Schreibe die jeweilige Dreieckszahl unter die Zeichnung. Wie heißen die nächsten vier Dreieckszahlen?

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Schreibe die jeweilige Dreieckszahl unter die Zeichnung. Wie heißen die nächsten vier Dreieckszahlen?"

Transkript

1 Hier siehst du Figuren, die aus Kreisen bestehen. Schon ab der zweiten Figur ergibt sich ein Dreieck. Die Anzahl der Kreise, die ein Dreieck bilden, nennt man Dreieckszahlen. Man tut so, als ob auch der einzelne Kreis der ersten Figur ein Dreieck bildet. Die erste Dreieckszahl ist also 1 ( ). Schreibe die jeweilige Dreieckszahl unter die Zeichnung. Wie heißen die nächsten vier Dreieckszahlen? Vielleicht ist es dir zu mühselig, so viele Kreise zu zeichnen, nur um sie dann abzählen zu können. Wie könnte man die Zahlen noch herausfinden? Gib eine Formel an, mit der man von der 8. zur 9. Dreieckszahl kommt. (Für die vierte Dreieckszahl lautet die Formel.) Wie heißt die Formel zur Bestimmung der n-ten Dreieckszahl? Das Folgeglied, das vor kommt heißt. Aber wie geht man vor, wenn die Zahl vor der gesuchten unbekannt ist? Betrachte noch einmal die Anzahl der Kreise pro Zeile im vierten Dreieck. Was fällt dir auf? Was muss man tun, um die 30. Dreieckszahl auszurechnen? Hinweis: Erinnere dich an die Summenformel von Gauß! Sieh im Heft, im Buch oder im Internet nach, wenn du dich nicht mehr weißt, wie die Formel aussieht. Wie heißt also die 30. Dreieckszahl?

2 Die Glieder der Folge nennt man Dreieckszahlen. Welche Zahlen erhält man, wenn man jeweils zwei aufeinander folgende Dreieckszahlen addiert? Was hat dieses Gebilde mit den Dreieckszahlen zu tun? Ergänze die nächsten beiden Zeilen! Was ist hier anders? Um welche Zahlen geht es hier? Beschreibe den Unterschied zwischen den beiden Dreiecken. Trage in die Tabelle die ersten 10 Quadratzahlen ein Gib eine explizite Formel für die n-te Quadratzahl an. Wie kann man die n-te Quadratzahl rekursiv bestimmen? Das Bild hilft dir weiter. Überlege, wie viele Kreise in jedem Winkel liegen. Wie lautet die rekursive Darstellung der Quadratzahlen? Kreuze die richtige Antwort an.

3 DIFFERENZENFOLGEN [S1] Was ist das nächste Glied der Folge? Tipp: Bilde die Differenzen von je zwei benachbarten Zahlen. [S2] Was passiert, wenn du von diesen Differenzen wieder die Differenzen bildest? [S3] Wie heißt das nächste Glied der ersten Differenzenfolge? [S4] Wie heißt das neunte Glied der Ausgangsfolge? Dieses Rezept hilft häufig weiter, wenn man das nächste Glied einer Folge sucht. Man bildet fortlaufend Differenzen, bis man eine Gesetzmäßigkeit erkennt und wendet diese dann Schritt für Schritt an. [S5] Probiere aus, ob man so auch das nächste Glied der Dreieckszahlenfolge erhält. [S6] Wie ist es bei der Folge der Quadratzahlen? [S7] Was hat dieses Bild mit der Zahlenfolge von oben ( ) zu tun? Man nennt dies die Folge der Fünfeckszahlen.. [S8] Man kann jede natürliche Zahl als Summe von höchstens drei Dreieckszahlen vier Viereckszahlen fünf Fünfeckszahlen schreiben Zum Beispiel ist Probier es auch mit den Zahlen und aus!

4 DAS PASCAL'SCHE DREIECK Hast du schon einmal etwas vom Pascal'schen Dreieck gehört? Am Rand steht immer die, alle anderen Zahlen ergeben sich aus der Summe der beiden Zahlen, die darüber stehen. [P1] Erweitere das Pascal'sche Dreieck, bis es aus zehn Zeilen besteht! [P2] Im Pascal'schen Dreieck haben sich einige Folgen versteckt. Welche? Kennzeichne die Folgen im Pascal'schen Dreieck farbig und kreuze die richtigen Antworten an. Das Pascal'sche Dreieck ist also etwas für bequeme Leute: Man braucht die Glieder der gesuchten Folge nicht mühsam auszurechnen, sondern kann sie einfach ablesen. Folge der natürlichen Zahlen Folge der Dreieckszahlen ( ) Folge der Quadratzahlen ( Folge der Fünfeckszahlen ( ) Folge, die nur aus Einsen besteht (konstante Folge) [P3] Nach einer Fete verabschieden sich die Freunde mit einem Handschlag, das heißt, jeder gibt jedem die Hand. Wie viele Handschläge gibt es, wenn sich zwei Freunde verabschieden? Wie ist es bei 3 oder 4 Freunden? Fertige eine Skizze an, um die Anzahl der Handschläge herauszufinden. [P4] Um welche Zahlenfolge handelt es sich? Wie viele Handschläge gibt es, wenn sich 9 Freunde verabschieden? [P5] Stell dir vor, du möchtest aus Tennisbällen eine Pyramide bauen. Die Grundfläche besteht aus einem gleichseitigen Dreieck. Wie viele Bälle benötigst du, um eine 10-stufige Pyramide zu bauen? Fülle die Tabelle aus! Beginne bei der Berechnung mit der Spitze der Pyramide. Die Zahlen, die die Gesamtzahl der Bälle angeben, heißen Pyramidalzahlen. Findest du auch die Folge der Pyramidalzahlen im Pascal'schen Dreieck? Markiere sie farbig! Anzahl (i) d. Stufen Bälle, die in der i- ten Stufe dazukommen Gesamtzahl der Bälle

