel da = ǫ 0 E(4πr 2 ) (5.26)

Mehr

Felder und Wellen WS 2017/2018. D = D r e r. 2πrlD r = Q

Felder und Wellen WS 2017/2018. D = D r e r. 2πrlD r = Q Felder und Wellen WS 2017/2018 Musterlösung zur 5 Übung 12 Aufgabe Berechnung der allgemeinen Kapazität eines Zylinderkondensators Die elektrische Verschiebungsdichte ist radial gerichtet D = D r Auf einer

Mehr

INSTITUT FÜR HOCHSPANNUNGSTECHNIK UND ELEKTRISCHE ENERGIEANLAGEN. Übungen zur Vorlesung. Grundlagen der Elektrotechnik für Maschinenbauer

INSTITUT FÜR HOCHSPANNUNGSTECHNIK UND ELEKTRISCHE ENERGIEANLAGEN. Übungen zur Vorlesung. Grundlagen der Elektrotechnik für Maschinenbauer INSTITUT FÜR HOCHSPANNUNGSTECHNIK UND ELEKTRISCHE ENERGIEANLAGEN Übungen zur Vorlesung Grundlagen der Elektrotechnik für Maschinenbauer SS 009 Betreuung durch: Dipl.-Ing. Michael Budde Schleinitzstr. 3

Mehr

Aufgaben zum Kondensator - ausgegeben am

Aufgaben zum Kondensator - ausgegeben am Aufgaben zum Kondensator - ausgegeben am 17.09.2012 konden2_17_09_2012.doc 1.Aufgabe: Ein Kondensator hat die Plattenfläche A 1,2 10-2 m 2, den Plattenabstand d 0,5 mm und die Ladung Q 2,6 10-7 C. Berechnen

Mehr

Polarisierung und Magnetisierung

Polarisierung und Magnetisierung Übung 2 Abgabe: 10.03. bzw. 14.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisierung und Magnetisierung 1 Mathematische

Mehr

= Dimension: = (Farad)

= Dimension: = (Farad) Kapazität / Kondensator Ein Kondensator dient zur Speicherung elektrischer Ladung Die Speicherkapazität eines Kondensators wird mit der Größe 'Kapazität' bezeichnet Die Kapazität C ist definiert als: Dimension:

Mehr

Plattenkondensator C Q U C Q U DA. 0 8, As. [U] 1As V 1Farad 1F. E s. E s 0 r E A

Plattenkondensator C Q U C Q U DA. 0 8, As. [U] 1As V 1Farad 1F. E s. E s 0 r E A Plattenkondensator Seite 1 von 16 Kapazität C eines Kondensators Capacitance C of a capacitor Definition C Q U Einheit [C] [ Q] [U] 1As V 1Farad 1F C Q U DA E s 0 r E A E s A Fläche der Kondensatorplatten

Mehr

Übungsblatt 03. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 03. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 03 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 29. 11. 2004 oder 6. 12. 2004 1 Aufgaben 1. In einer Metall-Hohlkugel (Innenradius

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Aufgaben

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Aufgaben Physik-Department Ferienkurs zur Experimentalphysik 2 - Aufgaben Daniel Jost 26/08/13 Technische Universität München Aufgabe 1 Gegeben seien drei Ladungen q 1 = q, q 2 = q und q 3 = q, die sich an den

Mehr

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung:

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung: 3.11 Der Kondensator In den vorangegangenen Kapiteln wurden die physikalischen Eigenschaften von elektrischen Ladungen und Feldern näher untersucht. In vielen Experimenten kamen dabei bereits Kondensatoren

Mehr

Übungsblatt 3 - Lösungen

Übungsblatt 3 - Lösungen Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.

