Überlegungen zur Leistung und zum Wirkungsgrad von Solarkochern

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Überlegungen zur Leistung und zum Wirkungsgrad von Solarkochern"

Transkript

1 Überlegungen zur Leistung und zum Wirkungsgrad von Solarkochern (Dr. Hartmut Ehmler) Einführung Die folgenden Überlegungen gelten ganz allgemein für Solarkocher, unabhängig ob es sich um einen Parabolkocher, einen Boxkocher oder eine Mischform aus beiden handelt. Bei Solarkochern ist die Aufheizzeit bis zum Koch- oder Garvorgang oft länger als die eigentliche Garzeit. Sie wird einerseits durch die das Kochgut erreichende Leistung bestimmt, welche von vielen Faktoren abhängt z.b. von der Sonnenintensität, bestrahlter Fläche, Reflexionseigenschaften verwendeter Spiegel, Transmission verwendeter Glasscheiben, Absorptionskoeffizient der Topfoberfläche und so weiter. Nicht minder wichtig sind aber die thermischen Verluste beim Aufheizen des Kochgutes im Solarkocher, da hierdurch die Aufheizzeit verlängert wird. Experimentell lassen sich sowohl eingestrahlte Leistung als auch thermische Verluste aus der Aufheizkurve ermitteln. Der Zusammenhang von effektiver Leistung und thermischen Wirkungsgrad soll in diesem Beitrag dargestellt werden. Grundlagen Sei der Solarkocher mit einer Menge Wasser in einem idealen Kochgefäß (ohne Wärmekapazität und mit unendlich guter Wärmeleitung) gefüllt. Wenn sich diese Wassermenge der Masse m ausgehend von der Umgebungstemperatur T 0 um eine kleine Temperaturdifferenz dt in der Zeit dt erwärmt, so wird dafür die Leistung P benötigt: (1) Eine Aufheizkurve ist in Abbildung 1 schematisch dargestellt. Man kann aus dem Kurvenverlauf die Leistung gemäß Gleichung (1) berechnen. Hierzu bildet man die Steigung der Tangenten im zu Beginn des Aufheizvorganges, also im Kurvenursprung (bei t=0 und T=T 0 ). Schreitet die Zeit fort, so flacht die Kurve T(t) ab, weil die Wärmeverluste an die Umgebung mit der Temperatur zunehmen und so die an das Kochgut effektiv übertragene Leistung vermindert wird 1. 1 Die thermischen Verluste eines Solarkochers lassen sich übrigens aus einer Abkühlkurve bestimmen. Man befüllt dazu den Kocher mit einer bekannten Wassermenge bei 100 C und misst den Temperaturverlauf ohne Sonneneinstrahlung. Aus der Steigung der Kurve und Gleichung (1) ergibt sich die abgegebene Verlustleistung. 12. Mai 2012 Seite 1

2 Die folgenden Überlegungen beziehen sich der Anschaulichkeit halber auf das Erreichen einer Kochtemperatur von 100 C. Sie sind aber im Prinzip aber auf jede erreichbare Temperatur im Solarkocher übertragbar (z.b. beim Niedertemperaturgaren oder Braten). Abbildung 1: Schematische Darstellung des Aufheizvorganges eines Solarkochers. Aus dem linearen Anstieg zu Beginn der Aufheizkurve ergibt sich die Minimalzeit t* 100. Diese Zeit würde der Kocher benötigen, um ohne Verluste 100 C zu erreichen. Die reale Zeit t 100 ist deutlich länger. Die Endtemperatur T e würde asymptotisch erreicht werden, wenn der Kocher im Leerlauf wäre also ohne Wasser oder Kochgut. Ohne Wärmeverluste würde die Zeit, die man braucht um eine Menge Wasser auf 100 C zu erhitzen, gegeben sein durch die Steigung zu Beginn des Aufheizens und das zu überbrückende Temperaturintervall: - (2) Die tatsächliche Zeit t 100 zum Erreichen von 100 C ist aber aufgrund der Wärmeverluste länger als die Minimalzeit. Es ist naheliegend, als thermischen Wirkungsgrad η therm das Verhältnis von Minimalzeit zu tatsächlicher Zeit ( ) zu definieren. Dies gibt an, wie viel Prozent der eingesetzten Energie beim gesamten Aufheizen beim Kochgut verbleibt und nicht als Wärme an die Umgebung abgeben wird. Beispielsweise würde für einen Wirkungsgrad η therm =50% das Kochgut doppelt so lange brauchen, um die 100 C zu erreichen, wie das ohne thermische Verluste der Fall wäre (bei einem idealen thermischen Wirkungsgrad von 100%). In diesem Beispiel wird also die Leistung effektiv halbiert. Mit dieser Definition des Wirkungsgrades ist also die effektive Leistung : (3) 12. Mai 2012 Seite 2

