Kugel-Stäbchen-Modelle am Computer

Größe: px
Ab Seite anzeigen:

Download "Kugel-Stäbchen-Modelle am Computer"

Transkript

1 Modeling Kugel-Stäbchen-Modelle am Computer Auf der Basis einer Lewis-Strichformel kann man mit seinem Molekülbaukasten ein 3D-Modell erstellen. Der Computer kann das auch. Vorteil: Schnell, speicherbar, keine Schwerkraft. Anhand abgespeicherter Bindungslängen wird jedem Atom eine x,y,z-koordinate in einem 3D Koordinatensystem zugeordnet. Atome und Bindungen werden dabei als digitales Kugel-Stäbchen-Modell behandelt und mit Newton scher Mechanik sucht man dessen energieärmste Konformation. Dabei berechnet das Unterprogramm Energieminimierung entlang des Potentials einen Gradienten und lässt die Atome, Bindungen und Winkel und nicht-kovalente Wechselwirkungen zum nächsten Potentialminimum hin relaxieren. Die Festlegung einer geeigneten Startstruktur wird umso schwieriger, je größer das Molekül ist. Modeling muss immer mit einer experimentell verifizierbaren Fragestellung verknüpft sein. Hier das Beispiel eines kleinen scheinbar einfachen Moleküls. Energieminimierung organischer Moleküle mit Vorzugskonformation (z.b.: Sessel) Beispiel: all-cis-hexafluorcyclohexan Wie kommt man von der Lewis-Formel zum attraktiven Molekülbild? Lewis-Formel + chemisches Wissen + NMR-Analytik als Grundlage eines realistischen Computermodells. 19 F-NMR: 2 Signale! Welche Info kann man daraus ziehen? Starker gauche-effekt der F-Atome

2 Strukturdatei z Die Strukturdatei von C 6 H 6 F 6 enthält 18 Koordinaten HETATM 1 C HETATM 2 C HETATM 3 F HETATM 4 C HETATM 5 F HETATM 6 C HETATM 7 F HETATM 8 C HETATM 9 F HETATM 10 C HETATM 11 F HETATM 12 H HETATM 13 H HETATM 14 H HETATM 15 H HETATM 16 H HETATM 17 F HETATM 18 H CONECT CONECT CONECT 3 2 CONECT CONECT 5 4 CONECT CONECT 7 6 CONECT CONECT 9 8 CONECT CONECT CONECT 12 2 CONECT 13 4 CONECT 14 6 CONECT 15 8 CONECT CONECT 17 1 CONECT 18 1 END y Atom(x,y,z) x z Mit Programmen wie HyperChem kann man Strukturen erzeugen und modellieren, d.h. Atompositionen verändern, die Gesamtenergie minimieren und Moleküldynamik- Simulationen durchführen. Mit Simulationsprogrammen werden x,y,z-koordinaten optimiert. Diese Programme sind nur bedingt geeignet, um Abbildungen zu erstellen. PyMol ist ein Programm, das die Koordinaten einliest, um daraus eine schöne Abbildung (Pixelgrafik) zu erstellen. Mit diesen Programmen werden Blickwinkel, Perspektiven optimiert, Sekundärstruktur angezeigt etc. Diese Programme sind nur bedingt geeignet, um Verknüpfungen und Koordinaten zu verändern. y x

3 Harmonischer Oszillator Kovalente und nicht-kovalente Wechselwirkungen lassen sich vereinfacht als unterschiedlich tiefe und weite Potentiale beschreiben: Kugel-Feder-Modell Die Summe dieser fünf Terme liefert eine potentielle Energie. Die ersten drei Terme beschreiben kovalente Wechselwirkungen, die anderen nichtbindende Ww. Bond Length V V 1 2 ( r1, r2,, rn ) K [ ] 2 b b bo bonds Bond Angle 1 2 ( r1, r2,, r N ) K [ ] 2 o angles Dihedral Angle V ( r, r2,, r V ( r 1, r2,, rn ) V ( r, r 1 2,, r N ) ) pairs( i, j) pairs( i, j) [1 cos( n )] 1 N o Lennard-Jones Coulomb K dihedrals C rij q q i 4 r o C r j r 6 6 ij ij

4 Aus experimentellen Daten werden Potentiale für die Moleküldynamik-Simulation (MD) NOE penalty function L = lower limit = 2 Å bei intensivem Kreuzsignal im NOESY U = upper limit = 4 Å bei schwachem Kreuzsignal im NOESY 3 J coupling constants penalty function E J = ½ K J ( J exp J calc ) 2