Mehr

r = F = q E Einheit: N/C oder V/m q

r = F = q E Einheit: N/C oder V/m q 1 Wiederholung: Elektrische Ladung: Einheit 1 Coulomb = 1 C (= 1 As) Elementarladung e = 1.6 10 19 C Kraft zwischen zwei elektrischen Ladungen: r F ' Q1 Q = f 2 r 2 r e r f ' = 8.99 10 9 Nm 2 C 2 Elektrische

Mehr

2. Klausur in K1 am

2. Klausur in K1 am Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 00 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

1.12. MAKROSKOPISCHE ELEKTROSTATIK 87. In den vorangegangenen Abschnitten hatten wir die beiden Grundgleichungen der Elektrostatik.

1.12. MAKROSKOPISCHE ELEKTROSTATIK 87. In den vorangegangenen Abschnitten hatten wir die beiden Grundgleichungen der Elektrostatik. .. MAKROSKOPISCHE ELEKTROSTATIK 87. Makroskopische Elektrostatik.. Polarisation, dielektrische erschiebung In den vorangegangenen Abschnitten hatten wir die beiden Grundgleichungen der Elektrostatik rot

Mehr

Im folgenden Schaltkreis beobachtet man eigenartige Phänomene: = > Beim Einschalten leuchtet die Glühbirne für

Im folgenden Schaltkreis beobachtet man eigenartige Phänomene: = > Beim Einschalten leuchtet die Glühbirne für + Kapitel 4 KAPAZITÄT und ENERGIE 4. Kondensator Ein Kondensator besteht typischerweise aus zwei Leiterplatten, die sich in einem kleinen Abstand voneinander befinden. Meist liegt zwischen den Elektroden

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 4 - letzte Übung in

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 05.

Mehr

Experimentalphysik 2

Experimentalphysik 2 Repetitorium zu Experimentalphysik 2 Ferienkurs am Physik-Department der Technischen Universität München Gerd Meisl 5. August 2008 Inhaltsverzeichnis 1 Übungsaufgaben 2 1.1 Übungsaufgaben....................................

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt Dr.

Mehr

Physik Klausur

Physik Klausur Physik Klausur 1.1 1 6. November 00 Aufgaben Aufgabe 1 a) Eine Kugel mit der Ladung q 3 nc und der Masse m 1 g hängt an einem Faden der Länge l 1 m. Der Kondersator hat den Plattenabstand d 0 10 cm und

Mehr

Inhalt. 10. Elektrostatik. 10. Elektrostatik

Inhalt. 10. Elektrostatik. 10. Elektrostatik Inhalt 10. Elektrostatik 10.1 Elektrische Ladung 10.2 Coulombsches Gesetz 10.3 Elektrisches Feld 10.4 Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität 1.1 Der Raum 10.1 Elektrische

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Elektrisches Potenzial V U Äuipotenzialflächen Potenzial einer Punktladung V 4πε R Potenzial eines elektrischen Dipols V p

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 1 Thema: Elektrostatik Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Ladungen und Coulomb-Gesetz...................

Mehr

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz KRG NW, Physik Klasse 10, Kräfte auf Ladungen, Kondensator, Fachlehrer Stahl Seite 1 Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz Kraft auf eine Probeladung q im elektrischen Feld (homogen,

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 3 Bearbeitung: 25.11.2011

Mehr

2. Aufgabenkomplex. Übung und Seminar zur Vorlesung. Grundlagen der Technischen Informatik 1

2. Aufgabenkomplex. Übung und Seminar zur Vorlesung. Grundlagen der Technischen Informatik 1 . Aufgabenkoplex Übung zur orlesung Grundlagen der Technischen Inforatik Winterseester 9 Übung und Seinar zur orlesung Grundlagen der Technischen Inforatik. Aufgabenkoplex..9 Johannisgasse 6 43 Leipzig

Mehr

Abstrahlung von Quellen, Green sche Funktionen

Abstrahlung von Quellen, Green sche Funktionen Übung 7 Abgabe: 24.4. bzw. 27.4.218 Elektroagnetische Felder & Wellen Frühjahrsseester 218 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Abstrahlung von Quellen, Green sche Funktionen 1 Nahfeld

Mehr

Übungsblatt 03 Grundkurs IIIb für Physiker

Übungsblatt 03 Grundkurs IIIb für Physiker Übungsblatt 03 Grundkurs IIIb für Physiker Othmar Marti, (othmar.marti@physik.uni-ulm.de) 8.. 2002 oder 25.. 2002 Aufgaben für die Übungsstunden Elektrostatisches Potential,. Zwei identische, ungeladene,

Mehr

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.)