3 Mathematische Funktion der Aufheizkurve Welcher Zusammenhang besteht nun zwischen der Zeit und der Kochertemperatur ganz allgemein, oder anders gesagt: Kann man eine analytische Funktion T(t) dafür angeben? Eine exakte Lösung der entsprechenden Gleichungen ist leider nur numerisch möglich. Der Grund hierfür ist, dass die Wärmestrahlung eine Rolle spielt und diese mit der vierten Potenz der absoluten Temperatur steigt. In der Praxis ist es allerdings so, dass die Wärmeverluste in einem relativ breiten Bereich näherungsweise proportional zur Temperaturdifferenz zwischen dem Kochgut und der äußeren Umgebung sind. Ein Beispiel für die Temperaturabhängigkeit der Wärmeverluste ist in der Abbildung 2 dargestellt. Abbildung 2: Numerisch berechnete Wärmeverluste an die Umgebung für den Solarkocher Lightoven bei einer Umgebungstemperatur von 20 C in Abhängigkeit von der Temperatur des Kochgutes. Für diesen Fall ist eine einfache analytische Beschreibung der Aufheizkurve möglich. Es ergibt sich eine Funktion mit asymptotischem Erreichen der Endtemperatur T e gemäß: Diese Funktion lässt aber den Kochpunkt des Wassers unberücksichtigt und folgt oberhalb von 100 C dem gestrichelten Verlauf in Abbildung 1 bis zum Erreichen der Endtemperatur (solch ein Verhalten wäre beispielsweise in einem Dampfkochtopf zu beobachten). Für die Zeit, nach der das Wasser 100 C erreicht hat gilt: (2) - (3) Die Minimalzeit t * 100 hingegen ergibt sich aufgrund der weiter oben stehenden Überlegungen aus dem anfänglichen Anstieg der Aufheizkurve: - (4) Bildet man die zeitliche Ableitung von Gl. (2) an der Stelle t=0 und setzt diese in die Gleichung (4) ein, so erhält man für die Zeitkonstante τ: 12. Mai 2012 Seite 3

4 (5) Und damit folgt aus (3): - (6) Der thermische Wirkungsgrad wird daher zu: - (7) Das Ergebnis aus Gleichung (7) ist in Abbildung 3 dargestellt. Abbildung 3: Universale Beziehung zwischen thermischen Wirkungsgrad und erreichbarer Maximaltemperatur eines Solarkochers, wie sie sich aus einer Näherungslösung für die Aufheizkurve ergibt. Der Wirkungsgrad ist also umso besser, je höher die erreichbare Endtemperatur ist, da dann die thermischen Verluste gegenüber der angebotenen Leistung zunehmend unbedeutend werden. 12. Mai 2012 Seite 4

5 Schlussfolgerungen für einen Solarkochertest Es ist zu betonen, dass Gleichung (7) und die zugehörige Abbildung ganz allgemein für die unterschiedlichsten Solarkocher gilt jedenfalls solange die Näherung der mit der Temperaturdifferenz linear ansteigenden Wärmeverluste noch gut anwendbar ist. Die oben angegebene Näherungslösung (2) ließe sich an leeren Solarkochern überprüfen. Der Wirkungsgrad ist allerdings keine bauartbedingte Konstante des Solarkochers sondern hängt von der eingestrahlten Leistung ab. Da die thermischen Verluste nur von der Temperatur abhängen, wird der Wirkungsgrad umso größer, je höher die Leistung ist. Für die Charakterisierung eines Solarkochers ist daher die Angabe des thermischen Wirkungsgrades bei seiner Maximalleistung (unter optimalen Einstrahlungsbedingungen) eine sinnvolle Größe, anhand derer sich verschiedene Solarkocher vergleichen lassen. Jeder Solarkocher hätte so in dieser Grafik einen gewissen Arbeitspunkt, der sich auf der Kurve befindet. Experimentell kann man den thermischen Wirkungsgrad durch das Zeitverhältnis ( ) aus Messung der Aufheizkurve ermitteln. In einem Solarkochervergleich könnte man so die Leistung und den Wirkungsgrad verschiedener Solarkocher ermitteln und miteinander vergleichen. Maßgeblich für den Nutzer ist die effektive Leistung, die sich durch Multiplikation der beiden Größen ergibt. Äquivalent zur effektiven Leistung wäre die Zeit, die der Solarkocher benötigt, um einen Liter Wasser von 20 C auf 100 C zu erhitzen. Insbesondere für die Parabolkocher hängen Leistung und Wirkungsgrad außerdem vom verwendeten Topf ab. Im Solarkochertest ist daher ein geeigneter Standardtopf für den jeweiligen Solarkocher zu definieren. Es sollten aber wegen der Vergleichbarkeit nur einige wenige Standardtöpfe für die unterschiedlichen Kocher festgelegt werden. 12. Mai 2012 Seite 5