5 Experimentelle Restriktionen Die 3 J NH,Ha -Kopplung als zusätzliches Potential E Restriktion E Beispiel: Die -Torsion einer peptidischen α-helix -60 ist die gesuchte Größe. Das Minimum des Kraftfeldes liegt aber davon abweichend bei -70. Die Restriktion ist das aus der Karplus-Beiehung und der 3 J NH,Ha -Kopplung berechnete Potential. Kraftfeld Kraftfeld Restriktion Restriktion -Δ Optimalwert +Δ Kraftfeld Entspricht die Restriktion (Torsion oder Abstand) dem Optimalwert des Kraftfeldes, so verstärkt die Restriktion den Einfluss des Kraftfeldes, der Potentialtopf wird schmaler und tiefer. Realistischstes Potential Φ-Torsion [ ] Das grüne Potential korrigiert den Fehler des schwarzen Kraftfeldes. Das rote Potential verstärkt den Fehler. Viele kleine systematische Abweichungen eines Kraftfeldes addieren sich zu einer riesigen Gesamtabweichung von der realen Gesamtkonformation.

6 Die Potentialhyperfläche: Das Molekül als Kugel-Feder-Modell Das systematische Durchsuchen des gesamten Konformationsraums eines Proteins ist nicht möglich, da es zu viele einzelne Potentialterme sind. Vgl. Levinthal s Paradox Wie findet man die Struktur mit der niedrigsten potentiellen Energie? Jedem Atom wird eine kinetische Energie zugewiesen. Die Bewegungsgleichungen wandeln diese in potentielle Energie um, wodurch Energiebarrieren überschritten werden. Nur mit Hilfe von NOE-Daten als zusätzliche Potentiale findet man das globale Energieminimum des Moleküls.

7 Moleküldynamik MD Die Summe der Potentiale (Kraftfeld) ordnet jeder Atomposition eine potentielle Energie zu. V gesamt = V Bindung + V Winkel + V NOE + V Kopplungskonstanten +... Die Integration der Newtonschen Bewegungsgleichungen für ein Molekül bezeichnet man als Moleküldynamiksimulation. a = F/m = m -1 (dv/dr) v = a Dt r = v Dt Verschiedene Algorithmen finden Verwendung, um aus dem Potential eine Beschleunigung und damit eine neue Atomposition nach einem festgelegten Zeitschritt (Dt = 1 Femtosekunde) zu bestimmen. zb: leap-frog algorithm Dies ist die einfachste Form der Konformationssuche

8 MD-Simulation Jedem Atom wird eine Startposition (Koordinate r) zum Zeitpunkt 0 der Moleküldynamiksimulation zugewiesen. Danach wird numerisch die neue Position berechnet. Leap-frog-Algorithmus a i (t)= F (t ) i = 1 δv (r) m i m i( δr i ) 1 Im ersten Schritt erfolgt die Berechnung der Beschleunigung bzw. Kraft zum Zeitpunkt t mithilfe des Kraftfeldes. Die abgespeicherten Geschwindigkeiten gehen explizit in die Berechnung ein und sind gegenüber den Ortskoordinaten um einen halben Zeitschritt verschoben. r i r i (t+ Δ t)= r i (t)+ v i( t+ Δ t 2 ) Δ t v i( t+ Δ t 2 ) i( = v t Δ t 3 2 ) = a i (t)δ t Der zweite und dritte Schritt dienen dem Überspringen der Geschwindigkeiten und Ortskoordinaten entsprechend der Gleichungen. v i a i t t+ Δ t t+ 2 Δt

9 Gemittelte Struktur aus einer MD-Simulation MD-Simulationsverlauf und -vergleich am Beispiel Cyclohexan Rechts: Cyclohexan der MD-Simulation mit 1, 2, 3 und 4 Atomen als Schwerpunkte (Kennzeichnung 1, 2, 3, 4) Links: Aus den Cyclohexan gemittelte Strukturen in Aufsicht und Seitenansicht (Kennzeichnung 1, 2, 3, 4) 1 CHx/011 2 CHx/020 2 CHx/ CHx/030 4 CHx/ Je unterschiedlicher die Einzelstrukturen der Collage, desto verzerrter sind Winkel und Bindungslängen der Mittelstruktur

10 10 Schnappschüsse aus einer 100 ps MD-Simulation. Die Fettsäure zeigt konformationelle Dynamik. Gemittelte Konformation Die Alkylkette stabilisiert eine Hauptkonformation des Tetrasaccharids und schließt weitere Nebenkonformationen aus.

11 Strukturaufklärung auf der Basis von NMR-Daten Connectivity Physical description of the molecule: bond lengths, angles, stereochemistry are potential energy terms Experimental restraints are further penalty terms, one for each observable. 2D-NOESY Structure must satisfy both the geometric constraints defined for the molecule (proper bond lengths, planar aromatic ring, etc.) as well as the restraints generated from the NMR data.