5 Hobbygärtner Herr Waldmann schneidet den mittlerweile 7-jährigen Zierbaum an der Wand vor seinem Haus sehr sorgfältig. Dabei geht er folgendermaßen vor: Jeder neue Trieb wird im ersten und im zweiten Jahr von allen neuen Seitentrieben befreit. Ab dem dritten Jahr wird jedem Trieb in jedem Jahr genau ein neuer Trieb gelassen. [F1] Skizziere den Baum von Herrn Waldmann. Lege eine Tabelle an, aus der die Anzahl der Äste pro Jahr hervorgeht. [F2] Wie viele Äste hat der Baum am Ende des 6. Jahres? [F3] Wie kommt man von der zweiten zur dritten Zahl? Und von der dritten zur vierten? [F4] Herr Waldmann verrät dir die Formel zur Berechnung der Anzahl der Äste seines Zierbaums pro Jahr: Versuche in Worten auszudrücken, was diese Formel bedeutet. Diese Folge nennt man. Die Fibonacci-Zahlen gehen zurück auf den italienischen Mathematiker Leonardo von Pisa, genannt Fibonacci. In seinem Rechenbauch "liber abaci" (1202) sind die Fibonacci-Zahlen das Ergebnis folgender Aufgabe: "Das Weibchen eines Kaninchenpaares gebiert von Vollendung des zweiten Lebensmonats an allmonatlich ein neues Kaninchenpaar. Man berechne die Anzahl der Kaninchenpaare nach 12 Monaten, wenn zu Anfang ein neugeborenes Kaninchenpaar vorhanden ist." Fibonacci-Zahlen kommen in der Natur häufig vor: Kakteen-Stacheln sind oft in Spiralen angeordnet. Die Anzahl der Spiralen, die nach rechts gehen und derjenigen, die nach links gehen, sind aufeinander folgende Fibonacci-Zahlen. genau so funktioniert's für die Spiralen der Sonnenblumenkerne, Ananas, Tannenzapfen [F5] Betrachte die ersten 12 Fibonacci-Zahlen. Teile von zwei benachbarten Fibonacci-Zahlen immer die größere durch die kleinere. Trage die Ergebnisse auf dem Zahlenstrahl ein. Die Zahl wird. heißt Goldene Zahl, weil dieses Verhältnis als besonders ästhetisch empfunden [F6] Sieh dir die gegebene Formel und das dazugehörige Bild an. steht jeweils für die -te Fibonacci-Zahl. Was wird hier dargestellt? Formuliere in einfachen Worten!

6 Eine Folge heißt arithmetisch, wenn man von einem Folgeglied zum nächsten kommt, indem man eine bestimmte Zahl dazuzählt; heißt Differenz der arithmetischen Folge. rekursiv: explizit: oder Der Graph einer arithmetischen Folge besteht aus einzelnen Punkten, durch die man eine Gerade legen kann. Fasst man die Folge als lineare Funktion auf, dann ist die Steigung. Eine Folge heißt geometrisch, wenn man durch Multiplikation mit einem Faktor (=konstanter Quotient) zum nächsten Folgeglied kommt, wobei und. rekursiv: explizit : oder Die Funktion, auf deren Graph der Graph einer geometrischen Folge liegt, heißt Exponentialfunktion. Entscheide, ob es sich um arithmetische oder geometrische Folgen handelt. Gib gegebenenfalls die Differenz oder den Quotienten an. a) b) c) Gib die Geradengleichung an auf der die Glieder der Folge mit und der Differenz liegen. d) e) f) Vergleiche die Geradengleichung mit der expliziten Darstellung der arithmetischen Folge, deren Punkte auf der Geraden liegen. Gib eine Geradengleichung an, auf der die Punkte der arithmetischen Folge liegen. Ein DIN A1 Bogen hat die Seitenlängen 84,09 cm und 59,46 cm. Aus jedem DIN Bogen entsteht der nächstkleinere durch Halbieren entlang der Mittellinie der längeren Seite. Bestimme die Seitenlänge der DIN A2, DIN A3, DIN A4 und DIN A5 Bögen. Suche eine Funktionsvorschrift für die Folge der Flächeninhalte der DIN Bögen. Wie müssten die Maße eines DIN A0 Bogens sein? Wie ist die Tonleiter aufgebaut? Um die gleichmäßig temperierte Tonleiter zu gewinnen, wird das Intervall einer Oktave in 12 gleich große Teilintervalle zerlegt. Dabei versteht man unter dem Intervall zweier Töne den Quotienten ihrer Schwingungszahlen. Das Intervall einer Oktave ist 2, das heißt, dass der höhere Ton genau doppelt so oft pro Zeiteinheit schwingt, wie der tiefere. Der Quotient eines Teilintervalls der gleichmäßig temperierten Tonleiter ist (ungefähr ). Welche Schwingungszahl hat der 7. Zwischenton im Oktavintervall, wenn der Grundton eine Schwingungszahl von 440 Hz hat.

Folgen und Reihen. 1. Folgen

Folgen und Reihen. 1. Folgen 1. Folgen Aufgabe 1.1. Sie kennen alle die Intelligenztests, bei welchen man zu einer gegebenen Folge von Zahlen die nächsten herausfinden soll. Wie lauten die nächsten drei Zahlen bei den folgenden Beispielen?