Numerische Integration

Numerische Integration A1 Numerische Integration Einführendes Beispiel In einem Raum mit der Umgebungstemperatur T u = 21.7 C befindet sich eine Tasse heissen Kaffees mit der anfänglichen Temperatur T 0 80 C. Wie kühlt sich

Mehr

Mathematische Grundlagen der dynamischen Simulation

Mathematische Grundlagen der dynamischen Simulation Mathematische Grundlagen der dynamischen Simulation Dynamische Systeme sind Systeme, die sich verändern. Es geht dabei um eine zeitliche Entwicklung und wie immer in der Informatik betrachten wir dabei

Mehr

Solarkocher 1 (Bau) PROJEKT IN DER 8. JAHRGANGSSTUFE KARIN SEDLMAYR

Solarkocher 1 (Bau) PROJEKT IN DER 8. JAHRGANGSSTUFE KARIN SEDLMAYR 2015 Solarkocher 1 (Bau) PROJEKT IN DER 8. JAHRGANGSSTUFE KARIN SEDLMAYR Inhaltsverzeichnis Einführung... 2 Phase 1: Erarbeiten der Grundlagen... 3 Ergebnisse... 3 Phase 2: Projektauftrag... 4 Lösungen

Mehr

1 Ein mathematisches Modell und die Änderungsrate

1 Ein mathematisches Modell und die Änderungsrate 1 Ein mathematisches Modell und die Änderungsrate Die Differenzial- und Integralrechnung 1 ist eine Sprache zur Beschreibung des quantitativen Zusammenhangs verschiedener Grössen in einem bestimmten Kontext

Mehr

Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease.

Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease. A 36 Michaelis-Menten-Kinetik: Hydrolyse von Harnstoff Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease. Grundlagen: a) Michaelis-Menten-Kinetik Im Bereich der Biochemie spielen

Mehr

Betrachtung der Stoffwerte und ihrer Bezugstemperatur. Von Franz Adamczewski

Betrachtung der Stoffwerte und ihrer Bezugstemperatur. Von Franz Adamczewski Betrachtung der Stoffwerte und ihrer Bezugstemperatur Von Franz Adamczewski Inhaltsverzeichnis Einleitung... 3 Bezugstemperatur... 4 Eintrittstemperatur des Kühlmediums 4 Austrittstemperatur des Kühlmediums

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Die Heizungsanlage eines Hauses wird auf Ölfeuerung umgestellt. Gleichzeitig wird mit dieser Anlage Warmwasser aufbereitet.

Die Heizungsanlage eines Hauses wird auf Ölfeuerung umgestellt. Gleichzeitig wird mit dieser Anlage Warmwasser aufbereitet. Übungsaufgaben zur Wärmelehre mit Lösungen 1) Die Heizungsanlage eines Hauses wird auf Ölfeuerung umgestellt. Gleichzeitig wird mit dieser Anlage Warmwasser aufbereitet. Berechnen Sie die Wärme, die erforderlich

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

4 x x kleinste6 Funktionswert für alle x aus einer Umgebung von x 1 ist.

4 x x kleinste6 Funktionswert für alle x aus einer Umgebung von x 1 ist. Differenzialrechnung 51 1.2.2 Etrempunkte Die Funktion f mit f () = 1 12 3 7 4 2 + 10 + 17 3 beschreibt näherungsweise die wöch entlichen Verkaufszahlen von Rasenmähern. Dabei ist die Zeit in Wochen nach

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 6. Semester ARBEITSBLATT 5. Kurvendiskussion

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 6. Semester ARBEITSBLATT 5. Kurvendiskussion ARBEITSBLATT 5 Kurvendiskussion Die mathematische Untersuchung des Graphen einer Funktion heißt Kurvendiskussion. Die Differentialrechnung liefert dabei wichtige Dienste. Intuitive Erfassung der Begriffe

Mehr

28. Lineare Approximation und Differentiale

28. Lineare Approximation und Differentiale 28. Lineare Approximation und Differentiale Sei y = f(x) differenzierbar. Die Gleichung der Tangente t im Punkt x 0 lautet t : y f(x 0 ) = f (x 0 )(x x 0 ) Für x nahe bei x 0 können wir f(x) durch den

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 93 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

Technische Thermodynamik

Technische Thermodynamik Kalorimetrie 1 Technische Thermodynamik 2. Semester Versuch 1 Kalorimetrische Messverfahren zur Charakterisierung fester Stoffe Namen : Datum : Abgabe : Fachhochschule Trier Studiengang Lebensmitteltechnik

Mehr

Stirling-Maschine (STI)

