Versuchsprotokoll. Kondensator und Spule im Wechselstromkreis. Dennis S. Weiß & Christian Niederhöfer. zu Versuch 9

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Versuchsprotokoll. Kondensator und Spule im Wechselstromkreis. Dennis S. Weiß & Christian Niederhöfer. zu Versuch 9"

Transkript

1 Montag, Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Physikalisches Anfängerpraktikum Teil II) zu Versuch 9 Kondensator und Spule im Wechselstromkreis 1

2 Inhaltsverzeichnis 1 Problemstellung 3 2 Physikalische Grundlagen Der Kondensator usammenschaltung von Kondensatoren Parallelschaltung Reihenschaltung Die Spule Versuchsaufbau Der Kondensator Beschreibung Skizze Die Spule Beschreibung Skizze Die Messung Meßmethode Der Kondensator Die Spule Meßwerte Der Kondensator Die Spule Auswertung Fehlerbetrachtung Der Kondensator Die Spule Diskussion Der Kondensator Die Spule usatzaufgaben und Fragen aus der Versuchsanleitung Der Kondensator Die Spule Anhang Graphen Original-Meßprotokoll

3 1 Problemstellung Es soll die Kapazität zweier Kondensatoren im Wechselstromkreis bestimmt werden. Ebenso die Induktivität einer Spule mit Eisenkern in Abhängigkeit des Einschubtiefe des Kerns. 2 Physikalische Grundlagen 2.1 Der Kondensator Die einfachste Bauform für einen Kondensator ist der Plattenkondensator. Er besteht aus zwei großen, parallel zueinander angeordneten leitfähigen Platten. In der Serienfertigung ersetzt man die Platten durch zwei dünne Streifen einer Metallfolie und legt einen Isolator dazwischen. Um Platz zu sparen, wird dieser Sandwich anschließend aufgerollt. Schließt man die beiden Platten eines Kondensators an eine Gleichspannungsquelle an, so fließen so lange positive adungen auf die eine und negative auf die andere Platte, bis die Potentialdifferenz zwischen den Platten gleich der angelegten Spannung ist. Ein idealer Kondensator hat also einen unendlich hohen Gleichstromwiderstand. egt man eine Wechselspannung an, so fließt durch den Kondensator scheinbar ein Wechselstrom. Während einer Halbwelle der anliegenden Wechselspannung wird der Kondensator zunächst entladen und dann mit umgekehrten Vorzeichen aufgeladen. Mit dem Nulldurchgang des Stromes setzt dabei jedesmal die Entladung ein. u diesem eitpunkt hat die adung Q auf den Kondensatorplatten jeweils ihren größten Wert. Die Spannung ist gegeben durch: U = Q C wobei C die Kapazität des Kondensators ist. Der durch den Kondensator fließende Wechselstrom ist bei gegebener Spannung umso größer, je höher die Frequenz und je größer die Kapazität sind. Der kapazitive Wechselstromwiderstand ist deshalb: U I = C = 1!C (1) wobei U und I die Effektivwerte von Spannung und Strom bezeichnen. Die Frequenz des Wechselstromes, der bei diesem Versuch verwendet wird, beträgt 50 Hz.! =2f =2 1 T mit f =50Hz )! = 100 =314Hz 2.2 usammenschaltung von Kondensatoren Parallelschaltung Die oberen Platten der Kondensatoren sind durch einen eiter miteinander verbundenund liegen daher auf dem gleichen Potential; dasselbe gilt für die unteren Platten. Die Punkte a und b seien mit einer Spannungsquelle verbunden, so daß die Spannung U = ' a ; ' b anliegt. Man sieht, daß sich bei dieser Schaltung die Flächen und damit die Kapazitäten addieren. 3

4 a C 1 C 2 b Sind C 1 und C 2 die Kapazitäten der einzelnen Kondensatoren, so sind die adungen auf den Platten gegeben durch Q 1 = C 1 U und Q 2 = C 2 U. Die gespeicherte Gesamtladung ist damit: Die Ersatzkapazität ist dann gegeben durch Q = Q 1 + Q 2 = C 1 U + C 2 U =(C 1 + C 2 ) U C ges = Q U = C 1 + C Reihenschaltung Die Punkte a und b seien wieder mit einer Spannungsquelle verbunden. Die Potentialdifferenz über die gesamte Anordnung hinweg beträgt wieder U = ' a ; ' b. Die adung +Q, die sich auf der oberen Platte des Kondensators C 1 befindet (Potential ' a ) induziert auf der unteren Platte eine gleich große adung ;Q. Diese adung rührt von den Elektronen her, die von der oberen Platte des zweiten Kondensators C 2 abgeflossen sind; auf der oberen Platte von C 2 befindet sich daher die adung +Q. Das Potential dieser Platten ist ' c. Auf der unteren Platte des zweiten Kondensators muß wegen der Influenz wieder die entsprechende adung ;Q vorhanden sein. ϕ a a ϕ c C 1 C 2 ϕ b b Für die Spannung am ersten Kondensator gilt U 1 = ' a ; ' c = C1 Q und für den zweiten Kondensator gilt U 2 = ' c ; ' b = C2 Q. Die Summe dieser Spannungen muß wieder die Gesamtspannung U ergeben: U = ' a ; ' b =(' a ; ' c )+(' c ; ' b )=U 1 + U 2 = Q + Q 1 = Q + 1 C 1 C 2 C 1 C 2 4