Mehr

Reelle Zahlenfolgen, Einleitung Fibonacci Folge

Reelle Zahlenfolgen, Einleitung Fibonacci Folge Reelle Zahlenfolgen, Einleitung Fibonacci Folge 1-E Einleitung Folgen und Reihen bilden eine wichtige Grundlage der Analysis. Sie führen zum Begriff des Grenzwertes, der für die Differential- und die Integralrechnung

Mehr

DER GOLDENE SCHNITT. Ein Verhältnis, das es in sich hat A B C D E F G

DER GOLDENE SCHNITT. Ein Verhältnis, das es in sich hat A B C D E F G DER GOLDENE SCHNITT Ein Verhältnis, das es in sich hat A B C D E F G Welches der sieben Rechtecke gefällt die am besten? Miss bei jedem Rechteck die Seitenlänge ab und trage ihr Längen in die nachfolgende

Mehr

Zahlenfolgen. Aufgabe 1 (Streichholzfiguren)

Zahlenfolgen. Aufgabe 1 (Streichholzfiguren) Zahlenfolgen Aufgabe (Streichholzfiguren) a) Wie viele Streichhölzer benötigt man für die 0. Figur? b) Gib für die Streichholzfolge eine rekursive und eine explizite Berechnungsvorschrift an. Aufgabe (Quadratzahlen)

Mehr

Folgen und Reihen. Das Spiel ist immer lösbar. Doch wie viele Umlegungen sind es im günstigsten Fall?

Folgen und Reihen. Das Spiel ist immer lösbar. Doch wie viele Umlegungen sind es im günstigsten Fall? Kantonsschule Solothurn Fachmaturität RYSWS12/13 Folgen und Reihen Einstiegsaufgaben 1. Der Turm von Hanoi Aufgabe Bewege alle Scheiben vom linken Stapel zum rechten Stapel. Dabei darf jeweils nur die

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 3 Folie 1 /16 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 3. Zahlenfolgen und Grenzwerte

Mehr

ZahlenfolgenZahlenfolgen. Zahlenfolgen. Anna Rodenhausen. Wieviele Dreiecke, wieviele Trapeze?

ZahlenfolgenZahlenfolgen. Zahlenfolgen. Anna Rodenhausen. Wieviele Dreiecke, wieviele Trapeze? Zahlenfolgen Anna Rodenhausen Wieviele Dreiecke, wieviele Trapeze? Wieviele Dreiecke, wieviele Trapeze? # Linien # Dreiecke # Trapeze 0 3 0 3 3 6 5 0 5 6 5 3 Wieviele Dreiecke, wieviele Trapeze? # Linien

Mehr

Folgen und Reihen. Zahlenfolgen , ,

Folgen und Reihen. Zahlenfolgen , , 97 Wegener Math/5_Reihen Mittwoch 04.04.2007 8:38:52 Folgen und Reihen Zahlenfolgen Eine Zahlenfolge a besteht aus Zahlen a,a 2,a 3,a 4,a 5,... Die einzelnen Zahlen einer Folge heißen Glieder oder Terme.

Mehr

4 Die Fibonacci-Zahlen

4 Die Fibonacci-Zahlen 4 Die Fibonacci-Zahlen 4.1 Fibonacci-Zahlen und goldener Schnitt Die Fibonacci-Zahlen F n sind definiert durch die Anfangsvorgaben F 0 = 0, F 1 = 1, sowie durch die Rekursion F n+1 = F n + F n 1 für alle

Mehr

von Zahlenfolgen, die bei Gebietsteilungsproblemen

von Zahlenfolgen, die bei Gebietsteilungsproblemen Zahlenfolgen bei Gebietsteilungsproblemen Karin Halupczok Oktober 005 Zusammenfassung Gesucht sind rekursive und explizite Bildungsgesetze von Zahlenfolgen, die bei Gebietsteilungsproblemen auftauchen:

Mehr

Verlauf Material LEK Glossar Lösungen. Das Pascal sche Dreieck Übungen zu arithmetischen Beziehungen und Zahlenmustern. Anne Forell, Paderborn

Verlauf Material LEK Glossar Lösungen. Das Pascal sche Dreieck Übungen zu arithmetischen Beziehungen und Zahlenmustern. Anne Forell, Paderborn Reihe 6 S Verlauf Material LEK Glossar Lösungen Das Pascal sche Dreieck Übungen zu arithmetischen Beziehungen und Zahlenmustern Anne Forell, Paderborn Ein interessantes Gebilde: akg / De Agostini Pict.

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

Station Figurierte Zahlen Teil 2. Arbeitsheft. Teilnehmercode

Station Figurierte Zahlen Teil 2. Arbeitsheft. Teilnehmercode Station Figurierte Zahlen Teil 2 Arbeitsheft Teilnehmercode Mathematik-Labor Station Figurierte Zahlen Liebe Schülerinnen und Schüler! Schon die alten Griechen haben Zahlen mit Hilfe von Zählsteinen dargestellt:

Mehr

3. Argumentieren und Beweisen mit Punktemustern

3. Argumentieren und Beweisen mit Punktemustern 3 Punktemuster 22 3. Argumentieren und Beweisen mit Punktemustern 3.1 Figurierte Zahlen Gerade in der Grundschule bietet es sich immer wieder an, Zahlen durch Gegenstände zu verdeutlichen. Andererseits

Mehr

0 [Information] Fibonacci bonacci. Bergstadt-Gymnasium Di Ma/Inf 9 (ht)

0 [Information] Fibonacci bonacci. Bergstadt-Gymnasium Di Ma/Inf 9 (ht) 0 [Information] Der italienische Mathematiker (eigentlich Leonardo von Pisa, 1170-1250) stellt in seinem Buch Liber Abaci folgende Aufgabe: Ein Mann hält ein Kaninchenpaar an einem Ort, der gänzlich von