12 Die Startstruktur hat einen wesentlichen Einfluss auf den Erfolg der MD-Simulation. Nur eine gleichmäßige Verteilung gemessener NOEs über die gesamte Peptidkette führt zu verlässlichen Ergebnissen. Funktionelle Dynamik komplexer Biomoleküle ist schwierig zu analysieren. Die Stabilität (Qualität) einer Proteinstruktur wird durch die Stabilität in während der Moleküldynamik charakterisiert. rmsd: root mean square deviation der Geometrie des Peptidrückgrates Warum können nur so kurze Zeiten (ns) simuliert werden?

13 Flussdiagramm Peptid-/Protein-Modelling NMR-Messwerte (NOE, J, etc.) Physikalische Constraints (Bdglängen und Winkel) Constraints (NOE und Torsion) Kraftfeld NMR- (Potentialkurven) Andere Strukturen werden verworfen Modeling erzeugt verbesserten Strukturvorschlag (x, y, z ) Gute Übereinstimmung (Constraints und erwartete Sekundärstrukturen) Startstruktur (x, y, z) Variation der Parameter oder neue Startstruktur Mittelung und Relaxation (Energieminimierung) im Kraftfeld (x, y,z )

14 MD-Simulation benötigen eine Fragestellung, die auch berechenbar ist. Gute Frage: Zeigen die beiden Aldole in Lösung unterschiedliche Ringkonformationen, so wie es im Kristall der Fall ist? Schlechte Frage fürs Modeling: Warum ist Pro ein guter Katalysator? Molekulare Flexibilität: Ein anelliertes Ringsystem ist keine Garantie für Starrheit. Die Aldole (rechts) liegen abhängig vom angularen Substituenten (Me oder Et) in invertierten Ringstrukturen im Kristall vor. Ein Packungseffekt im Kristall oder unterscheiden sich die Energieminima auch in Lösung?

Kugel-Stäbchen-Modelle am Computer

Kugel-Stäbchen-Modelle am Computer Modeling Kugel-Stäbchen-Modelle am Computer Die Lewis-Strichformel ist der Startpunkt für die Erstellung eines 3D-Modells. Molekülbaukasten oder Computer? Vorteile Chem3D: Schnell, speicherbar, beliebig

Mehr

Einführung in das Molecular Modelling

Einführung in das Molecular Modelling Einführung in das Molecular Modelling Darstellung und Bearbeitung dreidimensionaler Molekülstrukturen Berechnung der physikochemischen Eigenschaften Ziel: Einsicht in die molekularen Mechanismen der Arzneistoffwirkung

Mehr

Übungsaufgaben. Aufbau und Konformation von Polypeptiden. Einführung in die räumliche Struktur von Proteinen

Übungsaufgaben. Aufbau und Konformation von Polypeptiden. Einführung in die räumliche Struktur von Proteinen Computergestützte Strukturbiologie (Strukturelle Bioinformatik) SS09 P. Güntert Übungsaufgaben Aufbau und Konformation von Polypeptiden 1. Warum haben Proteine im Unterschied zu DNA komplizierte und vielfältige

Mehr

10. Innere Koordinaten/Kraftfelder

10. Innere Koordinaten/Kraftfelder Computeranwendung in der Chemie Informatik für Chemiker(innen) 10. Innere Koordinaten/Kraftfelder Jens Döbler 2004 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL10 Folie 1 Dr. Jens Döbler

Mehr

Lange Nacht der Wissenschaft Molekülsimulationen zur Risikobewertung von Spurenstoffen im Wasserkreislauf

Lange Nacht der Wissenschaft Molekülsimulationen zur Risikobewertung von Spurenstoffen im Wasserkreislauf Lange Nacht der Wissenschaft Molekülsimulationen zur Risikobewertung von Spurenstoffen im Wasserkreislauf Vedat Durmaz Zuse-Institut Berlin Computational Molecular Design Klassische Moleküldynamik (MD)

Mehr

Moleküldynamik. Modell: Klassische Mechanik Newtonsche Bewegungsgleichungen. = m a i

Moleküldynamik. Modell: Klassische Mechanik Newtonsche Bewegungsgleichungen. = m a i Mikroskopische Simulation der Molekülbewegungen Moleküldynamik Statistische Mechanik Modell: Klassische Mechanik Newtonsche Bewegungsgleichungen Makroskopische igenschaften des Systems (nergie, Temp, Druck,

Mehr

Molekülmodell und Kraftfelder Kraftfelder MD Simulation: Geschichte MD Simulation: Personen und Programme

Molekülmodell und Kraftfelder Kraftfelder MD Simulation: Geschichte MD Simulation: Personen und Programme Computergestützte Strukturbiologie (Strukturelle Bioinformatik) Kraftfelder Sommersemester 2009 Peter Güntert Molekülmodell und Kraftfelder Geschichte der MD Simulation Kraftfelder: CHARMM, AMBER, GROMOS,...