5 Die Ersatzkapazität ist dann gegeben durch 2.3 Die Spule C ges = Q U ) 1 C ges = 1 C C 2 Die einfachste Bauform für eine Spule ist die uftspule. Sie besteht aus einem gewickelten Draht, der in der Mitte keinen Kern enthält. In der Serienfertigung wird die Spule mit verschiedenen Kernmaterialien gefüllt (meist Eisen), um deren Induktivität zu beeinflussen. Schließt man eine Gleichspannung an eine Spule an, so fließt nach anfänglichem Aufbau des Magnetfeldes ein Gleichstrom, der nur vom ohmschen Widerstand des Spulendrahtes bestimmt ist: I = = U = (2) R egt man eine Wechselspannung an, so baut sich in der Spule ein sich mit dem Wechselstrom veränderndes Magnetfeld auf. Während einer Halbwelle des Stromes nimmt das Magnetfeld zunächst zu, dann mit abnehmendem Strom wieder ab. Ein sich zeitlich änderndes Magnetfeld ist nach dem Induktionsgesetz mit einer induzierten Spannung U verknüpft, die nach der enzschen Regel, der angelegten Spannung entgegengesetzt gerichtet ist: U = di (3) dt wobei die Selbstinduktivität der Spule ist. Vernachlässigt man den ohmschen Widerstand, so sind induzierte und angelegte Spannung gleich groß. Beim Nulldurchgang des Stromes ist die induzierte Spannung an der Spule am größten und im Maximum des Stromes gleich Null. Der durch die Spule fließende Wechselstrom ist umso kleiner, je höher die Frequenz und je größer die Selbstinduktion sind. Die Selbstinduktivität vergrößert sich, wenn man einen Eisenkern einschiebt. Die Qualität des Eisens und die Einschubtiefe spielen dabei eine Rolle. Da sich die Geschwindigkeit der Stromänderung (Frequenz des Wechselstromes) und die Selbstinduktivität hemmend auf den durch die Spule fließenden Wechselstroms auswirken, gilt für die ideale Spule (ohne ohmschen Widerstand): U I = =! (4) wobei U und I die Effektivwerte von Spannung und Strom bezeichnen. Die Spule stellt für den Wechselstrom jedoch einen Widerstand dar, der sich aus dem ohmschen Widerstand und dem induktiven Widerstand zusammensetzt. Den Sachverhalt erläutert folgendes Ersatzschaltbild: R Der Wechselstromwiderstand ist wie oben das Verhältnis von Strom und Spannung. Es gibt aber eine Phasenverschiebung zwischen dem ohmschen und dem induktiven Widerstand, die gegeben ist durch: tan =! R und für den Wechselstromwiderstand gilt: U I = R+ = 5 p R 2 +! 2 2 (5)

6 3 Versuchsaufbau 3.1 Der Kondensator Beschreibung Mit dem Amperemeter wird der Strom gemessen, der durch den Kondensator fließt. Mit dem Voltmeter wird die Spannung am Kondensator gemessen Skizze A V C 3.2 Die Spule Beschreibung Mit dem Amperemeter wird der Strom gemessen, der durch die Spule fließt. Mit dem Voltmeter wird dir Spannung an der Spule gemessen Skizze A V 4 Die Messung 4.1 Meßmethode Der Kondensator Nachdem wir uns überzeugt haben, daß die Kondensatoren keinen Schluß hat (keine adung fließt), wird die oben angegebene Schaltung aufgebaut. Es wird eine Wechselspannung angelegt und die Kapazität C nach (1) bestimmt. Anschließend werden die beiden Kondensatoren parallel geschaltet und deren Gesamtkapazität bestimmt. Abschließend wird noch die Gesamtkapazität der Reihenschaltung der beiden Kondensatoren bestimmt. 6

7 4.1.2 Die Spule An die oben angegebene Schaltung wird eine Gleichspannung angelegt. Der ohmsche Widerstand der Spule kann nun nach (2) bestimmt werden. Anschließend wird eine Wechselspannung angelegt. Der Wechselstromwiderstand der Spule ohne Kern wird nach (5) bestimmt. Daraus folgt direkt die Induktivität. Nacheinander werden die beiden zur Verfügung stehenden Eisenkerne schrittweise in die Spule eingeschoben. Dadurch kann die Induktivität in Abhängigkeit der Einschubtiefe nach (5) bestimmt werden. 4.2 Meßwerte Der Kondensator Nach (1) gilt für die Kapazität C = I.!U Kondensator C 1 U = V I = ma! = 100 Der Kondensator hat eine Kapazität von C 1 = 15 3 F. Kondensator C 2 U = V I = ma! =100 Der Kondensator hat eine Kapazität von C 2 = F. Für den Gesamtwiderstand einer Parallelschaltung zweier Kondensatoren gilt C ges = C 1 + C 2. Für den Gesamtwiderstand einer Reihenschaltung zweier Kondensatoren gilt 1 C ges = 1 C1 + 1 C2. Parallelschaltung U = V I =240 3 ma! = 100 Die Kondensatoren haben eine Gesamtkapazität von C ges = 18 4 F. Durch Rechnung ergibt sich eine erwartete Gesamtkapazität von C ges =174F. Reihenschaltung U = V I = ma! =100 Die Kondensatoren haben eine Gesamtkapazität von C ges = F. Durch Rechnung ergibt sich eine erwartete Gesamtkapazität von C ges = F Die Spule Gleichstromwiderstand Der Gleichstromwiderstand wird nach (2) bestimmt: R = U I. U = V I = A Die Spule hat einen Gleichstromwiderstand von R = Wechselstromwiderstand q Die Induktivität wird nach (5) bestimmt: = 1 U 2! I2 ; R 2, wobei R der Gleichstromwiderstand ist. U = V I = ma 7

8 Die Spule hat eine Induktivität von = mh. Nach (5) ergibt sich der Wechselstromwiderstand der Spule zu R = Mit zwei verschiedenen Kernen massiver Eisenkern ` [cm] I [ma] [H] 1 110,5 0, ,7 0, , , ,2 0, ,4 0, ,7 0, ,7 0, , , ,2 0, ,6 0, ,2 0, ,8 0, ,6 0, ,7 0, ,8 0, ,1 0, ,4 0, ,75 0, ,3 1, ,045 lamellierter Eisenkern ` [cm] I [ma] [H] , , , ,8 0,2 9 49,5 0, ,5 0, ,2 0, ,6 0, ,9 0, ,1 0, ,5 0, ,2 1, ,1 1, ,1 1, ,3 1, ,8 1, ,1 1, ,5 1, , ,6 1, ,3 1, ,942 Die Funktion der Induktivität in Abhängigkeit der Einschubtiefe zeigen die beiliegenden Diagramme. 5 Auswertung 5.1 Fehlerbetrachtung Der Kondensator Nach dem Gaußschen Fehlerfortpflanzungsgesetz gilt für den Fehler in C = C = Analog für die Reihen- und Parallelschaltung. I :!U s 1 2!U I + ; I 2! 2 U! + ; I 2!U 2 U 8