Mehr

Thema aus dem Bereich Analysis Funktionen 1.Grades

Thema aus dem Bereich Analysis Funktionen 1.Grades Thema aus dem Bereich Analysis -. Funktionen.Grades Inhaltsverzeichnis Einführung in den Funktionsbegriff Der Funktionsgraph und die Wertetabelle Was ist eine Funktion.Grades? Die Steigung einer Geraden

Mehr

Hauptschule Bad Lippspringe Schlangen Klassenarbeit Mathematik 9a/b Name: Dutkowski

Hauptschule Bad Lippspringe Schlangen Klassenarbeit Mathematik 9a/b Name: Dutkowski 02.12.2010 Aufgabe 1: Basiswissen a) Prozentrechnung (7 P.) a) b) c) d) Prozentzahl Bruch Dezimalzahl 30% 3 10 O,3 25% 25 1 = 100 4 0,25 50% 1 50 = 2 100 0,5 75 % 75 100 0,75 b) Zuordnungen (6 P.) Frau

Mehr

AB1: Ähnliche Figuren untersuchen und zeichnen Was heißt Vergrößern und Verkleinern? Was ist eine zentrische Streckung?

AB1: Ähnliche Figuren untersuchen und zeichnen Was heißt Vergrößern und Verkleinern? Was ist eine zentrische Streckung? AB1: Ähnliche Figuren untersuchen und zeichnen Was heißt Vergrößern und Verkleinern? Was ist eine zentrische Streckung? 1 Finde möglichst viele Gemeinsamkeiten und Unterschiede der folgenden Abbildungen.

Mehr

Kapitel 1. Kapitel 1 Vollständige Induktion

Kapitel 1. Kapitel 1 Vollständige Induktion Vollständige Induktion Inhalt 1.1 1.1 Das Das Prinzip A(n) A(n) A(n+1) 1.2 1.2 Anwendungen 1 + 2 + 3 +...... + n =? 1.3 1.3 Landkarten schwarz-weiß 1.4 1.4 Fibonacci-Zahlen 1, 1, 1, 1, 2, 2, 3, 3, 5, 5,

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Vierte Schularbeit Mathematik Klasse 3E am

Vierte Schularbeit Mathematik Klasse 3E am Vierte Schularbeit Mathematik Klasse 3E am 22.05.2014 SCHÜLERNAME: Gruppe A Lehrer: Dr. D. B. Westra Punkteanzahl : von 24 Punkten NOTE: NOTENSCHLÜSSEL 23-24 Punkte Sehr Gut (1) 20-22 Punkte Gut (2) 16-19

Mehr

Lösungen zu Ungerade Muster in Pyramiden. Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl.

Lösungen zu Ungerade Muster in Pyramiden. Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl. Lösungen zu Ungerade Muster in Pyramiden Aufgabe Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl. Begründung : Zunächst schauen wir eine Abbildung an, in der die

Mehr

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten?

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? Eigenschaften von Figuren Station 7 Aufgabe Drachen Untersuche die Eigenschaften eines Drachenvierecks. D f A E e C B a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? c) Sind die Diagonalen

Mehr

M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? Ananas kosten. Bestimme den Proportionalitätsfaktor.

M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? Ananas kosten. Bestimme den Proportionalitätsfaktor. M 8.1 Direkte Proportionalität Wann heißen zwei Größen (direkt) proportional? Ananas kosten Wie viel kosten Ananas? Bestimme den Proportionalitätsfaktor. Zeichne den Graphen der Zuordnung. M 8.2 Indirekte

Mehr

Kombinatorik von Zahlenfolgen

Kombinatorik von Zahlenfolgen 6. April 2006 Vorlesung in der Orientierungswoche 1 Kombinatorik von Zahlenfolgen Einige Beispiele Jeder kennt die Fragen aus Intelligenztests, in denen man Zahlenfolgen fortsetzen soll. Zum Beispiel könnten

Mehr

3. rekursive Definition einer Folge

3. rekursive Definition einer Folge 3. rekursive Definition einer Folge In vielen Fällen ist eine explizite Formel für das n-te Glied nicht bekannt, es ist hingegen möglich, aus den gegebenen Gliedern das nächste Glied zu berechnen, d.h.

Mehr

Bilder von Zahlen - Arithmetik und Algebra geometrisch darstellen. Rauter Bianca ( ) Graz, am 10. Dezember 2014

Bilder von Zahlen - Arithmetik und Algebra geometrisch darstellen. Rauter Bianca ( ) Graz, am 10. Dezember 2014 Bilder von Zahlen - Arithmetik und Algebra geometrisch darstellen Rauter Bianca (101038) Graz, am 10. Dezember 014 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Abbildungen von Zahlen - Beweise durch Muster

Mehr

Grundwissen Mathematik für die Jahrgangsstufe 6 - Lösungen

Grundwissen Mathematik für die Jahrgangsstufe 6 - Lösungen Grundwissen Mathematik für die Jahrgangsstufe 6 - Lösungen 1. Gib mindestens drei Eigenschaften der natürlichen Zahlen an. Jede natürliche Zahl hat einen Nachfolger und jede natürliche Zahl außer 1 hat

Mehr

Spielen mit Zahlen Seminarleiter: Dieter Bauke

Spielen mit Zahlen Seminarleiter: Dieter Bauke Spielen mit Zahlen Seminarleiter: Dieter Bauke EINLEITUNG Was ist Mathematik? Geometrie und Arithmetik: Untersuchung von Figuren und Zahlen. Wir kombinieren Arithmetik und Geometrie mittels figurierter