Mehr

Aufbau und Konformation von Polypeptiden

Aufbau und Konformation von Polypeptiden 1 Aufbau und Konformation von Polypeptiden Peter Güntert, Sommersemester 2009 Hierarchie von Proteinstrukturen Primärstruktur: Aminosäuresequenz Sekundärstruktur: Helices, Faltblätter, Turns, Loops Tertiärstruktur:

Mehr

NMR-Spektroskopie an Peptiden. Peptide. Worum soll es heute gehen? Peptide. 2D-NMR-Spektroskopie. Seminar AG Rademann

NMR-Spektroskopie an Peptiden. Peptide. Worum soll es heute gehen? Peptide. 2D-NMR-Spektroskopie. Seminar AG Rademann 2/52 Seminar AG Rademann 3.11.2005 Worum soll es heute gehen? 2D-NMR-Spektroskopie Sequenzspezifische Zuordnung Bestimmung der 3D-Struktur 3/52 4/52 Die Primärstruktur 5/52 6/52 20 natürliche Aminosäuren

Mehr

Konformation von Polypeptiden

Konformation von Polypeptiden 1 Konformation von Polypeptiden Peter Güntert, Wintersemester 2011/12 Primärstruktur Polypeptide sind lineare Ketten, die aus 20 verschiedenen Typen von Bausteinen (Aminosäureresten, AS) aufgebaut sind.

Mehr

4.1 Molecular Dynamics Simulation and Visualization

4.1 Molecular Dynamics Simulation and Visualization 4.1 Molecular Dynamics Simulation and Visualization Drug Design André Brück 2579542 Gliederung Einführung Grundlagen State of the Art Ausblick / ToDo Fragen Diskussion 24.04.2004 Drug Design A. Brück (2579542)

Mehr

Einführung in. Molecular Dynamics. Simulationen. Yvonne Ketteler

Einführung in. Molecular Dynamics. Simulationen. Yvonne Ketteler Einführung in Molecular Dynamics Simulationen Yvonne Ketteler Überblick 1. Molecular Dynamics Simulation 1.1 Einleitung und Geschichte 1.2 Theorie 1.3 Kraftfelder (FF) 1.4 Replica Exchange 1.5 System Setup

Mehr

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion Aufgabe EStrich ist Lennard Jones Potential mit Exponentialfunktion Ansatz: Exponentialfunktion mit 3 Variablen einführen: a: Amplitude b:stauchung c:verschiebung_entlang_x_achse EStrich r_, ro_, _ : a

Mehr

Molekulare Biophysik. NMR-Spektroskopie (Teil 4)

Molekulare Biophysik. NMR-Spektroskopie (Teil 4) Molekulare Biophysik NMR-Spektroskopie (Teil 4) Peptide Peptide 3/92 Die Primärstruktur Peptide 4/92 20 natürliche Aminosäuren Peptide 5/92 Cyclische Peptide sind kleine Peptide mit fixierter Konformation.

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Probeklausur Technische Universität München 1 Fakultät für Physik 1 Kurze Fragen [20 Punkte] Beantworten Sie folgende Fragen. Für jede richtige Antwort

Mehr

Hamilton-Systeme. J. Struckmeier

Hamilton-Systeme. J. Struckmeier Invarianten für zeitabhängige Hamilton-Systeme J. Struckmeier Vortrag im Rahmen des Winterseminars des Instituts für Angewandte Physik der Johann-Wolfgang-Goethe-Universität Frankfurt a.m. Hirschegg, 04.

Mehr

Prion proteins 09/04/30. Strukturbestimmung mit NMR Spektroskopie. Computergestützte Strukturbiologie (Strukturelle Bioinformatik)

Prion proteins 09/04/30. Strukturbestimmung mit NMR Spektroskopie. Computergestützte Strukturbiologie (Strukturelle Bioinformatik) Computergestützte Strukturbiologie (Strukturelle Bioinformatik) Strukturbestimmung mit NMR Spektroskopie p Sommersemester 009 Peter Güntert NMR Spektroskopie: Geschichte 194, Wolfgang Pauli: Vorhersage

Mehr

Kapitel 2: Die Born-Oppenheimer-Näherung

Kapitel 2: Die Born-Oppenheimer-Näherung Kapitel 2: Die Born-Oppenheimer-Näherung Übersicht: 2.1 Der molekulare Hamiltonoperator 2.2 Die Born-Oppenheimer-Näherung 2.3 Die Schrödingergleichung für die Kernbewegung 2.4 Die Born-Oppenheimer-Potentialfläche

Mehr

MM Kraftfelder. Michael Meyer. Vorlesung III. Kraftfelder

MM Kraftfelder. Michael Meyer. Vorlesung III. Kraftfelder MM 3.09.013 Kraftfelder Vorlesung III Kraftfelder Ziel Berechnung der potentiellen nergie eines bestimmten Moleküls als Funktion der Atomkoordinaten (potential energy surface). Beschreibung einer ganzen

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Folding Funnel Rädler / Mathias 45 SS2011