9 5.1.2 Die Spule p Es gilt = 1 2 ; R 2 mit = U! I Differentials: 2d= und R = U= I=, also ; 2 =!2 1 2 ; R 2. Bildung des totalen 1 (2 d ; 2RdR)! 2! wurde dabei als konstant angenommen. Demnach ist die Meßungenauigkeit von im ungünstigsten Fall = 1! 2 ( + R R) und nach dem Gaußschen Fehlerfortpflanzungsgesetz ist die Standardabweichung s = 1 p! R 2 R 2 Für R und gilt nach der Fehlerregel für Potenzprodukte: R R R = R U= R U= + I= I= = U U + I I Also ist bzw. v s = 1 u t 4! 2 = 1 U! 2 2 U + I + R 2 U= + I = I U = I = U 2! I R U I 4 U= U = 2 + I= I = 2! Für R ergibt sich mit! sofort die einfache Näherung s U 2 I 2 s = + U I 5.2 Diskussion = oder =, also Bei einem Amperemeter ist der Innenwiderstand möglichst klein, damit die Schaltung wenig beeinflußt wird. Bei einem Voltmeter ist der Innenwiderstand möglichst groß, damit die Schaltung wenig beeinflußt wird. Dies ist bei den verwendeten Meßgeräten gegeben. Also ist der Fehler, der durch die Meßgeräte entsteht wesentlich kleiner, als der Fehler durch Ableseungenauigkeit Der Kondensator Die verwendeten Geräte haben 1% Fehler vom Gesamtausschlag, d. h. I =0 3 ma, U =0 1 V,! =0 1 Hz. Es ergibt sich also ein Fehler in der Kapazität von C =3F für C 1 und C = 0 9 F für C 2. Die berechneten Werte der Reihen- und Parallelschaltung stimmen sehr gut mit den gemessenen Werten überein. 9

10 5.2.2 Die Spule Die verwendeten Geräte haben 1% Fehler vom Gesamtausschlag, d. h. I = I = = 0 3 ma, U =U = =0 1V. Es ergibt sich also ein Fehler in der Induktivität von =1 3mH. Der Fehler im Gleichstromwiderstand berechnet sich (mal wieder) nach dem Gaußschen Fehlerfortpflanzungsgesetz. 6 usatzaufgaben und Fragen aus der Versuchsanleitung 6.1 Der Kondensator Strom und adung sind verknüpft durch I = dq dt. Über dem Kondensator fällt die Spannung U C = q C ab, wobei q die adung ist, die sich zum betrachteten eitpunkt t auf den Kondensatorplatten befindet. Nach der Kirchhoffschen Maschenregel gilt für die angelegte Spannung U ; U C =0 Es wird eine Wechselspannung U = U 0 cos!t angelegt. Es gilt dann: U 0 cos!t ; q C =0 ) q = U 0C cos!t Damit kann man durch einmaliges Differenzieren den Strom berechnen: I = dq dt = ;!CU 0 sin!t Er erreicht seinen Maximalwert, wenn sin!t = ;1 ist, also wenn!t = 3 2 : I 0 =!CU 0 Mit der Beziehung sin!t = ; cos ;!t + 2 kann man den Strom schreiben als: I = ;!CU 0 sin!t = ;I 0 sin!t = I 0 cos!t + 2 Das ist der Strom, der durch einen rein kapazitiven Widerstand fließt. Der usammenhang zwischen Strom und Spannung läßt sich so schreiben, wie man es vom ohmschen Widerstand her gewöhnt ist: I 0 =!CU 0 = U 0 1!C = U 0 C Die Größe 1!C bezeichnet: im Nenner entspricht formal einem Widerstand und wird als kapazitiver Widerstand C = 1!C 10

11 Im U,I U(t) U I Re I(t) t 6.2 Die Spule Infolge der Änderung des magnetischen Flusses wird in der Spule die Spannung di induziert. Für dt den Spannungsabfall über der Spule ergibt sich U = di. Nach der Kirchhoffschen Maschenregel dt gilt für die angelegte Spannung: U ; U =0 Mit der Wechselspannung U = U 0 cos!t erhält man: Integration ergibt den Strom: U = U 0 cos!t = di dt ) di = U 0 cos!t dt I = U 0 cos!t dt = U 0 sin!t + K! Die Integrationskonstante K ist dabei die mittlere Stromstärke, denn der Mittelwert von sin!t über eine oder mehrere Perioden ist Null. Hat der Strom keinen Gleichstromanteil, so wird I = U 0! sin!t = I 0 sin!t Wie oben kann man mit sin!t =cos ;!t ; 2 schreiben: I = I 0 cos Umschreiben wie für den ohmschen Widerstand liefert: Die Größe! heißt induktiver Widerstand:!t ; 2 I 0 = U 0! = U 0 =! 11

12 Im U,I U I Re t U(t) I(t) Drosselspule Ein ohmscher Vorwiderstand wandelt die Energie in Joulesche Wärme um. Eine Spule dagegen setzt dem Strom aufgrund der enzschen Regel eine Gegenspannung als Widerstand entgegen. Man spricht auch von einem Blindwiderstand. Der Einsatz einer Drosselspule empfiehlt sich besonders in temperaturempfindlichen Schaltungen, sowie in Schaltungen, die große eistung verbrauchen, da hier oftmals die ohmschen Widerstände gigantische Ausmaße annehmen. 6.3 Anhang Graphen Im folgenden ist Kurve 1 mit massivem Kern und Kurve 2 mit lamelliertem Kern: 1. Diagramm: Induktivität als Funktion der Einschubtiefe 2. Diagramm: Strom als Funktion der Einschubtiefe Original-Meßprotokoll 12

Versuch 9: Kondensator und Spule im Wechselstromkreis Seite 1

Versuch 9: Kondensator und Spule im Wechselstromkreis Seite 1 Versuch 9: Kondensator und Spule im Wechselstromkreis Seite Aufgaben: Messverfahren: Vorkenntnisse: ehrinhalt: iteratur: Bestimmung von Kapazitäten und nduktivitäten im Wechselstromkreis letztere in Abhängigkeit

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch elektrische Messverfahren Armin Burgmeier (347488) Gruppe 5 2. Dezember 2007 Messungen an Widerständen. Innenwiderstand eines µa-multizets Die Schaltung wird nach Schaltbild (siehe

Mehr

Abitur 2009 Physik 1. Klausur Hannover, arei LK 2. Semester Bearbeitungszeit: 90 min

Abitur 2009 Physik 1. Klausur Hannover, arei LK 2. Semester Bearbeitungszeit: 90 min Abitur 009 hysik Klausur Hannover, 0403008 arei K Semester Bearbeitungszeit: 90 min Thema: Spule, Kondensator und Ohmscher Widerstand im Wechselstromkreis Aufgabe eite begründet her: Für den Gesamtwiderstand

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik raktikum Grundlagen der Elektrotechnik Kondensatoren und Spulen m Wechselstromkreis (ersuch 10) Fachhochschule Fulda Fachbereich Elektrotechnik durchgeführt von (rotokollführer) zusammen mit Matrikel-Nr.