Mehr

Lernrückblick. 1 a) Ich weiß, wie ich ein Schrägbild in der Kabinettprojektion zeichne: 2 a) Ich kann einen Körper aus folgenden Ansichten zeichnen:

Lernrückblick. 1 a) Ich weiß, wie ich ein Schrägbild in der Kabinettprojektion zeichne: 2 a) Ich kann einen Körper aus folgenden Ansichten zeichnen: 1 a) Ich weiß, wie ich ein Schrägbild in der Kabinettprojektion zeichne: b) Beispiel 2 a) Ich kann einen Körper aus folgenden Ansichten zeichnen: b) Beispiel 3 Entscheide dich. Ich fühle mich fit im Bereich

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 0/0 Mathematik B 8. Mai 0 09:00 Uhr Unterlagen für die Lehrkraft . Aufgabe: Differentialrechnung

Mehr

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480

Mehr

MIT WÜRFELN BAUEN: ZAHLENFOLGEN ENTDECKEN

MIT WÜRFELN BAUEN: ZAHLENFOLGEN ENTDECKEN MIT WÜRFELN BAUEN: ZAHLENFOLGEN ENTDECKEN Thema: Zahlenfolgen (Dreieckszahlen, Quadratzahlen,...) geometrisch darstellen und in Wertetabellen beschreiben. Klassen: 3. bis 5. Klasse (z.b. zu Zahlenbuch

Mehr

Fraktale. Mathe Fans an die Uni. Sommersemester 2009

Fraktale. Mathe Fans an die Uni. Sommersemester 2009 Fraktale Mathe Fans an die Uni Ein Fraktal ist ein Muster, das einen hohen Grad Selbstähnlichkeit aufweist. Das ist beispielsweise der Fall, wenn ein Objekt aus mehreren verkleinerten Kopien seiner selbst

Mehr

1 Folgen und Stetigkeit

1 Folgen und Stetigkeit 1 Folgen und Stetigkeit 1.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 8 10. November 2009 Kapitel 2. Konvergenz von Folgen und Reihen Definition 27. Eine (reelle bzw. komplexe) Zahlenfolge ist eine R- bzw. C-wertige

Mehr

Graph der linearen Funktion

Graph der linearen Funktion Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)

Mehr

6 Bestimmung linearer Funktionen

6 Bestimmung linearer Funktionen 1 Bestimmung linearer Funktionen Um die Funktionsvorschrift einer linearen Funktion zu bestimmen, muss man ihre Steigung ermitteln. Dazu sind entweder Punkte gegeben oder man wählt zwei Punkte P 1 ( 1

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

Lösungen Grundaufgaben Folgen und Reihen

Lösungen Grundaufgaben Folgen und Reihen Folgen und Reihen 05.03.006 Grundaufgaben Lösungen Grundaufgaben Folgen und Reihen Formeln arithetische Folge mit Anfangsglied a und Differenz d: a n = a +(n )d (explizite Darstellung) a n+ = a n + d (rekursive

Mehr

Folgen und Reihen Folgen

Folgen und Reihen Folgen Folgen und Reihen 30307 Folgen Einstieg: Wir beginnen mit einigen Beispielen für reelle Folgen: (i),, 4, 8, 6, (ii) 4,, 6, 3, 7, (iii) 0,,,, 3,, (iv), 3, 7,,, Aufgabe : Setzt die Zahlenfolgen logisch fort

Mehr

Anzahl der Punkte auf Kreis und Gerade

Anzahl der Punkte auf Kreis und Gerade Anzahl der Punkte auf Kreis und Gerade Ein Kreis hat sicher einen viel kürzeren Umfang als eine unendliche Gerade. Trotzdem besteht ein Kreis (ohne seinen obersten Punkt) aus gleich vielen Punkten wie

Mehr

Altersgruppe Klasse 5

Altersgruppe Klasse 5 Altersgruppe Klasse 5 Ein Kreis und ein Dreieck können einander auf verschiedene Arten schneiden. Im Folgenden sollen immer Punkte betrachtet werden, wo Kreis und Dreieck einander richtig schneiden und

Mehr

von Markus Wurster Titelseite und Buchrücken für Ringbuch

von Markus Wurster Titelseite und Buchrücken für Ringbuch Dreieck Zahlen DREIECK ZAHLEN von Markus Wurster Titelseite und Buchrücken für Ringbuch Dreieck Zahlen von Markus Wurster 1. Quadratzahlen Was Quadratzahlen sind, weißt du bestimmt: Man kann Perlen auf

Mehr

29. Essener Mathematikwettbewerb 2013/2014

29. Essener Mathematikwettbewerb 2013/2014 Klasse 5 Ein Kreis und ein Dreieck können einander auf verschiedene Arten schneiden. Im Folgenden sollen immer Punkte betrachtet werden, wo Kreis und Dreieck einander richtig schneiden und nicht nur berühren;

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Neue Aufgabenformen in der Mathematik. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Neue Aufgabenformen in der Mathematik. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Neue Aufgabenformen in der Mathematik Das komplette Material finden Sie hier: School-Scout.de Thema: Neue Aufgabenformen in der Mathematik

Mehr

3.C Gruppe A 1. Schularbeit Name: Mo / Schw. 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 8 Punkte

3.C Gruppe A 1. Schularbeit Name: Mo / Schw. 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 8 Punkte 3.C Gruppe A 1. Schularbeit Name: Mo 27.10.97 / Schw 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) 3 + 2 ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 2) Gib die Elemente der Menge A = { x Z / x < 3 } und B = { y Z / -5

Mehr

Rekursive Folgen im Pascalschen Dreieck

Rekursive Folgen im Pascalschen Dreieck Reursive Folgen im Pascalschen Dreiec Holger Stephan, Tag der Mathemati,. Juni Zusammenfassung Viele Probleme aus den unterschiedlichsten Teilgebieten der Mathemati (z.b. Analysis, Kombinatori, Zahlen-,