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) 1 Grieskörner schwimmen in Rhizinusöl. Weil sie kleine Dipole werden, richten sie sich entlang der Feldlinien

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 26/8/13 Technische Universität München Abbildung 1: Punktladungen 1 Aufgaben zur Elektrostatik Aufgabe 1 Gegeben seien drei

Mehr

Der Ladungsbetrag Q, den jede Kondensatorplatten aufnimmt, ist dabei proportional zur angelegten. Q U = konst.

Der Ladungsbetrag Q, den jede Kondensatorplatten aufnimmt, ist dabei proportional zur angelegten. Q U = konst. I. Elektrostatik ==================================================================. Das elektrische Feld eines Plattenkondensators Ein Plattenkondensator besteht aus zwei sich parallel gegenüberliegenden

Mehr

Ferienkurs Sommersemester 2011

Ferienkurs Sommersemester 2011 Ferienkurs Sommersemester 2011 Experimentalphysik II Elektrostatik - Übung Steffen Maurus 1 1 Elektrostatik Eine primitive Möglichkeit Ladungen zu messen, ist sie auf 2 identische leitende Kugeln zu verteilen,

Mehr

Elektrische Feldlinien ****** 1 Motivation

Elektrische Feldlinien ****** 1 Motivation 6.1.13 ****** 1 Motivation Die elektrischen Feldlinien unterschiedlich angeordneter elektrisch geladener Leiter werden durch dünne Polyamidfasern sichtbar gemacht. 2 xperiment Abbildung 1: Versuchsaufbau

Mehr

Zulassungstest zur Physik II für Chemiker

Zulassungstest zur Physik II für Chemiker SoSe 2016 Zulassungstest zur Physik II für Chemiker 03.08.16 Name: Matrikelnummer: T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T TOT.../4.../4.../4.../4.../4.../4.../4.../4.../4.../4.../40 R1 R2 R3 R4 R TOT.../6.../6.../6.../6.../24

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) WiSe 7/8 Klassische Theoretische Physik III Elektrodynamik Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 3 Ausgabe: Fr,..7 Abgabe: Fr, 7..7 Besprechung: Mi,..7 Aufgabe 8: Prolate

Mehr

Das elektrische Feld

Das elektrische Feld Das elektrische Feld 1. In Muskel- und Nervenzellen besteht eine elektrische Spannung quer durch die Zellmembran. Die Größe der Spannung beträgt 90mV im Ruhezustand, die Dicke der Membran beträgt 4 5nm.

Mehr

Inhalt. Kapitel 3: Elektrisches Feld

Inhalt. Kapitel 3: Elektrisches Feld Inhalt Kapitel 3: Ladung Elektrische Feldstärke Elektrischer Fluss Elektrostatische Felder Kapazität Kugel- und Plattenkondensator Energie im elektrostatischen Feld Ladung und Feldstärke Ladung Q = n e,

Mehr

Experimentalphysikalisches Seminar II. Präsentationsversuch: Elektrisches Feld/Elektrostatik

Experimentalphysikalisches Seminar II. Präsentationsversuch: Elektrisches Feld/Elektrostatik Experimentalphysikalisches Seminar II Präsentationsversuch: Elektrisches Feld/Elektrostatik Blitze über dem Maracaibo-See (Bild: NASA) Einleitung Das Elektrische Feld stellt ein zentrales Konzept der Physik

Mehr

9. Elektrostatik Physik für Informatiker. 9. Elektrostatik

9. Elektrostatik Physik für Informatiker. 9. Elektrostatik 9. Elektrostatik 9.1 Elektrische Ladung 9.2 Coulombsches Gesetz 9.3 Elektrisches Feld 9.4 Kraft auf Ladungen 9.5 Elektrisches Potential 9.6 Elektrische Kapazität 9.1 Elektrische Ladung Es gibt (genau)

Mehr

Musterlösungen zur Übung Elektrotechnik 2 SS 2013

Musterlösungen zur Übung Elektrotechnik 2 SS 2013 TNF Musterlösungen zur Übung Elektrotechnik 2 SS 2013 Übungsleiter: Christian Diskus Martin Heinisch Erwin Reichel Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69, 4040 Linz, Internet:

Mehr

E q q 4. Die elektrische Feldstärke ist eigentlich ein Vektor der in Richtung der Coulombkraft zeigt falls eine (positive) Ladung q vorhanden wäre.