Mehr

Bewegter Leiter im Magnetfeld

Bewegter Leiter im Magnetfeld Bewegter Leiter im Magnetfeld Die Leiterschaukel mal umgedreht: Bewegt man die Leiterschaukel im Magnetfeld, so wird an ihren Enden eine Spannung induziert. 18.12.2012 Aufgaben: Lies S. 56 Abschnitt 1

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 3 - Übungsblatt 7 Wechselstrom In der Zeichnung ist ein Stromkreis mit reellen (Ohmschen) sowie

Mehr

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen. LD Handblätter Physik

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen. LD Handblätter Physik Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen

Mehr

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den E6 Elektrische Resonanz Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den.. INHALTSVERZEICHNIS. Einleitung. Theoretische Grundlagen. Serienschaltung von Widerstand R, Induktivität L

Mehr

R C 1s =0, C T 1

R C 1s =0, C T 1 Aufgaben zum Themengebiet Aufladen und Entladen eines Kondensators Theorie und nummerierte Formeln auf den Seiten 5 bis 8 Ein Kondensator mit der Kapazität = 00μF wurde mit der Spannung U = 60V aufgeladen

Mehr

3, wobei C eine Konstante ist. des Zentralgestirns abhängig ist.

3, wobei C eine Konstante ist. des Zentralgestirns abhängig ist. Abschlussprüfung Berufliche Oberschule 00 Physik Technik - Aufgabe I - Lösung Teilaufgabe.0 Für alle Körper, die sich antriebslos auf einer Kreisbahn mit dem Radius R und mit der Umlaufdauer T um ein Zentralgestirn

Mehr

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND.

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND. Elektrizitätslehre Gleich- und Wechselstrom Wechselstromwiderstände BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND. Bestimmung des Wechselstromwiderstandes

Mehr

Reihenresonanz - C8/ C8/9.2 -

Reihenresonanz - C8/ C8/9.2 - Versuch C8/9: - C8/9. - Wechselstromwiderstände und Reihenresonanz - C8/9.2 - Wechselstromkreis mit induktiven und kapazitiven Elementen Spannung und Strom im allgemeinen nicht die gleiche Phase haben

Mehr

TR - Transformator Blockpraktikum - Herbst 2005

TR - Transformator Blockpraktikum - Herbst 2005 TR - Transformator, Blockpraktikum - Herbst 5 8. Oktober 5 TR - Transformator Blockpraktikum - Herbst 5 Tobias Müller, Alexander Seizinger Assistent: Dr. Thorsten Hehl Tübingen, den 8. Oktober 5 Vorwort

Mehr

Elektrische Messverfahren

Elektrische Messverfahren Vorbereitung Elektrische Messverfahren Carsten Röttele 20. Dezember 2011 Inhaltsverzeichnis 1 Messungen bei Gleichstrom 2 1.1 Innenwiderstand des µa-multizets...................... 2 1.2 Innenwiderstand

Mehr

E 4 Spule und Kondensator im Wechselstromkreis

E 4 Spule und Kondensator im Wechselstromkreis E 4 Spule und Kondensator im Wechselstromkreis 1. Aufgaben 1. Die Scheinwiderstände einer Spule und eines Kondensators sind in Abhängigkeit von der Frequenz zu bestimmen und gemeinsam in einem Diagramm

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Grundlagen

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den E Wheatstonesche Brücke Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den 7..000 INHALTSVEZEICHNIS. Einleitung. Theoretische Grundlagen. Die Wheatstonesche Brücke. Gleichstrombrücke

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

Aufgaben zur Elektrizitätslehre

Aufgaben zur Elektrizitätslehre Aufgaben zur Elektrizitätslehre Elektrischer Strom, elektrische Ladung 1. In einem Metalldraht bei Zimmertemperatur übernehmen folgende Ladungsträger den Stromtransport (A) nur negative Ionen (B) negative

Mehr

Elektrische Messverfahren

Elektrische Messverfahren Vorbereitung Elektrische Messverfahren Stefan Schierle Versuchsdatum: 20. 12. 2011 Inhaltsverzeichnis 1 Widerstandsmessung 2 1.1 Messung des Innenwiderstands Ri I des µa-multizets............ 2 1.2 Berechnung

Mehr

Versuchsprotokoll zum Versuch Nr. 10 Kondensator und Spule im Wechselstromkreis

Versuchsprotokoll zum Versuch Nr. 10 Kondensator und Spule im Wechselstromkreis Gruppe: A Versuchsprotokoll zum Versuch Nr. 0 Künzell, den 9.0.00 In diesem Versuch ging es darum die Kapazität eines Widerstandes und die Induktivität von Spulen zu bestimmen. I. Kondensator im Wechselstromkreis

Mehr

= Dimension: = (Farad)

= Dimension: = (Farad) Kapazität / Kondensator Ein Kondensator dient zur Speicherung elektrischer Ladung Die Speicherkapazität eines Kondensators wird mit der Größe 'Kapazität' bezeichnet Die Kapazität C ist definiert als: Dimension:

Mehr

Elektrische Messverfahren Versuchsauswertung

Elektrische Messverfahren Versuchsauswertung Versuche P1-70,71,81 Elektrische Messverfahren Versuchsauswertung Marco A. Harrendorf, Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 22.11.2010 1 1 Wechselstromwiderstände

Mehr

Übungen zu ET1. 3. Berechnen Sie den Strom I der durch die Schaltung fließt!