Stirling-Maschine (STI) TUM Anfängerpraktikum für Physiker II Wintersemester 26/27 Stirling-Maschine (STI) Inhaltsverzeichnis 5. Dezember 26 1. Einleitung...2 2. Thermodynamische Kreisprozesse...2 3. Versuchsdurchführung...3

Mehr

Lösungen 10 (Kinetik)

Lösungen 10 (Kinetik) Chemie I WS 2003/2004 Lösungen 10 (Kinetik) Aufgabe 1 Verschiedenes 1.1 Als Reaktionsgeschwindigkeit v c wird die Ableitung der Konzentration eines Reaktanden A nach der Zeit t, dividiert durch dessen

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 12. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 12. 07. 2007 Klausur Die Klausur

Mehr

Konstante Zu- und Abflüsse (Veränderungen)

Konstante Zu- und Abflüsse (Veränderungen) Konstante Zu- und Abflüsse (Veränderungen) Unser erstes Modell: Ein (großer) Eimer wird unter einen Wasserhahn gestellt. Der Wasserhahn wird geöffnet und ein konstanter Wasserstrom von 2 Litern pro Minute

Mehr

Satz über implizite Funktionen und seine Anwendungen

Satz über implizite Funktionen und seine Anwendungen Satz über implizite Funktionen und seine Anwendungen Gegeben sei eine stetig differenzierbare Funktion f : R 2 R, die von zwei Variablen und abhängt. Wir betrachten im Folgenden die Gleichung f(,) = 0.

Mehr

Allgemeine Gasgleichung und technische Anwendungen

Allgemeine Gasgleichung und technische Anwendungen Allgemeine Gasgleichung und technische Anwendungen Ziele i.allgemeine Gasgleichung: Darstellung in Diagrammen: Begriffsdefinitionen : Iso bar chor them Adiabatische Zustandsänderung Kreisprozess prinzipiell:

Mehr

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung)

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Versuch Nr. 57 Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Stichworte: Dampf, Dampfdruck von Flüssigkeiten, dynamisches Gleichgewicht, gesättigter Dampf, Verdampfungsenthalpie, Dampfdruckkurve,

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

201 Wärmeleitfähigkeit von Gasen

201 Wärmeleitfähigkeit von Gasen 01 Wärmeleitfähigkeit von Gasen 1. Aufgaben 1.1 Messen Sie die relative Wärmeleitfähigkeit x / 0 (bezogen auf Luft bei äußerem Luftdruck) für Luft und CO in Abhängigkeit vom Druck p. Stellen Sie x / 0

Mehr

Regelungstechnik I (WS 13/14) Klausur ( )

Regelungstechnik I (WS 13/14) Klausur ( ) Regelungstechnik I (WS 13/14) Klausur (13.03.2014) Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Name: Matrikelnummer: Bitte beachten Sie: a) Diese Klausur enthält 4 Aufgaben auf den

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

Titel: Physik in der Küche

Titel: Physik in der Küche Titel: Physik in der Küche Themen: Temperaturmessungen, Effizienz Zeit: 90 Minuten Alter: 13-16 Differenzierung: Richtlinien, IKT Unterstützung etc.: Wenn möglich, verwende eine Wärmebildkamera die Bilder

Mehr

Protokoll Grundpraktikum I: T6 Thermoelement und newtonsches Abkühlungsgesetz

Protokoll Grundpraktikum I: T6 Thermoelement und newtonsches Abkühlungsgesetz Protokoll Grundpraktikum I: T6 Thermoelement und newtonsches Abkühlungsgesetz Sebastian Pfitzner 5. Juni 03 Durchführung: Sebastian Pfitzner (553983), Anna Andrle (55077) Arbeitsplatz: Platz 3 Betreuer:

Mehr

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p:

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p: 8. Mehrkomponentensysteme 8.1 Partielle molare Größen Experiment 1 unter Umgebungsdruck p: Fügen wir einer Menge Wasser n mit Volumen V (molares Volumen v m =V/n) bei einer bestimmten Temperatur T eine

Mehr

ARBEITSBLATT 6-5. Kurvendiskussion

ARBEITSBLATT 6-5. Kurvendiskussion ARBEITSBLATT 6-5 Kurvendiskussion Die mathematische Untersuchung des Graphen einer Funktion heißt Kurvendiskussion. Die Differentialrechnung liefert dabei wichtige Dienste. Intuitive Erfassung der Begriffe

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2. Kapazität. Wechselspannung. Name:...

Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2. Kapazität. Wechselspannung. Name:... Universität Hamburg, Fachbereich Informatik Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2 Kapazität Wechselspannung Name:... Bogen erfolgreich

Mehr

Vergleich zwischen Linearspiegel und traditionellen thermischen Solarkollektoren

Vergleich zwischen Linearspiegel und traditionellen thermischen Solarkollektoren Vergleich zwischen Linearspiegel und traditionellen thermischen Solarkollektoren Isomorph Juli 2011 1. Einleitung In diesem Artikel vergleichen wir die Leistung eines Flachkollektors und eines Vakuumröhrenkollektors

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik III (heorie F Statistische Mechanik) SS 17 Prof. Dr. Alexander Mirlin Blatt 2 PD Dr. Igor Gornyi,

Mehr

Versuch HP 300. Modul II: KWK Wirkungsgradmessung BHKW Teststände. Dipl. Ing. (FH) Peter Pioch

Versuch HP 300. Modul II: KWK Wirkungsgradmessung BHKW Teststände. Dipl. Ing. (FH) Peter Pioch Modul II: KWK Wirkungsgradmessung BHKW Teststände Dipl. Ing. (FH) Peter Pioch 5.3.05 Weiterbildungszentrum für innovative Energietechnologien der Handwerkskammer Ulm (WBZU) ersuch HP 300 Quelle: WBZU Energieumwandlung

Mehr

PCI (Biol./Pharm.) Thermodyn. Musterlösung Übung 5 H.P. Lüthi / R. Riek HS Musterlösung Übung 5

PCI (Biol./Pharm.) Thermodyn. Musterlösung Übung 5 H.P. Lüthi / R. Riek HS Musterlösung Übung 5 Musterlösung Übung 5 ufgabe 1: Enthalpieänderungen bei Phasenübergängen Es ist hilfreich, zuerst ein Diagramm wie das folgende zu konstruieren: (Die gesuchten Werte sind in den umrandeten oxen.) sub X

Mehr

Thermodynamik I Klausur 1

Thermodynamik I Klausur 1 Aufgabenteil / 100 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden. Nicht nachvollziehbare

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen 8.2 Partielle Differentiation Prof. Dr. Erich Walter Farkas Mathematik I+II, 8.2 Part. Diff.

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 88 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

ST Der Stirling-Motor als Wärmekraftmaschine

ST Der Stirling-Motor als Wärmekraftmaschine ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3.

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3. 4. Dämpfungsmodelle 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Dabei

Mehr

Numerische Integration von Differential-Gleichungen Das klassische Runge-Kutta-Verfahren

Numerische Integration von Differential-Gleichungen Das klassische Runge-Kutta-Verfahren Numerische Integration von Differential-Gleichungen Das klassische Runge-Kutta-Verfahren Gegeben sei ein Anfangswertproblem erster Ordnung: y = f (x;y y(x 0 = y 0 Wie schon erörtert, beschreibt eine DGl

Mehr

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung Thermo Dynamik Wärme (aus Reaktion) Mechanische Bewegung (= Arbeit) maximale Umsetzung Aussagen der Thermodynamik: Quantifizieren von: Enthalpie-Änderungen Entropie-Änderungen Arbeit, maximale (Gibbs Energie)

Mehr

Untersuchungen zum Betriebsfeld eines Kolbenkompressors

Untersuchungen zum Betriebsfeld eines Kolbenkompressors Fachbereich Maschinenbau Fachgebiet Kraft- u. Arbeitsmaschinen Fachgebietsleiter Prof. Dr.-Ing. B. Spessert März 06 Praktikum Kraft- und Arbeitsmaschinen Versuch 4 Untersuchungen zum Betriebsfeld eines

Mehr

8.4.5 Wasser sieden bei Zimmertemperatur ******

8.4.5 Wasser sieden bei Zimmertemperatur ****** 8.4.5 ****** 1 Motivation Durch Verminderung des Luftdrucks siedet Wasser bei Zimmertemperatur. 2 Experiment Abbildung 1: Ein druckfester Glaskolben ist zur Hälfte mit Wasser gefüllt, so dass die Flüsigkeit

Mehr

Physik II Übung 7, Teil I - Lösungshinweise

Physik II Übung 7, Teil I - Lösungshinweise Physik II Übung 7, Teil I - Lösungshinweise Stefan Reutter SoSe 2012 Moritz Kütt Stand: 15.06.2012 Franz Fujara Aufgabe 1 Das Kühlen eines Klotzes Klaus spielt gern mit Bauklötzen, doch irgendwann fängt

Mehr

Fixpunkt-Iterationen

Fixpunkt-Iterationen Fixpunkt-Iterationen 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 27. Februar 2014 Gliederung Wiederholung: Gleichungstypen, Lösungsverfahren Grundprinzip

Mehr

10 Differentialrechnung für Funktionen in mehreren Variablen

10 Differentialrechnung für Funktionen in mehreren Variablen 6 Differentialrechnung für Funktionen in mehreren Variablen Die meisten Funktionen in den Naturwissenschaften hängen von mehreren Variablen ab. In diesem Kapitel behandeln wir deshalb Methoden zur Untersuchung