Mehr

Lösungen Prüfung Fachmaturität Pädagogik

Lösungen Prüfung Fachmaturität Pädagogik Fachmaturität Mathematik 7.0.009 Lösungen Prüfung Lösungen Prüfung Fachmaturität Pädagogik. (7 min,7.5 P.) Brüche Forme so um, dass im Ergebnis maximal ein Bruchstrich vorkommt und nicht mehr weiter gekürzt

Mehr

Kompetenztest. 1 Im rechtwinkligen Dreieck. Satz des Pythagoras. Kompetenztest. Testen und Fördern. Satz des Pythagoras. Name: Klasse: Datum:

Kompetenztest. 1 Im rechtwinkligen Dreieck. Satz des Pythagoras. Kompetenztest. Testen und Fördern. Satz des Pythagoras. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Bringe die Satzteile in die richtige Reihenfolge. (Es sind zwei Sätze.) den rechten Winkel einschließen heißen die Seiten, die Katheten, 1 Im rechtwinkligen Dreieck

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

einzeichnen von Steigungsdreiecken bestimmt werden oder durch die rechnerische Form. Hier wird die rechnerische Form gezeigt:

einzeichnen von Steigungsdreiecken bestimmt werden oder durch die rechnerische Form. Hier wird die rechnerische Form gezeigt: Lösungen Mathematik Dossier Funktionen b) Steigungen: Können entweder durch einzeichnen von Steigungsdreiecken bestimmt werden oder durch die rechnerische Form. Hier wird die rechnerische Form gezeigt:

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe

Mehr

Schularbeitsstoff zur 2. Schularbeit am

Schularbeitsstoff zur 2. Schularbeit am Schularbeitsstoff zur. Schularbeit am 19.1.016 Flächeninhalt 8 Flächeninhalt 1 9 Flächeninhalt 1 14 Flächeninhalt Bruchzahlen 10 Bruchzahlen Potenzen Potenzen 11 Potenzen 1 Potenzen Variable und Funktionen

Mehr

Anzahl der Punkte auf Kreis und Gerade

Anzahl der Punkte auf Kreis und Gerade Anzahl der Punkte auf Kreis und Gerade Ein Kreis hat sicher einen viel kürzeren Umfang als eine unendliche Gerade. Trotzdem besteht ein Kreis (ohne seinen obersten Punkt) aus gleich vielen Punkten wie

Mehr

Fibonacci-Zahlen. Geschichte. Definition. Quotienten

Fibonacci-Zahlen. Geschichte. Definition. Quotienten Mathematik/Informatik Die Fibonacci-Zahlen Gierhardt Fibonacci-Zahlen Geschichte Im Jahre 0 wurde in Pisa ein Buch über das indischarabische Dezimalsystem von dem italienischen Mathematiker Leonardo Fibonacci

Mehr

1. Schularbeit R

1. Schularbeit R 1. Schularbeit 23.10.1997... 3R 1a) Stelle die Rechnung 5-3 auf der Zahlengerade durch Pfeile dar! Gibt es mehrere Möglichkeiten der Darstellung? Wenn ja, zeichne alle diese auf! 1b) Ergänze die Tabelle:

Mehr

Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7

Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7 Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7 LÖSUNGEN. Gib die Primfaktorzerlegung der Zahlen 0 und an. 0 0 7 7 7. Erkläre, wie man zwei ganze Zahlen addiert bzw. multipliziert. Bei gleichem

Mehr

Folgen und Reihen. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben

Folgen und Reihen. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben Vorzeigeaufgaben: Block Stunde

Mehr

Mathematik Q1 - Analysis INTEGRALRECHNUNG

Mathematik Q1 - Analysis INTEGRALRECHNUNG Mathematik Q1 - Analysis INTEGRALRECHNUNG ZIELE Einführung der neuen Begrifflichkeiten orientierter Flächeninhalt Integral Integralfunktion anhand der Badetag-Aufgabe Berechnung von Integralen mittels

Mehr

2.2 Funktionen 1.Grades

2.2 Funktionen 1.Grades . Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis Was ist eine Funktion.Grades? Die Steigung einer Geraden. Die Definition der Steigung.................................... Die Berechnung

Mehr

Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen:

Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen: Mathematik -. Semester Wi. Ein Beispiel Lineare Funktionen Gegeben sei die Gleichung y x + 3. Anhand einer Wertetabelle sehen wir; daß die folgenden Zahlenpaare die gegebene Gleichung erfüllen: x 0 6 8

Mehr

Aufgaben zu Merkmalen und Eigenschaften von Körpern 1. 1 Allgemeine Merkmale vergleichen und beschreiben

Aufgaben zu Merkmalen und Eigenschaften von Körpern 1. 1 Allgemeine Merkmale vergleichen und beschreiben Aufgaben zu Merkmalen und Eigenschaften von Körpern 1 Sicheres Wissen und Können am Ende der Klasse 6 1 Allgemeine Merkmale vergleichen und beschreiben 1. Die folgenden Zeichnungen zeigen Körper. Fülle

Mehr

18.Übungsblatt. www-i1.informatik.rwth-aachen.de -> Informatik und Schule -> Mathematik 5. Klasse

18.Übungsblatt. www-i1.informatik.rwth-aachen.de -> Informatik und Schule -> Mathematik 5. Klasse 18.Übungsblatt Klasse 5a Ausgabe am 05.05.2004 Abgabe am 12.05.2004 im Mathematikunterricht Nicht alle Erklärungen und Aufgaben, die im Internet zur Verfügung stehen, werden in gedruckter Form in den Übungsblättern