Übungen zu ET1. 3. Berechnen Sie den Strom I der durch die Schaltung fließt! Aufgabe 1 An eine Reihenschaltung bestehend aus sechs Widerständen wird eine Spannung von U = 155V angelegt. Die Widerstandwerte betragen: R 1 = 390Ω R 2 = 270Ω R 3 = 560Ω R 4 = 220Ω R 5 = 680Ω R 6 = 180Ω

Mehr

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität 1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität Ladung und Stromstärke Die Einheit der Stromstärke wurde früher durch einen chemischen Prozess definiert; heute

Mehr

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke E Elektrische Meßinstrumente Stoffgebiet: Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke Versuchsziel: Benützung elektrischer Messinstrumente (Amperemeter, Voltmeter,

Mehr

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3.

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3. Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen Versuchsziele

Mehr

m kg b) Wie groß muss der Durchmesser der Aluminiumleitung sein, damit sie den gleichen Widerstand wie die Kupferleitung hat?

m kg b) Wie groß muss der Durchmesser der Aluminiumleitung sein, damit sie den gleichen Widerstand wie die Kupferleitung hat? Aufgabe 1: Widerstand einer Leitung In einem Flugzeug soll eine Leitung aus Kupfer gegen eine gleich lange Leitung aus Aluminium ausgetauscht werden. Die Länge der Kupferleitung beträgt 40 m, der Durchmesser

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Grundpraktikum Wechselstromwiderstände 1/7 Übungsdatum: 15.05.001 Abgabetermin:.05.001 Grundpraktikum Wechselstromwiderstände Gabath Gerhild Matr. Nr. 98054 Mittendorfer Stephan Matr. Nr. 9956335 Grundpraktikum

Mehr

4 Kondensatoren und Widerstände

4 Kondensatoren und Widerstände 4 Kondensatoren und Widerstände 4. Ziel des Versuchs In diesem Praktikumsteil sollen die Wirkungsweise und die Frequenzabhängigkeit von Kondensatoren im Wechselstromkreis untersucht und verstanden werden.

Mehr

1 Elektrotechnik. 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben

1 Elektrotechnik. 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben 1 Elektrotechnik 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben 1.1.1 Widerstand parallel zur idealen Spannungsquelle I R1 I R2

Mehr

Physik Klausur

Physik Klausur Physik Klausur 2.2 2 30. April 2003 Aufgae Ein Birnchen mit dem ohmschen Widerstand, eine Spule mit der Eigeninduktivität L (ohmscher Widerstand vernachlässigar) und ein Kondensator mit der Kapazität C

Mehr

4.2 Gleichstromkreise

4.2 Gleichstromkreise 4.2 Gleichstromkreise Werden Ladungen transportiert, so fließt ein elektrischer Strom I dq C It () [] I A s dt Einfachster Fall: Gleichstrom; Strom fließt in gleicher ichtung mit konstanter Stärke. I()

Mehr

Musterloesung. 2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten

Musterloesung. 2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten 2. Klausur Grundlagen der Elektrotechnik I-B Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben nur das mit

Mehr

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R = Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem

Mehr

Induktion. Bewegte Leiter

Induktion. Bewegte Leiter Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor

Mehr

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L Versuch E 1: PHASENVERSCHIEBUNG IM WECHSELSTROMKREIS Stichworte: Elektronenstrahloszillograph Komplexer Widerstand einer Spule und eines Kondensators Kirchhoffsche Gesetze Gleichungen für induktiven und

Mehr

WECHSELSTROM. 1. Messung von Wechselspannungen, Blindwiderstand. a) Maximalspannung. Geräte: Netzgerät Ossi Spannungsmessgerät (~)

WECHSELSTROM. 1. Messung von Wechselspannungen, Blindwiderstand. a) Maximalspannung. Geräte: Netzgerät Ossi Spannungsmessgerät (~) WECHSELSTROM 1. Messung von Wechselspannungen, Blindwiderstand a) Maximalspannung Spannungsmessgerät (~) Miss 3 unterschiedliche Spannungen der Wechselspannungsquelle (

Mehr

Auswertung des Versuchs P1-83,84 : Ferromagnetische Hysteresis

Auswertung des Versuchs P1-83,84 : Ferromagnetische Hysteresis Auswertung des Versuchs P1-83,84 : Ferromagnetische Hysteresis Marc Ganzhorn Tobias Großmann Bemerkung Alle in diesem Versuch aufgenommenen Hysteresis-Kurven haben wir gesondert im Anhang an diese Auswertung

Mehr

Vorbereitung: elektrische Messverfahren

Vorbereitung: elektrische Messverfahren Vorbereitung: elektrische Messverfahren Marcel Köpke 29.10.2011 Inhaltsverzeichnis 1 Ohmscher Widerstand 3 1.1 Innenwiderstand des µa Multizets...................... 3 1.2 Innenwiderstand des AVΩ Multizets.....................

Mehr

Der elektrische Widerstand R. Auswirkung im Stromkreis Definition Ohmsches Gesetz

Der elektrische Widerstand R. Auswirkung im Stromkreis Definition Ohmsches Gesetz Der elektrische Widerstand R Auswirkung im Stromkreis Definition Ohmsches Gesetz Kennlinie Wir wissen, am gleichen Leiter bewirken gleiche Spannungen gleiche Ströme. Wie ändert sich der Strom, wenn man

Mehr

Brückenschaltung (BRÜ)

Brückenschaltung (BRÜ) TUM Anfängerpraktikum für Physiker II Wintersemester 2006/2007 Brückenschaltung (BRÜ) Inhaltsverzeichnis 9. Januar 2007 1. Einleitung... 2 2. Messung ohmscher und komplexer Widerstände... 2 3. Versuchsauswertung...

Mehr

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Ferienkurs Sommersemester 009 Martina Stadlmeier 09.09.009 Inhaltsverzeichnis 1 Zeitlich veränderliche Felder 1.1 Faradaysches Induktionsgesetz.....................

Mehr

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007 TR Transformator Blockpraktikum Herbst 2007 (Gruppe 2b) 25 Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 11 Unbelasteter Transformator 2 12 Belasteter Transformator 3 13 Leistungsanpassung 3 14 Verluste

Mehr

S u p l u e un u d n d Tr T ans n for o mator Klasse A Klasse A (Ergänzung) Norbert - DK6NF

S u p l u e un u d n d Tr T ans n for o mator Klasse A Klasse A (Ergänzung) Norbert - DK6NF Spule und Transformator Klasse (Ergänzung) Norbert - K6NF usgewählte Prüfungsfragen T301 n eine Spule wird über einen Widerstand eine Gleichspannung angelegt. Welches der nachfolgenden iagramme zeigt den

Mehr

Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre. Protokollant: Sven Köppel Matr.-Nr Physik Bachelor 2.

Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre. Protokollant: Sven Köppel Matr.-Nr Physik Bachelor 2. Physikalisches Anfängerpraktikum Teil Elektrizitätslehre Protokoll Versuch 1 Bestimmung eines unbekannten Ohm'schen Wiederstandes durch Strom- und Spannungsmessung Sven Köppel Matr.-Nr. 3793686 Physik

Mehr

Aufgabe Summe Note Mögliche Punkte Erreichte Punkte

Aufgabe Summe Note Mögliche Punkte Erreichte Punkte Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 1 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 7. April 005 Klausurdauer : Stunden Hilfsmittel : 5 Blätter Formelsammlung DIN

Mehr

4. Klausur Thema: Wechselstromkreise

4. Klausur Thema: Wechselstromkreise 4. Klausur Thema: Wechselstromkreise Physik Grundkurs 0. Juli 2000 Name: 0 = 8, 8542$ 0 2 C Verwende ggf.:,, Vm 0 =, 2566$ 0 6 Vs Am g = 9, 8 m s 2 0. Für saubere und übersichtliche Darstellung, klar ersichtliche

Mehr

Protokoll zum Versuch

Protokoll zum Versuch Protokoll zum Versuch Elektronische Messverfahren Kirstin Hübner Armin Burgmeier Gruppe 15 3. Dezember 2007 1 Messungen mit Gleichstrom 1.1 Innenwiderstand des µa-multizets Zunächst haben wir in einem

Mehr

2.1 Ele kt rom agnetis c he. Sc hwingunge n und We lle n. Sc hwingunge n

2.1 Ele kt rom agnetis c he. Sc hwingunge n und We lle n. Sc hwingunge n 2 Ele kt rom agnetis c he Sc hwingunge n und We lle n 2.1 Ele kt rom agnetis c he Sc hwingunge n 2.1.1 Kapazit ive r und indukt ive r Wide rs t and In einem Gleichstromkreis hängt die Stromstärke, sieht

Mehr

Übungsaufgaben z. Th. Plattenkondensator

Übungsaufgaben z. Th. Plattenkondensator Übungsaufgaben z. Th. Plattenkondensator Aufgabe 1 Die Platten eines Kondensators haben den Radius r 18 cm. Der Abstand zwischen den Platten beträgt d 1,5 cm. An den Kondensator wird die Spannung U 8,

Mehr

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND OHMSCHEM WIDERSTAND.

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND OHMSCHEM WIDERSTAND. Elektrizitätslehre Gleich- und Wechselstrom Wechselstromwiderstände BESTIMMUNG DES WECHSELSTOMWIDESTANDES IN EINEM STOMKEIS MIT IN- DUKTIVEM UND OHMSCHEM WIDESTAND. Bestimmung von Amplitude und Phase des

Mehr

2 Das elektrostatische Feld

2 Das elektrostatische Feld Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

1 Schaltungen von Hochleistungs-LEDs

1 Schaltungen von Hochleistungs-LEDs 1 Schaltungen von Hochleistungs-LEDs 1.1 Zwei identische Reihenschaltungen, die parallel an U Gleich geschaltet sind. U R 2 = U gleich 2 = 12 V 6,6 V = 5,4 V R 2 = U R 2 = 5,4 V = 18 Ω ( = R 1) I 2 300

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektrizität und Magnetismus IV.4 Wechselstromkreise Physik für Mediziner Ohmscher Widerstand bei Wechselstrom Der Ohmsche Widerstand verhält sich bei Wechselstrom genauso wie bei Gleichstrom zu jedem

Mehr

ELEKTRISCHE GRUNDSCHALTUNGEN

ELEKTRISCHE GRUNDSCHALTUNGEN ELEKTRISCHE GRUNDSCHALTUNGEN Parallelschaltung Es gelten folgende Gesetze: (i) An parallel geschalteten Verbrauchern liegt dieselbe Spannung. (U = U 1 = U 2 = U 3 ) (ii) Bei der Parallelschaltung ist der

Mehr

Elektrische Messverfahren

Elektrische Messverfahren Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Julian Merkert (1229929) Versuch: P1-81 Elektrische Messverfahren - Vorbereitung - Vorbemerkung In diesem Versuch geht es um das Kennenlernen

Mehr

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung:

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung: 3.11 Der Kondensator In den vorangegangenen Kapiteln wurden die physikalischen Eigenschaften von elektrischen Ladungen und Feldern näher untersucht. In vielen Experimenten kamen dabei bereits Kondensatoren

Mehr

Praktikum II TR: Transformator

Praktikum II TR: Transformator Praktikum II TR: Transformator Betreuer: Dr. Torsten Hehl Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 30. März 2004 Made with L A TEX and Gnuplot Praktikum

Mehr

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke E Elektrische Meßinstrumente Stoffgebiet: Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke Versuchsziel: Benützung elektrischer Messinstrumente (Amperemeter, Voltmeter,

Mehr

Spule, Kondensator und Widerstände

Spule, Kondensator und Widerstände Spule, Kondensator und Widerstände Schulversuchspraktikum WS 00 / 003 Jetzinger Anamaria Mat.Nr.: 975576 Inhaltsverzeichnis. Vorwissen der Schüler. Lernziele 3. Theoretische Grundlagen 3. Der elektrische

Mehr

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Klausur 15.08.2011 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Vorname: Matr.-Nr.: Nachname: Aufgabe 1 (6 Punkte) Gegeben ist folgende Schaltung aus Kondensatoren. Die Kapazitäten der

Mehr

Protokoll zum Laborversuch (Bachelor-Anleitung) Wechselstrom an Spule und Kondensator. Zug Labor am: Wochentag Abgabe am:

Protokoll zum Laborversuch (Bachelor-Anleitung) Wechselstrom an Spule und Kondensator. Zug Labor am: Wochentag Abgabe am: FHTW Berlin, Fachbereich, Physikalisches Praktikum - Wechselstromwiderstände Version /04 Hochschule für Technik und Wirtschaft Berlin Physikalisches Praktikum HTW-Berlin Protokoll zum Laborversuch (Bachelor-Anleitung)