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Musteraufgaben ab 08 Pflichtteil Aufgabe Seite / BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ())

Mehr

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 25/6 Dörte Hansen Seminar 1 Dissipative Kräfte I Reibung Wenn wir in der theoretischen Mechanik die Bewegung eines Körpers beschreiben wollen,

Mehr

Praktikum Physikalische Chemie I. Versuch 4. p, V, T - Verhalten realer Gase am Beispiel von SF 6

Praktikum Physikalische Chemie I. Versuch 4. p, V, T - Verhalten realer Gase am Beispiel von SF 6 Praktikum Physikalische Chemie I ersuch 4 p,, T - erhalten realer Gase am Beispiel von SF 6 1. Grundlagen Komprimiert man ein Gas isotherm, so steigt dessen Druck näherungsweise gemäß dem idealen Gasgesetz

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

1 Lambert-Beersches Gesetz

1 Lambert-Beersches Gesetz Physikalische Chemie II Lösung 6 23. Oktober 205 Lambert-Beersches Gesetz Anhand des idealen Gasgesetzes lässt sich die Teilchenkonzentration C wie folgt ausrechnen: C = N V = n N A V pv =nrt = N A p R

Mehr

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen)

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen) Versuch Nr.53 Messung kalorischer Größen (Spezifische Wärmen) Stichworte: Wärme, innere Energie und Enthalpie als Zustandsfunktion, Wärmekapazität, spezifische Wärme, Molwärme, Regel von Dulong-Petit,

Mehr

Spezische Wärme von Festkörpern

Spezische Wärme von Festkörpern Spezische Wärme von Festkörpern Praktikumsversuch am 11.05.2011 Gruppe: 18 Thomas Himmelbauer Daniel Weiss Abgegeben am: 18.05.2011 Inhaltsverzeichnis 1 Einleitung 2 2 Vorbemerkung zur Fehlerrechnung 2

Mehr

Verdunstung von Wasser

Verdunstung von Wasser Verdunstung von Wasser Steuber Daniel, Haschek Sarina 30. Juni 013 1 Inhaltsverzeichnis 1 Einleitung 3 Grundlegende Modelle 3.1 Verdunstung durch die Energie der Sonne.................. 4. Verdunstung

Mehr

Lösungen Serie 16: Kalorimetrie

Lösungen Serie 16: Kalorimetrie en Serie 16: Kalorimetrie Aufgabe 16.1 A Sie wollen in einem Kochtopf ( =0.6, =0.4 ( =4.182 k K gegeben: =0.6 =0.4 k K ) einen halben Liter Wasser ) von 10 auf 40 erwärmen. Welche Wärmemenge ist dazu notwendig?

Mehr

Fehlerfortpflanzung & Extremwertbestimmung. Folie 1

Fehlerfortpflanzung & Extremwertbestimmung. Folie 1 Fehlerfortpflanzung & Etremwertbestimmung Folie 1 Fehlerfortpflanzung Einführung In vielen technischen Zusammenhängen sind die Werte bestimmter Größen nicht genau bekannt sondern mit einer Unsicherheit

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Übungen mit dem Applet Interpolationspolynome

Übungen mit dem Applet Interpolationspolynome Interpolationspolynome 1 Übungen mit dem Applet Interpolationspolynome 1 Ziele des Applets... 2 2 Übungen mit dem Applet... 2 2.1 Punkte... 3 2.2 y=sin(x)... 3 2.3 y=exp(x)... 4 2.4 y=x 4 x 3 +2x 2 +x...

Mehr

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert TH 01 Wärmekapazität und Wirkungsgrad (Pr_PhI_TH01_Wärmekapazität_6, 30.8.009)

Mehr

5.4 Uneigentliche Integrale

5.4 Uneigentliche Integrale 89 Wir dividieren die Potenzreihe von sin(t) gliedweise durch t und erhalten sint t = t (t t3 3! + t5 5! + ) = t2 3! + t4 5! +. Diese Reihe ist konvergent für alle t R. Nun integrieren wir gliedweise.

Mehr

4.1.2 Quantitative Definition durch Wärmekapazitäten

4.1.2 Quantitative Definition durch Wärmekapazitäten 4 Energie Aus moderner (mikroskopischer Sicht ist klar, daß die Summe U der kinetischen Energien der Moleküle eines Gases (und ggf. ihrer Wechselwirkungsenergien eine thd. Zustandsgröße des Gases ist,

Mehr

Tiere in Polarregionen

Tiere in Polarregionen Tiere in Polarregionen Warum es Eisbären gibt, aber keine Eismäuse Bergmannsche Regel Verwandte Tiere sind in kalten Regionen generell als in warmen Regionen. Mit der Größe eines Tieres wächst die im Quadrat,

Mehr

Propellers (gleich Fluggeschwindigkeit). Dieser Zusammenhang wurde schon in den 30-iger Jahren meßtechnisch erfaßt und in normierter Form dargestellt.