Mehr

M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010)

M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010) M 9.1 Quadratwurzeln Wie wird definiert? Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: M 9.2 Reelle Zahlen Was sind irrationale Zahlen? Nenne vier

Mehr

1 Goldener Schnitt Pascalsches Dreieck Der Binomische Lehrsatz ( ) ß mit a multipliziert. ( a+ b) 4 = a 3 +3a 2 b+3ab 2 + b 3

1 Goldener Schnitt Pascalsches Dreieck Der Binomische Lehrsatz ( ) ß mit a multipliziert. ( a+ b) 4 = a 3 +3a 2 b+3ab 2 + b 3 1 Goldener Schnitt Pascalsches Dreieck 17 1.3 Pascalsches Dreieck 1.3.1 Der Binomische Lehrsatz Aus der Schule ist Ihnen mit Sicherheit die Binomische Regel bekannt: ( ) 2 = a 2 +2ab+ b 2 a+ b Diese Regel

Mehr

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit Realschulabschluss

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit Realschulabschluss Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 2013 Realschulabschluss Impressum Herausgeber Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein

Mehr

Abschnitt: Folgen, Reihen, Grenzwerte

Abschnitt: Folgen, Reihen, Grenzwerte Abschnitt: Folgen, Reihen, Grenzwerte Entwicklung von Mathematikaufgaben Realschule 1960: Ein Bauer verkauft einen Sack Kartoffeln für 50 DM. Die Erzeugerkosten betragen 40 DM. Berechne den Gewinn! Sekundarstufe

Mehr

Gymnasium Muttenz Maturitätsprüfung Mathematik. (Schwerpunktfächer: F/ G / I / L / M / S / W / Z )

Gymnasium Muttenz Maturitätsprüfung Mathematik. (Schwerpunktfächer: F/ G / I / L / M / S / W / Z ) Gymnasium Muttenz Maturitätsprüfung 2006 Mathematik (Schwerpunktfächer: F/ G / I / L / M / S / W / Z ) Kandidatin / Kandidat Name Vorname:... Klasse:... Hinweise - Die Prüfung dauert 4 Stunden. - Jede

Mehr

13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2010/2011

13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2010/2011 13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 20/2011 Aufgabe 1 Sonja hat neun Karten, auf denen die neun kleinsten zweistelligen Primzahlen stehen. Sie will diese Karten so in eine

Mehr

M A T H E M A T H I K. Mathematik. Klasse 10. Epoche 2. Maximilian Ernestus

M A T H E M A T H I K. Mathematik. Klasse 10. Epoche 2. Maximilian Ernestus athematik lasse 10. poche 2 aximilian rnestus rithmetische Zahlenfolgen ine Zahlenfolge ist eine gesetzmäßige ufeinanderfolge von Zahlen Beispiel: Die emperatur in 25 m iefe beträgt 10 C. Je 100 m iefe

Mehr

3.1 Folgen. ,...) die Folge der sogenannten Hauptbrüche in Q. Mathematik I WiSe 2005/ y = (y n ) n N = ( 1 3, 1 9, 1 27, 1 81, 1

3.1 Folgen. ,...) die Folge der sogenannten Hauptbrüche in Q. Mathematik I WiSe 2005/ y = (y n ) n N = ( 1 3, 1 9, 1 27, 1 81, 1 Kapitel 3. Folgen und Reihen 3.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als a = (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index

Mehr

HS Pians St. Margarethen. Alles Gute!

HS Pians St. Margarethen. Alles Gute! Vorübungen auf die 6. M-Schularbeit KL, KV 01 Ich habe mich bemüht, dir möglichst wieder früh Unterlagen zur Verfügung zu stellen, die Pfingstferien klopfen an die Türe, HS Pians St. Margarethen Alles

Mehr

Bastelvorlage Prisma. Station 1. Aufgabe. Name:

Bastelvorlage Prisma. Station 1. Aufgabe. Name: Station 1 Bastelvorlage Schneide die Bastelvorlage aus und baue daraus ein. Markiere im Anschluss die Flächen mit den gleichen Flächeninhalten farbig. 22 Station 2 Eigenschaften Prismen I Ergänze die angefangene

Mehr

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2. GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Lernumgebung zur Big Idea Abhängigkeiten untersuchen

Lernumgebung zur Big Idea Abhängigkeiten untersuchen Lernumgebung zur Big Idea Abhängigkeiten untersuchen Roman Franzen Einführung Bevor man damit beginnen kann eine entsprechende Lernumgebung zu konzipieren, muss man sich zunächst darüber im Klaren sein,

Mehr

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.

Mehr

Leonardo da Pisa alias Fibonacci

Leonardo da Pisa alias Fibonacci Leonardo da Pisa alias Fibonacci 1. Juli 003 Weber Tony, Ramagnano Nicola Mathematik Fibonacci Seite / 9 Inhaltsverzeichnis Biographie...3 Fibonacci Zahlen...5 Definition...5 Fibonacci Spirale...5 Goldener

Mehr

Modulare Förderung Mathematik

Modulare Förderung Mathematik 1) 1 Umfang und Fläche begrifflich verstehen Welche Aussagen stimmen? Kreuze an. Der Umfang einer Figur ist immer größer als sein Flächeninhalt. Der Flächeninhalt wird kleiner, wenn ich eine Fläche zerschneide

Mehr

Math-Champ M7 Klasse: Datum: Name:

Math-Champ M7 Klasse: Datum: Name: Math-Champ M7 Klasse: Datum: Name: 1) Die Abbildung zeigt den unvollständigen Schrägriss eines Würfels. Vervollständige die Figur richtig. Verwende dein Geo-Dreieck. 2) In der Grafik ist der Grundriss

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

Pascalsches Dreieck. Pascalsches Dreieck

Pascalsches Dreieck. Pascalsches Dreieck Pascalsches Dreieck 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 (1) Fülle Pascals Dreieck aus. Diese Zahlenpyramide erhält man durch Addition. Jede Zahl ist die Summe der beiden Zahlen darüber. Das Dreieck beginnt mit

Mehr

Lösungen lineare Funktionen

Lösungen lineare Funktionen lineare Funktionen Lösungen 1 Lösungen lineare Funktionen Schnittpunkt gegeben bestimme Funktionsvorschrift. Flächeninhalt von eingeschlossenem Dreieck berechnen. Schnittwinkel gegeben, berechne Steigung.