Mehr

Kon o d n e d ns n ator Klasse A Klasse A (Ergänzung) Norbert - DK6NF

Kon o d n e d ns n ator Klasse A Klasse A (Ergänzung) Norbert - DK6NF Kondensator Klasse (Ergänzung) Norbert - K6NF usgewählte Prüfungsfragen T202 Welchen zeitlichen Verlauf hat die Spannung an einem entladenen Kondensator, wenn dieser über einen Widerstand an eine Gleichspannungsquelle

Mehr

GRUNDLAGEN DER WECHSELSTROMTECHNIK

GRUNDLAGEN DER WECHSELSTROMTECHNIK ELEKTROTECHNIK M GLEICHSTROM. ELEKTRISCHE GRÖßEN UND GRUNDGESETZE. ELEKTRISCHE LADUNG UND STROM.3 ELEKTRISCHES FELD UND STROM.4 ELEKTRISCHES SPANNUNG UND POTENTIAL.5 ELEKTRISCHES LEISTUNG UND WIRKUNGSGRAD.6

Mehr

Messtechnische Ermittlung der Größen komplexer Bauelemente

Messtechnische Ermittlung der Größen komplexer Bauelemente TFH Berlin Messtechnik Labor Seite 1 von 9 Messtechnische Ermittlung der Größen komplexer Bauelemente Ort: TFH Berlin Datum: 08.12.03 Uhrzeit: Dozent: Arbeitsgruppe: von 8.00 bis 11.30 Uhr Prof. Dr.-Ing.

Mehr

Hertzsche Wellen. Physik 9

Hertzsche Wellen. Physik 9 Hertzsche Wellen Physik 9 ohne Hertzsche Wellen geht nichts? Wie entstehen Hertzsche Wellen? Man braucht eine Spule mit Eisenkern und einen Kondensator Fließt durch eine Spule ein Strom, so wird ein magnetisches

Mehr

1 Wechselstromwiderstände

1 Wechselstromwiderstände 1 Wechselstromwiderstände Wirkwiderstand Ein Wirkwiderstand ist ein ohmscher Widerstand an einem Wechselstromkreis. Er lässt keine zeitliche Verzögerung zwischen Strom und Spannung entstehen, daher liegt

Mehr

Wir betrachten wieder die Leiterschleife im homogenen Magnetfeld von <29.2.>: Im rechten Schenkel der Leiterschleife herrscht ein E r '-Feld 1

Wir betrachten wieder die Leiterschleife im homogenen Magnetfeld von <29.2.>: Im rechten Schenkel der Leiterschleife herrscht ein E r '-Feld 1 3. Wechselstrom I 3.. Erzeugung von Wechselströmen Wir betrachten wieder die eiterschleife im homogenen Magnetfeld von : Wie wir dort bereits festgestellt hatten führt ein Strom in der eiterschleife

Mehr

Patrick Christ und Daniel Biedermann

Patrick Christ und Daniel Biedermann TECHNISCHE UNIVERSITÄT MÜNCHEN Brückenschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 10.10.2009 0. INHALTSVERZEICHNIS 0. INHALTSVERZEICHNIS... 2 1. EINLEITUNG... 2 2. BESCHREIBUNG DER VERWENDETEN

Mehr

2.1.2 Elektromagnetischer Schwingkreis; Thomson-Gleichung

2.1.2 Elektromagnetischer Schwingkreis; Thomson-Gleichung 2..2 Elektromagnetischer Schwingkreis; Thomson-Gleichung Vorbemerkungen Bei einer Spule steigt der Blindwiderstand R = ω mit wachsender Frequenz an, beim Kondensator dagegen sinkt R = ab. In der Spule

Mehr

Elektrotechnikprotokoll. 1 Versuch Nr.: 10 Kondensator und Spule Moser Guido im Wechselstromkreis Fulda, den

Elektrotechnikprotokoll. 1 Versuch Nr.: 10 Kondensator und Spule Moser Guido im Wechselstromkreis Fulda, den Moser Guido im Wechselstromkreis ulda, den 9.03.00 Verwendet Meßgeräte und Bauteile Gerät Typ / Hersteller nventarnummer Digitalmultimeter M360D Voltcraft Digitalmultimeter V00 Analogmultimeter Metravo

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

Tutorium Physik 2. Elektrizität

Tutorium Physik 2. Elektrizität 1 Tutorium Physik 2. Elektrizität SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 10. ELEKTRIZITÄT 4 10.1 Coulombkraft:

Mehr

GRUNDLAGEN DER ELEKTROTECHNIK

GRUNDLAGEN DER ELEKTROTECHNIK GRUNDLAGEN DER ELEKTROTECHNIK Versuch 4: Messungen von Kapazitäten und Induktivitäten 1 Versuchsdurchführung 1.1 Messen des Blindwiderstands eines Kondensators Der Blindwiderstand X C eines Kondensators

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Lösung Übungsblatt 2 Tutoren: Elena Kaiser und Matthias Golibrzuch 2 Elektrischer Strom 2.1 Elektrischer Widerstand Ein Bügeleisen von 235 V / 300 W hat eine Heizwicklung

Mehr

Technische Universität Clausthal

Technische Universität Clausthal Technische Universität Clausthal Klausur im Wintersemester 2012/2013 Grundlagen der Elektrotechnik I Datum: 18. März 2013 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.