E q q 4. Die elektrische Feldstärke ist eigentlich ein Vektor der in Richtung der Coulombkraft zeigt falls eine (positive) Ladung q vorhanden wäre. 11.3 Elektrische Feldstärke Hat man eine Ladung Q und bringt in deren Nähe eine zweite Ladung q so erfährt die zweite Ladung eine abstoßende bzw. anziehende Kraft F C. Da diese Kraft an jeder Stelle in

Mehr

Aufgabe 1 Kondensatorformel

Aufgabe 1 Kondensatorformel Physikklausur Elektrische Felder Tarmstedt, 02.10.2009 erhöhtes Niveau (Folker Steinkamp) Ph_eN_2011 Name: Punkte: von Notenp. Zensur Aufgabe 1 Kondensatorformel Versuchsbeschreibung: Lädt man einen Kondensator

Mehr

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte)

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte) Aufgabe K: Potential einer Hohlkugel ( + 7 + = Punkte) (a) Leiten Sie die integrale Form der Maxwell Gleichungen der Elektrostatik aus den entsprechenden differentiellen Gleichungen her. Differentielle

Mehr

Versuch 10. Die Potentialwaage. Sommersemester Daniel Scholz. Gruppe: 13

Versuch 10. Die Potentialwaage. Sommersemester Daniel Scholz. Gruppe: 13 Physikalisches Praktikum für das Hauptfach Physik Versuch 10 Die Potentialwaage Sommersemester 2005 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail: physik@mehr-davon.de Gruppe: 13 Assistent: Sarah

Mehr

Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert.

Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert. Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert. 11.1 Grundlagen Versuch 1: "Der geladene Schüler" Beobachtungen:

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Technische Universität München Physik Department Ferienkurs Experimentalphysik 2 Vorlesung 1: Elektrostatik Tutoren: Elena Kaiser Matthias Golibrzuch Nach dem Skript Konzepte der Experimentalphysik 2:

Mehr

R C 1s =0, C T 1

R C 1s =0, C T 1 Aufgaben zum Themengebiet Aufladen und Entladen eines Kondensators Theorie und nummerierte Formeln auf den Seiten 5 bis 8 Ein Kondensator mit der Kapazität = 00μF wurde mit der Spannung U = 60V aufgeladen

Mehr

Tutorium Physik 2. Elektrizität

Tutorium Physik 2. Elektrizität 1 Tutorium Physik 2. Elektrizität SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 10. ELEKTRIZITÄT 4 10.1 Coulombkraft:

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

PHYSIK I. Sommersemester 2007

PHYSIK I. Sommersemester 2007 Testprüfung, Musterlösung 1. Einfache Mechani Die Perle hat nur einen Freiheitsgrad, sie ann sich nur entlang des Drahtes bewegen. Wir bezeichnen den Abstand der Perle von der Drehachse it r. Auf die Perle

Mehr

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität 1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität Ladung und Stromstärke Die Einheit der Stromstärke wurde früher durch einen chemischen Prozess definiert; heute

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur

Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2014-2 1 Aufgabe 1 ( 7 Punkte) Eine ebene Welle der Form E = (E x, ie x, 0) exp{i(kz + ωt)} trifft aus dem Vakuum bei z = 0 auf ein Medium mit ε = 6 und

Mehr

PS II - GLET

PS II - GLET Grundlagen der Elektrotechnik PS II - GLET 02.03.2012 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 4 2 7 14 4 4 4 erreicht Aufgabe 8 9 10 11 Summe Punkte 22 4 4 6 75 erreicht Hinweise: Schreiben