Propellers (gleich Fluggeschwindigkeit). Dieser Zusammenhang wurde schon in den 30-iger Jahren meßtechnisch erfaßt und in normierter Form dargestellt. Günter Hildebrandt, guenter22@arcor.de Wirkungsgrad des Propellers Als Modellbauer und flieger, habe ich mir schon oft die Frage gestellt, wie man den Wirkungsgrad eines Propellers berechnen kann und welchen

Mehr

Newtonsches Abkühlungsgesetz

Newtonsches Abkühlungsgesetz Newtonsches Abkühlungsgesetz Zielsetzung: Mit diesem Experiment soll die Abkühlgeschwindigkeit eines Körpers bestimmt und das dementsprechende mathematische Modell gefunden werden, um diesen Wechsel zu

Mehr

Analysis: exp. und beschränktes Wachstum Analysis

Analysis: exp. und beschränktes Wachstum Analysis Analysis Wahlteilaufgaben zu exponentiellem und beschränktem Wachstum inkl Differenzialgleichungen Gymnasium ab J1 Alexander Schwarz wwwmathe-aufgabencom Februar 2014 1 Aufgabe 1 Zu Beginn eines Experimentes

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Spannungsteiler Ersatzspannungsquelle

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 .1 Stundenverlaufsplan Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 Hypothesenbildung Von welchen Größen hängt die Periode eines

Mehr

6. Wachstumsformen. Definitionen: durchschnittliche Wachstumsrate im y Zeitintervall t: t geometrisch. Sekantensteigung, abhängig von t

6. Wachstumsformen. Definitionen: durchschnittliche Wachstumsrate im y Zeitintervall t: t geometrisch. Sekantensteigung, abhängig von t 1 6. Wachstumsformen Definitionen: durchschnittliche Wachstumsrate im y Zeitintervall t: t geometrisch. Sekantensteigung, abhängig von t momentane Wachstumsrate: geometrisch: Tangentensteigung, unabhängig

Mehr

Spezifische Wärmekapazität

Spezifische Wärmekapazität Versuch: KA Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: L. Jahn B. Wehner J. Pöthig J. Stelzer am 01. 06. 1997 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher am

Mehr

Spezifische Wärmekapazität fester Körper

Spezifische Wärmekapazität fester Körper Version: 14. Oktober 2005 Spezifische Wärmekapazität fester Körper Stichworte Wärmemenge, spezifische Wärme, Schmelzwärme, Wärmekapazität, Wasserwert, Siedepunkt, innere Energie, Energiesatz, Hauptsätze

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Auswertung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 7. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei

Mehr

Ableitungsfunktion einer linearen Funktion

Ableitungsfunktion einer linearen Funktion Ableitungsfunktion einer linearen Funktion Aufgabennummer: 1_009 Prüfungsteil: Typ 1! Typ 2 " Aufgabenformat: Konstruktionsformat Grundkompetenz: AN 3.1! keine Hilfsmittel! gewohnte Hilfsmittel möglich

Mehr

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017 TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1 Prof. Dr. K. Eppler Institut für Numerische Mathematik Dr. M. Herrich SS 2017 Aufgabe 1 Übungen zur Vorlesung Mathematik II 4. Übung,

Mehr

Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I

Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I 1. Mengen und Abbildungen In der Mathematik beschäftigt man sich immer -direkt oder indirekt- mit Mengen. Wir benötigen den Mengenbegriff

Mehr

Musterlösung zur Aufgabe A1.1

Musterlösung zur Aufgabe A1.1 Abschnitt: 1.1 Prinzip der Nachrichtenübertragung Musterlösung zur Aufgabe A1.1 a) Im markierten Bereich (20 Millisekunden) sind ca 10 Schwingungen zu erkennen. Daraus folgt für die Signalfrequenz näherungsweise

Mehr

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche Punkte mit inhomogenen K Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und

Mehr

Experimentelle Ermittlung der molaren Lösungswärme von Kaliumchlorid

Experimentelle Ermittlung der molaren Lösungswärme von Kaliumchlorid Experimentelle Ermittlung der molaren Lösungswärme von Kaliumchlorid Versuchsaufbau : Um den Versuch durchzuführen, benötigen wir 180 g Wasser, welches in ein Becherglas gefüllt wird. Die Temperatur ermitteln