Mehr

MTG Grundwissen Mathematik 5.Klasse

MTG Grundwissen Mathematik 5.Klasse MTG Grundwissen Mathematik 5.Klasse Umgang mit großen Zahlen Beispiel: 47.035.107.006 = 4 10 10 + 7 10 9 + 3 10 7 + 5 10 6 + 10 5 + 7 10 3 + 6 10 0 A1: Schreibe 117 Billionen 12 Milliarden vierhundertsiebentausendsechzig

Mehr

Lernzirkel Grundrechenarten und Terme Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18. a + b = c

Lernzirkel Grundrechenarten und Terme Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18. a + b = c Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18 Station 1 Addition (lat. addere = dazutun) 1.1 Wie lauten die korrekten Bezeichnungen? a + b = c 1.2 Addiere schriftlich 3 5 6

Mehr

3. Argumentieren und Beweisen mit Punktemustern

3. Argumentieren und Beweisen mit Punktemustern 3 Punktemuster 22 3. Argumentieren und Beweisen mit Punktemustern 3.1 Figurierte Zahlen Gerade in der Grundschule bietet es sich immer wieder an, Zahlen durch Gegenstände zu verdeutlichen. Andererseits

Mehr

Rechne die Lösung im 2. Quadranten ohne Verwendung der speziellen TI 92- Funktionen auf die Polarform um.

Rechne die Lösung im 2. Quadranten ohne Verwendung der speziellen TI 92- Funktionen auf die Polarform um. 1.Schularbeit 7b Klasse 1a) Gegeben ist die Gleichung z 2 + pz + (33 + 47i) = 0 mit der Lösung z 1 = 4-9i. Berechne den Koeffizienten p sowie die 2. Lösung der Gleichung. b) Berechne die Lösungen der Gleichung

Mehr

Station Figurierte Zahlen Teil 3. Arbeitsheft. Teilnehmercode

Station Figurierte Zahlen Teil 3. Arbeitsheft. Teilnehmercode Station Figurierte Zahlen Teil 3 Arbeitsheft Teilnehmercode Mathematik-Labor Station Figurierte Zahlen Liebe Schülerinnen und Schüler! Schon die alten Griechen haben Zahlen mit Hilfe von Zählsteinen dargestellt:

Mehr

Ganz schön praktisch! Differenzierende Anwendungsaufgaben zur Mathematik in Ausbildungsberufen. Von Florian Raith, Fürstenzell VORANSICHT

Ganz schön praktisch! Differenzierende Anwendungsaufgaben zur Mathematik in Ausbildungsberufen. Von Florian Raith, Fürstenzell VORANSICHT Ganz schön praktisch! Differenzierende Anwendungsaufgaben zur Mathematik in Ausbildungsberufen Von Florian Raith, Fürstenzell Wie viel sollen die Orchideen im Verkauf kosten? Bei vielen Fragen aus dem

Mehr

KOMPETENZHEFT ZU FOLGEN UND REIHEN

KOMPETENZHEFT ZU FOLGEN UND REIHEN KOMPETENZHEFT ZU FOLGEN UND REIHEN 1. Aufgabenstellungen Aufgabe 1.1. Gib ein Bildungsgesetz der arithmetischen Folge in expliziter Darstellung und in rekursiver Darstellung an. a) x n = 5, 8, 11, 14,...

Mehr

Funktionaler Zusammenhang Beitrag 15 Mathematik in Ausbildungsberufen 1 von 32

Funktionaler Zusammenhang Beitrag 15 Mathematik in Ausbildungsberufen 1 von 32 Funktionaler Zusammenhang Beitrag 15 Mathematik in Ausbildungsberufen 1 von 32 Ganz schön praktisch! Differenzierende Anwendungsaufgaben zur Mathematik in Ausbildungsberufen Von Florian Raith, Fürstenzell

Mehr

Ebene Bereiche und Bereichsintegrale

Ebene Bereiche und Bereichsintegrale Ebene ereiche und ereichsintegrale Gegeben sei ein ebener ereich, das heißt ein beschränktes Teilgebiet desr, das durch eine oder mehrere Kurven begrenzt wird. Des Weiteren sei eine reellwertige Funktion

Mehr

Fibonaccis Kaninchen. Entdeckende Mathematik mit Derive. von Gregor Noll

Fibonaccis Kaninchen. Entdeckende Mathematik mit Derive. von Gregor Noll Entdeckende Mathematik mit Derive von Die Fibonacci-Zahlen (1) In seinem Werk Liber abaci aus dem Jahre 1202 stellte Leonardo von Pisa, genannt Fibonacci, eine bis heute berühmt gebliebene Aufgabe: Leonardo

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2006 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2006 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0).0.0. Berechnen Sie unter Verwendung des binomischen Lehrsatzes ( x + y) 7 Lösung: Nach dem binomischen Lehrsatz ist ( x + y) 7 = 7

Mehr