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 19/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Elektrizitätslehre Teil 2 Kondensator Kondensator Im einfachsten Fall besteht ein Kondensator aus

Mehr

Physikalische Chemie II (PCII) Thermodynamik/Elektrochemie Vorlesung und Übung (LSF# & LSF#101277) - SWS: SoSe 2013

Physikalische Chemie II (PCII) Thermodynamik/Elektrochemie Vorlesung und Übung (LSF# & LSF#101277) - SWS: SoSe 2013 Physikalische Chemie II (PCII) Thermodynamik/Elektrochemie Vorlesung und Übung (LSF#105129 & LSF#101277) - SWS: 4 + 2 SoSe 2013 Prof. Dr. Petra Tegeder Ruprecht-Karls-Universität Heidelberg; Fachbereich

Mehr

Das elektrische Potential

Das elektrische Potential Das elektrische Potential Wir gehen nun genauso wie in der Mechanik vor: nachdem wir die elektrische Kraft diskutiert und durch eine Feldgröße beschrieben haben (das elektrische Feld E), betrachten wir

Mehr

Übungsaufgabe z. Th. Coulombfeld

Übungsaufgabe z. Th. Coulombfeld Übungsaufgabe z. Th. Coulombfeld Aufgabe In einem zweidimensionalen Koordinatensystem sind die beiden gleich großen positiven Punktladungen und mit gegeben. 2 0 9 C Die Ladung befindet sich auf der negativen

Mehr

1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4

1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4 Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Feldstärke E............................... 3 1.2 Potential, potentielle Energie............................ 4 1.3 Kondensator.....................................

Mehr

Übungsblatt 05 (Hausaufgaben)

Übungsblatt 05 (Hausaufgaben) Übungsblatt 05 (Hausaufgaben) Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik.05.008 Aufgaben 1. Welche Spannung muss ein Elektron im Vakuum durchlaufen, um

Mehr

Physik. Abiturwiederholung. Das Elektrische Feld

Physik. Abiturwiederholung. Das Elektrische Feld Das Elektrische Feld Strom Strom ist bewegte Ladung, die Stromstärke ergibt sich also als Veränderung der Ladung nach der Zeit, also durch die Ableitung. Somit kann man die Ladung als Fläche betrachten,

Mehr

Grundlagen der Elektrotechnik II Übungsaufgaben

Grundlagen der Elektrotechnik II Übungsaufgaben Grundlagen der Elektrotechnik II Übungsaufgaben Mag. Manfred Smolik Wien, 2. Juni 2016 Inhaltsverzeichnis 1 Kondensator 1 2 Magnetische Feldstärke 4 3 Magnetischer Fluss, magnetische Flussdichte 6 4 Induktivität

Mehr

Lösung für Blatt 7,,Elektrodynamik

Lösung für Blatt 7,,Elektrodynamik Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert

Mehr

F q. Aufgaben zum elektrischen Feld. Aufgabe 1 - Größenbeziehungen im elektrischen Feld. Aufgabe 2 - Bandgenerator tan. gesucht: Kraft der Kugel

F q. Aufgaben zum elektrischen Feld. Aufgabe 1 - Größenbeziehungen im elektrischen Feld. Aufgabe 2 - Bandgenerator tan. gesucht: Kraft der Kugel ufgaben zum elektrischen eld ufgabe - Größenbeziehungen im elektrischen eld E,79 0 3 q,5 0 4 gegeben: r 5,0 0 m gesucht: Kraft der Kugel Lösung: E q q E 4 3,5 0,790,69 Berechnung der felderzeugenden Ladung

Mehr

Das statische elektrische Feld

Das statische elektrische Feld Das statische elektrische Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis 1 Darstellung eines elektrischen Feldes (6 Std.) Wiederholung Die elektrische Ladung Das elektrische Feld

Mehr

Das Wort Kondensator leitet sich vom lateinischen condensare (= verdichten, dicht zusammenpressen) her.