Mehr

Mischen von Flüssigkeiten mit verschiedener Temperatur

Mischen von Flüssigkeiten mit verschiedener Temperatur V13 Thema: Wärme 1. Einleitung Ob bei der Regelung der Körpertemperatur, dem Heizen des Zimmers oder zahlreichen technischen Prozessen: Der Austausch von Wärme spielt eine wichtige Rolle. In diesem Versuch

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik für Ingenieure 2 Funktionen mit mehreren Veränderlichen 1 (Grundlagen) 1 Einführung Einführung und Beispiele 2 Einführung (1) - Beispiele Bisher haben wir ausschließlich Funktionen mit einer

Mehr

Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan

Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Zustandsgleichung....... 2 2.2. Koexistenzgebiet........ 3 2.3. Kritischer

Mehr

1. Ziel des Versuchs. 2. Theorie. Dennis Fischer Gruppe 9 Magdalena Boeddinghaus

1. Ziel des Versuchs. 2. Theorie. Dennis Fischer Gruppe 9 Magdalena Boeddinghaus Versuch Nr. 12: Gasthermometer 1. Ziel des Versuchs In diesem Versuch soll die Temperaturmessung durch Druckmessung erlernt werden. ußerdem soll der absolute Nullpunkt des Thermometers bestimmt werden.

Mehr

5. DIFFERENZIEREN UND INTEGRIEREN

5. DIFFERENZIEREN UND INTEGRIEREN 5. DIFFERENZIEREN UND INTEGRIEREN 1 Sei f eine auf R oder auf einer Teilmenge B R definierte Funktion: f : B R Die Funktion heißt differenzierbar in x 0 in B, falls sie in diesem Punkt x 0 lokal linear

Mehr

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3 Matrixpotenzen In Anwendungen müssen oft hohe Potenzen einer quadratischen Matrix berechnet werden Ist die Matrix diagonalisierbar, dann kann diese Berechnung wie folgt vereinfacht werden Sei A eine diagonalisierbare

Mehr

Lösungen flüchtiger Stoffe - Stofftrennung http://ac16.uni-paderborn.de/lehrveranstaltungen/_aac/vorles/skript/kap_7/kap7_5/ Für Lösungen flüchtiger Stoffe ist der Dampfdruck des Gemischs ebenfalls von

Mehr

Aktivierungsenergie und TK R -Wert von Halbleiterwerkstoffen

Aktivierungsenergie und TK R -Wert von Halbleiterwerkstoffen Fachbereich 1 Laborpraktikum Physikalische Messtechnik/ Werkstofftechnik Aktivierungsenergie und TK R -Wert von Halbleiterwerkstoffen Bearbeitet von Herrn M. Sc. Christof Schultz christof.schultz@htw-berlin.de

Mehr

Exponentialgleichungen und -funktionen

Exponentialgleichungen und -funktionen Eponentialgleichungen und -funktionen Eigenschaften der Eponentialfunktionen 3 C,D Funktionsgraphen zuordnen Ordnen Sie den folgenden Funktionen ihre Graphen zu (einer ist nicht gezeichnet) und erklären

Mehr

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den Moderne Physik: Elemente der Festkörperphysik Wintersemester 21/11 Übungsblatt 5 für den 14.1.211 14. Fermi-Energie von Elektronen in Metallen Bei T = K besitzt ein freies Elektronengas der Ladungsträgerdichte

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Station 1: Funktionen beschreiben

Station 1: Funktionen beschreiben Station 1: Funktionen beschreiben Betrachte folgende Funktion und versuche, die unten gestellten Fragen zu beantworten. Bei jeder Antwortmöglichkeit steht ein Buchstabe, den du in die dafür vorgesehenen

Mehr

GRUNDLEGENDE MODELLE. Caroline Herbek

GRUNDLEGENDE MODELLE. Caroline Herbek GRUNDLEGENDE MODELLE Caroline Herbek Lineares Wachstum Charakteristikum: konstante absolute Zunahme d einer Größe N t in einem Zeitschritt Differenzengleichung: N t -N t-1 =d => N t = N t-1 +d (Rekursion)

Mehr

Die Summen- bzw. Differenzregel

Die Summen- bzw. Differenzregel Die Summen- bzw Differenzregel Seite Kapitel mit Aufgaben Seite WIKI Regeln und Formeln Level Grundlagen Aufgabenblatt ( Aufgaben) Lösungen zum Aufgabenblatt Aufgabenblatt (7 Aufgaben) Lösungen zum Aufgabenblatt

Mehr

( ) ( ) ( ) ( ) 9. Differentiale, Fehlerrechnung

( ) ( ) ( ) ( ) 9. Differentiale, Fehlerrechnung 44 9. Differentiale, Fehlerrechnung Bei den Anwendungen der Differentialrechnung spielt der geometrische Aspekt (Tangentensteigung) eine untergeordnete Rolle. Ableitungen sind deshalb wichtig, weil sie

Mehr