Folding Funnel Rädler / Mathias 45 SS2011 Folding Funnel 45 Proteinfaltung am Computer Snow/Pande: Folding at home Molekulardynamik Simulationen Integration Newtonscher Bewegungsgleichungen Kraftfeld für kovalente Bindungen Elektrostatische Wechselwirkungen,

Mehr

Spektroskopische Methoden in der Organischen Chemie (OC IV)

Spektroskopische Methoden in der Organischen Chemie (OC IV) H 3 C 10 O G F D E 8 5 I H GF E D CB A 10 8 5 3 2 1 125 MHz 13 C NMR Spektrum 500 MHz 1 H NMR Spektrum NMR -_1 32 1 H 3 C 10 8 5 10 O G F D E 8 5 Dieder-Winkel: H 10 -H : 5, H -H : 80 H H 8 : 2, H -H :

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine

Mehr

1 Innere Rotation von Alkanen

1 Innere Rotation von Alkanen 1 Innere Rotation von Alkanen a Unter Verwendung der Energieniveaus des harmonischen Oszillators schreibt sich die Zustandssumme Q = g n e εn/kbt = = e hω/2k BT = a 0 x n e hωn+ 1 2 /k BT e hωn/kbt = e

Mehr

Einführung in die Moleküldynamiksimulation von Proteinen

Einführung in die Moleküldynamiksimulation von Proteinen 1 Strukturelle Bioinformatik (Sommersemester 2018) Einführung in die Moleküldynamiksimulation von Proteinen Peter Güntert Sina Kazemi 1 Einführung 2 11 Was ist MD Simulation? 2 12 Meilensteine der MD Simulation

Mehr

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: phys4.016 Page 1 10. Das Wasserstoff-Atom 10.1.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Besprechung am

Besprechung am PN Einführung in die Physi für Chemier Prof. J. Lipfert WS 206/7 Übungsblatt 0 Übungsblatt 0 Besprechung am 7.0.207 Aufgabe Ungedämpfter harmonischer Oszillator. Eine Masse m schwingt reibungsfrei an einer

Mehr

1 Lagrange sche Gleichung 1. Art

1 Lagrange sche Gleichung 1. Art 1 Lagrange sche Gleichung 1. Art 1.1 Einführung und Beispiel Bewege sich ein Massepunkt auf einer Geraden (G) im Raum, so hat dieser einen Freiheitsgrad, d.h. es müssen 2 Zwangsbedingungen für ihn gelten.

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differentialgleichungssysteme Prof. Dr. Wandinger

Mehr

BIOINF1110 Einführung in die Bioinforma7k. 5. Molekulare Maschinen Proteinstrukturen und ihre Funk/on

BIOINF1110 Einführung in die Bioinforma7k. 5. Molekulare Maschinen Proteinstrukturen und ihre Funk/on BIOINF1110 Einführung in die Bioinforma7k 5. Molekulare Maschinen Proteinstrukturen und ihre Funk/on Oliver Kohlbacher Zentrum für Bioinforma7k Tübingen Proteine Zentrales Dogma DNA Transkription mrna

Mehr

BIOINF1110 Einführung in die Bioinforma7k. Molekulare Maschinen Proteinstrukturen und ihre Funk/on

BIOINF1110 Einführung in die Bioinforma7k. Molekulare Maschinen Proteinstrukturen und ihre Funk/on BIOINF1110 Einführung in die Bioinforma7k Molekulare Maschinen Proteinstrukturen und ihre Funk/on Oliver Kohlbacher Angewandte Bioinforma0k Zentrum für Bioinforma0k Tübingen Proteine 2 Zentrales Dogma

Mehr

Versuch 11: Computersimulation von Materialien Werkstoffteil, Frühlingssemester 2009

Versuch 11: Computersimulation von Materialien Werkstoffteil, Frühlingssemester 2009 Versuch 11: Computersimulation von Materialien Werkstoffteil, Frühlingssemester 2009 Verfasser: Zihlmann Claudio Teammitglied: Knüsel Philippe Datum: 3.4.2009 Assistent: Heinrich Orsini-Rosenberg E-Mail:

Mehr

Einführung in die Boltzmann-Gleichung. Flavius Guiaş Universität Dortmund

Einführung in die Boltzmann-Gleichung. Flavius Guiaş Universität Dortmund Einführung in die Boltzmann-Gleichung Flavius Guiaş Universität Dortmund Antrittsvorlesung, 19.04.2007 INHALT 1 Herleitung der Boltzmann-Gleichung 2 Boltzmann-Ungleichung und Maxwell-Verteilung 3 H-Theorem

Mehr

Einführung in die Biophysik

Einführung in die Biophysik Einführung in die Biophysik Quellen Schünemann: Biophysik Cotterill: Biophysik www.biophysics.org www.biophysj.org Sackmann: Lehrbuch der Biophysik Versuch einer Annäherung Biophysics is that branch of