Das Wort Kondensator leitet sich vom lateinischen condensare (= verdichten, dicht zusammenpressen) her. 3.1 Aufbau Das Wort Kondensator leitet sich vom lateinischen condensare (= verdichten, dicht zusammenpressen) her. In der Elektrotechnik handelt es sich bei einem Kondensator um ein Bauelement, dass in

Mehr

Der Elektrik-Trick für die Mittelstufe. Das Wort Kondensator leitet sich vom lateinischen condensare (= verdichten, dicht zusammenpressen) her.

Der Elektrik-Trick für die Mittelstufe. Das Wort Kondensator leitet sich vom lateinischen condensare (= verdichten, dicht zusammenpressen) her. Der Kondensator 1. Aufbau Das Wort Kondensator leitet sich vom lateinischen condensare (= verdichten, dicht zusammenpressen) her. In der Elektrotechnik handelt es sich bei einem Kondensator um ein Bauelement,

Mehr

Coulomb, el. Feld, Potenzial

Coulomb, el. Feld, Potenzial Klasse / Vier gleich große Ladungen Q < Q < Q3 < Q4 < Q sitzen verteilt in den Ecken eines Quadrats mit der Seitenlänge a und der Diagonalen d< a Bestimmen Sie in allgemeiner Form den Betrag der resultierenden

Mehr

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/ Aufgaben zur Vorbereitung der Klausur zur Vorlesung inführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS213/14 5.2.213 Aufgabe 1 Zwei Widerstände R 1 =1 Ω und R 2 =2 Ω sind in

Mehr

Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem Ohm'schen Gesetz: I(t) = U(t)/R.

Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem Ohm'schen Gesetz: I(t) = U(t)/R. Wechselspannung Eine zeitlich sich periodisch bzw. sinusförmig verändernde Spannung heißt Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem

Mehr

ELEKTRISCHER DIPOL (5.1)

ELEKTRISCHER DIPOL (5.1) @ 3 4 4 Kapitel 5 ELEKTRISCHER DIPOL Wegen der Linearität der Poisson leichung, φ = ρ/ɛ gilt das Superpositionsprinip: φ( R) = f c i Q i R r i (5.) Für Ladungen, die im Raum kontinuierlich verteilt sind

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Känzig, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003

Mehr

Klausur zu Naturwissenschaftliche Grundlagen und Anwendungen

Klausur zu Naturwissenschaftliche Grundlagen und Anwendungen Prof. Dr. K. Wüst WS 2008/2009 FH Gießen Friedberg, FB MNI Studiengang Informatik Klausur zu Naturwissenschaftliche Grundlagen und Anwendungen 13.2.2009 Aufgabenstellung mit Musterlösungen Punkteverteilung

Mehr

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 3

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 3 Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 3 KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Mehr

Inhaltsverzeichnis Elektrostatik

Inhaltsverzeichnis Elektrostatik Inhaltsverzeichnis 1 Elektrostatik 1 1.1 Grundbegriffe...................................... 1 1.1.1 Elektrische Ladung, Coulomb-Gesetz..................... 1 1.1.2 Das elektrische Feld..............................

Mehr

1. Geschwindigkeit von Elektronen in Drähten (2+2+2)

1. Geschwindigkeit von Elektronen in Drähten (2+2+2) Lösungen zur Übungen zur Physik (Elektrodynaik) SS 5 6 Übungsblatt 955 Bearbeitung bis Mi 555 Geschwindigkeit on Elektronen in Drähten (++) Ein Kupferdraht it de Durchesse durchflossen Berechnen Sie a)

Mehr

P d. b a. Die Ringscheibe wird nun mit einer geschlossenen Scheibe mit gleichem Außenradius b ausgetauscht.