Mehr

Labor für Grundlagen der Elektrotechnik. EE1- ETP1 Labor 4. Weitere Übungsteilnehmer: Messung von Kapazitäten und Induktivitäten

Labor für Grundlagen der Elektrotechnik. EE1- ETP1 Labor 4. Weitere Übungsteilnehmer: Messung von Kapazitäten und Induktivitäten Department Informations- und Elektrotechnik Studiengruppe: Übungstag: Professor: abor für Grundlagen der Elektrotechnik EE1- ETP1 abor 4 Testat: Protokollführer (Name, Vorname): Weitere Übungsteilnehmer:

Mehr

Technische Grundlagen der Informatik

Technische Grundlagen der Informatik Technische Grundlagen der Informatik WS 2008/2009 2. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Strom und Spannung Ohmscher Widerstand und Ohmsches Gesetz

Mehr

Vorlesung 5: Magnetische Induktion

Vorlesung 5: Magnetische Induktion Vorlesung 5: Magnetische Induktion, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2016/17 Magnetische Induktion Bisher:

Mehr

Grundlagen der Elektrotechnik II Übungsaufgaben

Grundlagen der Elektrotechnik II Übungsaufgaben Grundlagen der Elektrotechnik II Übungsaufgaben Mag. Manfred Smolik Wien, 2. Juni 2016 Inhaltsverzeichnis 1 Kondensator 1 2 Magnetische Feldstärke 4 3 Magnetischer Fluss, magnetische Flussdichte 6 4 Induktivität

Mehr

Repetitionen. Widerstand, Drosseln und Kondensatoren

Repetitionen. Widerstand, Drosseln und Kondensatoren Kapitel 16.1 epetitionen Widerstand, Drosseln und Kondensatoren Verfasser: Hans-udolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: Oktober 2011 1 1.702 Serieschaltung

Mehr

Grundlagen. Stromkreisgesetze. Andreas Zbinden. Gewerblich- Industrielle Berufsschule Bern. 1 Ohmsches Gesetz 2. 2 Reihnenschaltung von Widerständen 6

Grundlagen. Stromkreisgesetze. Andreas Zbinden. Gewerblich- Industrielle Berufsschule Bern. 1 Ohmsches Gesetz 2. 2 Reihnenschaltung von Widerständen 6 Elektrotechnik Grundlagen Stromkreisgesetze Andreas Zbinden Gewerblich- Industrielle Berufsschule Bern Inhaltsverzeichnis 1 Ohmsches Gesetz 2 2 Reihnenschaltung von Widerständen 6 3 Parallelschaltung von

Mehr

Elektrische Messverfahren Versuchsvorbereitung

Elektrische Messverfahren Versuchsvorbereitung Versuche P-70,7,8 Elektrische Messverfahren Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 6.2.200 Spannung, Strom und Widerstand Die Basiseinheit

Mehr

Frequenzverhalten eines Kondensators Ein Kondensator hat bei 50 Hz einen kapazitiven Blindwiderstand von

Frequenzverhalten eines Kondensators Ein Kondensator hat bei 50 Hz einen kapazitiven Blindwiderstand von TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ INDUKTION, EINPHASEN-WECHSELSTROM PETITIONEN KONDENSATOR IM WECHSELSTROMKIS 7 Frequenzverhalten eines Kondensators Ein Kondensator hat bei 0 Hz einen kapazitiven Blindwiderstand

Mehr

EO - Oszilloskop Blockpraktikum Frühjahr 2005

EO - Oszilloskop Blockpraktikum Frühjahr 2005 EO - Oszilloskop, Blockpraktikum Frühjahr 25 28. März 25 EO - Oszilloskop Blockpraktikum Frühjahr 25 Alexander Seizinger, Tobias Müller Assistent René Rexer Tübingen, den 28. März 25 Einführung In diesem

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

15. Elektromagnetische Schwingungen

15. Elektromagnetische Schwingungen 5. Elektromagnetische Schwingungen Elektromagnetischer Schwingkreis Ein Beispiel für eine mechanische harmonische Schwingung wäre eine schwingende Feder, die im Normalfall durch den uftwiderstand gedämpft

Mehr

Aufgaben zum Thema Elektromagnetische Schwingungen

Aufgaben zum Thema Elektromagnetische Schwingungen Aufgaben zum Thema Elektromagnetische Schwingungen 10.03.2011 1.Aufgabe: a)an eine vertikal aufgehängte Schraubenfeder wird ein Körper mit der Masse m = 0,30 kg gehängt. Dadurch wird die Feder um x = 1,2

Mehr

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an!

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an! Grundlagen der Elektrotechnik I Aufgabe K4 Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. R 1 A R 2 Daten R 1 30 Ω R 3 L R 2 20 Ω B R 3 30 Ω L 40 mh 1500 V f 159,15 Hz 1. Berechnen Sie

Mehr

4.1.0 Widerstand im Wechselstromkreis. Das Verhalten eines Ohmschen Widerstandes ist im Wechselstromkreis identisch mit dem im Gleichstromkreis:

4.1.0 Widerstand im Wechselstromkreis. Das Verhalten eines Ohmschen Widerstandes ist im Wechselstromkreis identisch mit dem im Gleichstromkreis: 4.0 Wechselstrom 4.1.0 Widerstand im Wechselstromkreis 4.2.0 Kondensator im Wechselstromkreis 4.3.0 Spule im Wechselstromkreis 4.4.0 Wirk-, Blind- und Scheinleistung 4.5.0 Der Transformator 4.6.0 Filter

Mehr

Lo sung zu UÜ bung 1. I Schaltung Ersatzquellenberechnung. 1.1 Berechnung von R i

Lo sung zu UÜ bung 1. I Schaltung Ersatzquellenberechnung. 1.1 Berechnung von R i Lo sung zu UÜ bung 1 I Schaltung 1 Schaltbild 1: 1.Schaltung mit Spannungsquelle 1. Ersatzquellenberechnung 1.1 Berechnung von R i Zunächst Ersatzschaltbild von den Klemmen aus betrachtet zeichnen: ESB

Mehr

Protokoll zum Versuch E7: Elektrische Schwingkreise. Abgabedatum: 24. April 2007

Protokoll zum Versuch E7: Elektrische Schwingkreise. Abgabedatum: 24. April 2007 Protokoll zum Versuch E7: Elektrische Schwingkreise Sven E Tobias F Abgabedatum: 24. April 2007 Inhaltsverzeichnis 1 Einleitung 3 2 Physikalischer Zusammenhang 3 2.1 Wechselstromwiderstände (Impedanz)...............

Mehr

Laborversuche zur Physik I. Versuch 1-10 Wechselstrom und Schwingkreise. Versuchsleiter:

Laborversuche zur Physik I. Versuch 1-10 Wechselstrom und Schwingkreise. Versuchsleiter: Laborversuche zur Physik I Versuch - 0 Wechselstrom und Schwingkreise Versuchsleiter: Autoren: Kai Dinges Michael Beer Gruppe: 5 Versuchsdatum: 3. Oktober 2005 Inhaltsverzeichnis 2 Aufgaben und Hinweise

Mehr