Mehr

INADEQUATE 13 C, 13 C-COSY

INADEQUATE 13 C, 13 C-COSY INADEQUATE 13 C, 13 C-COSY Die bisher diskutierten Korrelationsmethoden beruhen auf Protonen. Da das eigentliche Skelett eines organischen Moleküls das Kohlenstoffgerüst ist, wäre es in einigen Fällen

Mehr

1 Innere Rotation von Alkanen

1 Innere Rotation von Alkanen Physikalische Chemie II Lösung 1 25. November 216 1 Innere Rotation von Alkanen a Unter Verwendung der Energieniveaus des harmonischen Oszillators schreibt sich die Zustandssumme Q = g n e εn/kbt = = e

Mehr

Grundlagen der Lagrange-Mechanik

Grundlagen der Lagrange-Mechanik Grundlagen der Lagrange-Mechanik Ahmed Omran 1 Abriss der Newton schen Mechanik 1.1 Newton sche Axiome 1. Axiom: Im Inertialsystem verharrt ein Körper in seinem momentanen Bewegungszustand (in Ruhe, oder

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

2.9 Gedämpfter Harmonischer Oszillator

2.9 Gedämpfter Harmonischer Oszillator 72 KAPITEL 2. DYNAMIK EINES MASSENPUNKTES 2.9 Gedämpfter Harmonischer Oszillator In diesem Abschnitt wollen wir die Bewegung eines Massenpunktes betrachten, der sich in einer Raumrichtung x in einer Harmonischen

Mehr

1 Einleitung. Einleitung 1

1 Einleitung. Einleitung 1 Einleitung 1 1 Einleitung Die Supramolekulare Chemie ist die Chemie der intermolekularen Bindung. Sie beschäftigt sich mit Strukturen und Funktionen von Einheiten, die durch Assoziation zweier oder mehrerer

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differenzialgleichungssysteme 5.1-1 1.1 Grundlagen

Mehr

Durchführung der Simulation

Durchführung der Simulation Kapitel 4 Durchführung der Simulation Die Computersimulationen werden mit der CHARMM22-Energiefunktion durchgeführt (MacKerell et al. 1998). Die Wassermoleküle werden dabei als SPC/E-Wassermodell parametrisiert

Mehr

Thermodynamik (Wärmelehre) III kinetische Gastheorie

Thermodynamik (Wärmelehre) III kinetische Gastheorie Physik A VL6 (07.1.01) Thermodynamik (Wärmelehre) III kinetische Gastheorie Thermische Bewegung Die kinetische Gastheorie Mikroskopische Betrachtung des Druckes Mawell sche Geschwindigkeitserteilung gdes

Mehr

Einführung in die Biophysik

Einführung in die Biophysik Einführung in die Biophysik Quellen Schünemann: Biophysik Cotterill: Biophysik www.biophysics.org www.biophysj.org Sackmann: Lehrbuch der Biophysik Versuch einer Annäherung Biophysics is that branch of

Mehr

Übungen zur VL Chemie für Biologen und Humanbiologen Lösung Übung 9

Übungen zur VL Chemie für Biologen und Humanbiologen Lösung Übung 9 Übungen zur VL Chemie für Biologen und Humanbiologen 13.01.2012 Lösung Übung 9 1. Geben Sie jeweils zwei Beispiele für Konformations- und Konstitutionsisomere, d.h. insgesamt vier Paare von Molekülen.

Mehr

MM Proteinmodelling. Michael Meyer. Vorlesung XVII

MM Proteinmodelling. Michael Meyer. Vorlesung XVII Proteinmodelling Vorlesung XVII Proteinstrukturen Es besteht ein sehr großer Bedarf an Proteinstrukturen: Die Kenntnis der 3D-Struktur hat große Vorteile für das Design neuer Wirkstoffe. Experimentelle

Mehr

Übungen zur Klassischen Theoretischen Physik I WS 2016/17

Übungen zur Klassischen Theoretischen Physik I WS 2016/17 Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Klassischen Theoretischen Physik I WS 06/7 Prof. Dr. Carsten Rockstuhl Blatt 4 Dr. Andreas Poenicke, MSc. Kari

Mehr

12. Potentialflächen und Optimierung

12. Potentialflächen und Optimierung Dr. Jens Döbler Computeranwendung in der Chemie Informatik für Chemiker(innen) 12. Potentialflächen und Optimierung Jens Döbler 2004 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL12 Folie

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

4.1 Die Simulation des molekularen Systems

4.1 Die Simulation des molekularen Systems 48 Kapitel 4 Die Dynamik der Spinsonde 4.1 Die Simulation des molekularen Systems Für eine spätere Identifizierung der verschiedenen Einflüsse der Wechselwirkungen der Spinsonde mit der molekularen Umgebung

Mehr

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry Theoretische Chemie (TC II) Computational Chemistry Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Dr. Matthias Ruckenbauer (matruc@theochem.uni-frankfurt.de) Dr. Haleh Hashemi