P d. b a. Die Ringscheibe wird nun mit einer geschlossenen Scheibe mit gleichem Außenradius b ausgetauscht. Felder und Wellen 1/17 Klausur H14 Aufgabe 1 (16 Punkte) Hinweis: Die Aufgabenteile c) mit d) können unabhängig von den Aufgabenteilen a) und b) gelöst werden. Gegeben ist folgende Anordnung, die eine

Mehr

Abhängigkeiten der Kapazität eines Kondensators

Abhängigkeiten der Kapazität eines Kondensators Abhängigkeiten der Kapazität eines Kondensators Themen der häuslichen, schriftlichen Vorbereitung: Klärung der Begriffe Ladung und Spannung, Definition der Kapazität als Proportionalitätskonstante zwischen

Mehr

Elektrotechnische Grundlagen, WS 00/01. Musterlösung Übungsblatt 1. Hieraus läßt sich der Strom I 0 berechnen:

Elektrotechnische Grundlagen, WS 00/01. Musterlösung Übungsblatt 1. Hieraus läßt sich der Strom I 0 berechnen: Elektrotechnische Grundlagen, WS 00/0 Prof. aitinger / Lammert esprechung: 06..000 ufgabe Widerstandsnetzwerk estimmen Sie die Werte der Spannungen,, 3 und 4 sowie der Ströme, I, I, I 3 und I 4 in der

Mehr

PS II - Verständnistest

PS II - Verständnistest Grundlagen der Elektrotechnik PS II - Verständnistest 31.03.2010 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 3 4 4 2 5 2 2 erreicht Aufgabe 8 9 10 11 Summe Punkte 2 4 3 4 35 erreicht Hinweise:

Mehr

Fachhochschule Aalen Studiengang Wirtschaftsingenieurwesen Physik II Dr. Haan. Abschlussklausur am 09. Februar 2004

Fachhochschule Aalen Studiengang Wirtschaftsingenieurwesen Physik II Dr. Haan. Abschlussklausur am 09. Februar 2004 Fachhochschule Aalen Studiengang Wirtschaftsingenieurwesen Physik II Dr. Haan Abschlussklausur a 9. Februar 4 Folgendes bitte in Druckbuchstaben schreiben: Nae: Vornae: Geburtstag: Matrikelnuer: Erstversuch

Mehr

Elektrotechnik I MAVT

Elektrotechnik I MAVT Prof. Dr. Q. Huang Elektrotechnik MAVT Prüfung H07 BSc 23.08.2007 1. [30P] DC-Aufgaben (a) [9P] Betrachten Sie die Schaltung in Abbildung 1 und lösen Sie die nachfolgenden Aufgaben. Vereinfachen Sie die

Mehr

Elektrotechnik: Zusatzaufgaben

Elektrotechnik: Zusatzaufgaben Elektrotechnik: Zusatzaufgaben 1.1. Aufgabe: Rechnen Sie die abgeleiteten Einheiten der elektrischen Spannung, des elektrischen Widerstandes und der elektrischen Leistung in die Basiseinheiten des SI um.

Mehr

Übung Elektrische und magnetische Felder SoSe 2015

Übung Elektrische und magnetische Felder SoSe 2015 Aufgabe 1 Berechnen Sie die aumladungsdichte ρ für: 1.1 eine Linienladungsdichteτ( r) auf einem Kreisring mit dem adius 0 a) Geben Sie die Parameterdarstellung eines Kreises mit zugehörigem Wertebereich

Mehr

10. Elektrostatik Elektrische Ladung 10.2 Coulomb sches Gesetz Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität

10. Elektrostatik Elektrische Ladung 10.2 Coulomb sches Gesetz Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität 10. Elektrostatik 10.11 Elektrische Ladung 10.2 Coulomb sches Gesetz 10.3 Elektrisches Feld 10.4 Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität 10.1 Elektrische Ladung Es gibt

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2014-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Gesamtpunktzahl:

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse E 05: Der Kondensator und seine Schaltungsarten. Amateurfunkgruppe der TU Berlin.

AFu-Kurs nach DJ4UF. Technik Klasse E 05: Der Kondensator und seine Schaltungsarten. Amateurfunkgruppe der TU Berlin. Technik Klasse E 05: Der Kondensator und seine Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 26.10.2015 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

Mehr

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:...

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik WS03/04 Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N

Mehr