Mehr

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2 H + 2 Die molekulare Bindung : Quantenmechanische Lösung Aufstellen der Schrödingergleichung für das H + 2 Molekülion und Lösung Wichtige Einschränkung: Die Kerne sind festgehalten H Ψ(r) = E Ψ(r) (11)

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Molekulardynamische Simulation

Molekulardynamische Simulation Molekulardynamische Simulation Quantenchemische Berechnungen, die auf dem Lösen der Schrödingergleichung basieren, sind nur für Systeme mit einer geringen Anzahl von Atomen praktikabel. Will man biologische

Mehr

The Nature of Hydrogen Bonds in Cytidine-H + -Cytidine DNA Base Pairs

The Nature of Hydrogen Bonds in Cytidine-H + -Cytidine DNA Base Pairs The ature of Hydrogen Bonds in Cytidine-H + -Cytidine DA Base Pairs A. L. Lieblein, M. Krämer, A. Dreuw, B. Fürtig, H. Schwalbe, Angew. Chem. Int. Ed. 2012, 51, 4067 4070. Seminar Moderne Anwendungen der

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

Teil 2 NMR-Spektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18

Teil 2 NMR-Spektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18 Teil 2 NMR-Spektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18 www.ruhr-uni-bochum.de/chirality 1 Rückblick Chemische Verschiebung Chemische Umgebung Funktionelle Gruppen Signalintensitäten

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Arbeit, Skalarprodukt, potentielle und kinetische Energie Energieerhaltungssatz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 4. Nov.

Mehr

Spektroskopie in der Organischen Chemie. 1 H, 1 H-Kopplungskonstanten. Geminale Kopplungen

Spektroskopie in der Organischen Chemie. 1 H, 1 H-Kopplungskonstanten. Geminale Kopplungen Spektroskopie in der rganischen hemie Geminale Kopplungen 1, 1 -Kopplungskonstanten Wenn sich die beiden Kopplungspartner (wie Zwillinge; lat.: gemini) am gleichen Kohlenstoffatom befinden, also nur zwei

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Verwenden Sie keinen Bleistift für die Abgabe und heften Sie einzelne

Verwenden Sie keinen Bleistift für die Abgabe und heften Sie einzelne 1 Lösung 6 AC/OC I, HS 2017 Name Assistent/in Verwenden Sie keinen Bleistift für die Abgabe und heften Sie einzelne 6.1 Konformationsanalyse a) Zeichnen Sie für 2-Methylbutan die Konformationen als Newman-Projektionen

Mehr

Inhalt der Vorlesung Computational Chemistry

Inhalt der Vorlesung Computational Chemistry Inhalt der Vorlesung Computational Chemistry Inhalt: Beschreibung von Molekülen mit computerbasierten Methoden insbesondere Moleküleigenschaften: Struktur: die Molekülgeometrie welche Gestalt haben Moleküle?

Mehr

.10.014 Invitation esearch Buffet From the Chair of Materials Science and Nanotechnology and the Chair of Biomaterials WHAT? Meet with group leaders and graduate students and talk about science and find

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

Molekulardynamik-Simulation realer Fluide in Nanokanälen

Molekulardynamik-Simulation realer Fluide in Nanokanälen Status- und Perspektivseminar des SFB 716 Molekulardynamik-Simulation realer Fluide in Nanokanälen Markt Irsee, 21. September 2009 Martin HORSCH und Jadran VRABEC SFB 716 Vortragsgliederung Modellierung

Mehr

Molecular Modelling. Molekulare Mechanik-Simulationen am Beispiel von DNA-Ligand-Komplexen

Molecular Modelling. Molekulare Mechanik-Simulationen am Beispiel von DNA-Ligand-Komplexen Molecular Modelling Molekulare Mechanik-Simulationen am Beispiel von DNA-Ligand-Komplexen Florian Kamm, Dezember 2003 Halbkurs Algorithmen in der Bioinformatik Molecular Modelling Was ist das? Molecular

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 2: konservative Kräfte, Vielteilchensysteme und ausgedehnte Körper gehalten von: Markus

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 09. 01. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Theoretische Physik I/II

Theoretische Physik I/II Theoretische Physik I/II Prof. Dr. M. Bleicher Institut für Theoretische Physik J. W. Goethe-Universität Frankfurt Aufgabenzettel XI 27. Juni 2011 http://th.physik.uni-frankfurt.de/ baeuchle/tut Lösungen

Mehr

Computersimulationen in der Astronomie

Computersimulationen in der Astronomie Computersimulationen in der Astronomie Fabian Heimann Universität Göttingen, Fabian.Heimann@stud.uni-goettingen.de Astronomisches Sommerlager 2013 Inhaltsverzeichnis 1 Differentialgleichungen 3 1.1 Beispiele.....................................

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

8. Periodische Bewegungen

8. Periodische Bewegungen 8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt

Mehr

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die

Mehr

Atomistische Modellierung

Atomistische Modellierung Atomistische Modellierung Heptan Feuer (Sandia) Gerolf Ziegenhain TU Kaiserslautern Übersicht Kurzer Abriß der Geschichte Warum Computersimulationen? Beispiele: Verschiedene Längenskalen Genauer: Molekulardynamik

Mehr

Alle Angaben sind ohne Gewähr!

Alle Angaben sind ohne Gewähr! Alle Angaben sind ohne Gewähr! Die Abbildungen sind hauptsächlich aus dem Buch: Van Holde/Johnson/Ho: Principles of physical biochemistry Buch nur zur Kristallographie: Crystallography Made Crystal Clear:

Mehr

Wie man dieses (Weg-)Integral berechnet, kann man sich mit der folgenden Merkregel im Kopf halten. Man schreibt d~r = d~r

Wie man dieses (Weg-)Integral berechnet, kann man sich mit der folgenden Merkregel im Kopf halten. Man schreibt d~r = d~r Vektoranalysis 3 Die Arbeit g Zum Einstieg eine kleine Veranschaulichung. Wir betrachten ein Flugzeug, das irgendeinen beliebigen Weg zurücklegt. Ausserdem seien gewisse Windverhältnisse gegeben, so dass

Mehr

4. Transiente Analyse

4. Transiente Analyse 4. Transiente Analyse Bei der transienten Analyse wird der zeitliche Verlauf der Antwort auf eine zeitlich veränderliche Last bestimmt. Die zu lösende Bewegungsgleichung lautet: [ M ] [ü ]+[ D ] [ u ]+

Mehr

Versuchsprotokoll: Modellierung molekularer Schwingungen

Versuchsprotokoll: Modellierung molekularer Schwingungen Versuchsprotokoll: Modellierung molekularer Schwingungen Teammitglieder: Nicole Schai und Cristina Mercandetti Datum: 11.12.12 Versuchsleiter: Claude Ederer 1. Einleitung Dieser Versuch befasste sich mit

Mehr

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18 D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )

Mehr

Physik I - Integrierter Kurs -

Physik I - Integrierter Kurs - Physik I - Integrierter Kurs - Klausur I, WS 2006/07 13. Dezember 2006 Name: Übungsgruppe/Betreuer: Aufgabe V1 V2 V3 V4 A1 A2 A3 A4 A5 A6 Summe (max. 50) Punkte Name: Betreuer/Übungsgruppe: 1 Verständnis

Mehr

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [ Vorlesung 4 Teilchen im externen Elektromagnetischen Feld Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e v B c ]. 1) Das elektrische

Mehr

Spektroskopie-Seminar SS NMR-Spektroskopie. H-NMR-Spektroskopie. nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie

Spektroskopie-Seminar SS NMR-Spektroskopie. H-NMR-Spektroskopie. nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie 1 H-NMR-Spektroskopie nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie 5.1 1 H-NMR-Spektroskopie NMR-Spektrum liefert folgende Informationen: Chemische Verschiebung d (in ppm):

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

1. Sekundärstruktur 2. Faserproteine 3. Globuläre Proteine 4. Protein Stabilisierung 5. Quartärstruktur

1. Sekundärstruktur 2. Faserproteine 3. Globuläre Proteine 4. Protein Stabilisierung 5. Quartärstruktur Dreidimensionale Struktur von Proteinen (Voet Kapitel 7) 1. Sekundärstruktur 2. Faserproteine 3. Globuläre Proteine 4. Protein Stabilisierung 5. Quartärstruktur - Eigenschaften eines Proteins werden durch

Mehr

2.2 Intermolekulare Wechselwirkungen

2.2 Intermolekulare Wechselwirkungen 2.2 Intermolekulare Wechselwirkungen -15-2.2 Intermolekulare Wechselwirkungen Die Bildung der hier vorgestellten molekularen Aggregate beruht auf schwachen Wechselwirkungen zwischen Atomen oder Molekülen.

Mehr

Spektroskopie-Seminar SS NMR-Spektroskopie. H-NMR-Spektroskopie. nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie

Spektroskopie-Seminar SS NMR-Spektroskopie. H-NMR-Spektroskopie. nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie 1 H-NMR-Spektroskopie nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie 4 NMR-Spektroskopie 5.1 1 H-NMR-Spektroskopie Wasserstoffatome ( 1 H, natürliche Häufigkeit 99,985 %) mit

Mehr

Cyclohexan und Dekalin

Cyclohexan und Dekalin Cyclohexan und Dekalin Die wohl wichtigste ringförmige Struktur in der organischen Chemie ist der Sechsring, im gesättigten Fall Cyclohexan. Dies gilt schon deshalb, weil dieser Ring zentraler Bestandteil

Mehr