Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy."

Transkript

1 Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady Die absolute Häufigkeit H des Ereigisses E beträgt i diesem Fall 99. Das ist die Azahl der Fälle, i dee E eitritt. Der Stichprobeumfag beträgt i diesem Fall 20. HE 99 Die relative Häufigkeit vo E ist gegebe durch he 0, Allgemei gilt: absolute Häufigkeit des Ereigisses Relative Häufigkeit eies Ereigisses Stichprobeumfag Formal: h E H Übug: Bestimme Sie die relative Häufigkeit des Gegeereigisses E ud bilde Sie die Summe aus h E ud h E Lösug: Das Gegeereigis lautet E : Schüler besitzt kei Hady HE 2 Damit beträgt die relative Häufigkeit vo E he 0,75 20 Summe: h E h E 0,825 0,75 Merke: Für ei Ereigis E ud sei Gegeereigisses E gilt: h E h E

2 Defiitio der Wahrscheilichkeit Bei der Defiitio der Wahrscheilichkeit uterscheidet ma zwische der klassische Defiitio ud der statistische Defiitio. klassische Wahrscheilichkeit am Beispiel eies ideale Würfels Bei eiem ideale Würfel geht ma davo aus, das jede Zahl zwische ud 6 die gleiche Chace zum Auftrete hat. Wir defiiere das Ereigis E: Die gewürfelte Zahl ist eie 6 Die Wahrscheilichkeit für das Auftrete dieser Zahl wird wie folgt defiiert: Azahl der zu E gehörige Ergebisse p PE Azahl aller mögliche Ergebisse Für de Würfel bedeutet das, zu E gehört ur ei Ergebis, ämlich die Zahl 6. Die Azahl aller mögliche Ergebisse sid die Zahle vo bis 6, also gibt es 6 mögliche Ergebisse. Damit gilt für die Wahrscheilichkeit, eie 6 zu würfel Azahl der zu E gehörige Ergebisse p PE 0,6 Azahl aller mögliche Ergebisse 6 Übug: Bereche Sie die Wahrscheilichkeit für das Auftrete eier gerade Zahl größer als 2 bei eimaligem würfel. Lösug: Die Ergebismege besteht aus 6 mögliche Ergebisse: S ;2;;4;5;6 Die Ereigismege besteht aus 2 mögliche Ergebisse: E 4;6 Damit gilt für die Wahrscheilichkeit, eie gerade Zahl zu würfel, die größer 2 als 2 ist: p PE 0, 6

3 statistische Wahrscheilichkeit am Beispiel vo Heftzweckewürfe Wirft ma eie Heftzwecke, so ka sie etweder auf de Rücke falle oder seitlich liege bleibe. Ma ka icht davo ausgehe, dass hier die Chace gleich sid. Die Ursache liegt i der Herstellug der Heftzwecke. Es ka sei, das der Rücke sehr massiv oder weiger massiv gefertigt ist. Um hier eie Wahrscheilichkeitsaussage zu treffe, muss experimetiert werde. Experimet: Eie Heftzwecke wird 00 mal geworfe, die relative Häufigkeite werde berechet. Ergebis: Ereigis Summe absolute Häufigkeit i relative Häufigkeit i he i 0,44 0,56 relative Häufigkeit i % 44% 56% 00% Die Erfahrug zeigt, dass mit steigeder Versuchszahl der Wert der relative Häufigkeit immer mehr eiem Edwert äher kommt, er pedelt sich ei. Diese Edwert et ma statistische Wahrscheilichkeit. Um für user Experimet eie verüftige Wahrscheilichkeitsaussage zu treffe, müsste wir diese Versuch sehr oft wiederhole. Wird die Azahl der Versuche wie z.b. beim Würfel immer höher gewählt, streut die relative Häufigkeit für das Auftrete eier bestimmte Augezahl immer eger um eie bestimmte Wert, beim Würfel um de Wert /6. Die statistische Wahrscheilichkeit wird daher als Grezwert defiiert, die Azahl der Versuche soll gege uedlich strebe: HE p PE lim mit als Azahl der Versuche ud mit H E als absolute Häufigkeit Merke: Die Wahrscheilichkeit ist die beste Vorhersage für die zu erwartede relative Häufigkeit des bestimmte Ereigisses bei eiem Zufallsversuch.

4 Ei Versuch soll verdeutliche, dass sich die relative Häufigkeit vo Ereigisse auf eie bestimmte Wert eipedelt, we die Azahl der Versuche ur groß geug ist. Versuch: Werfe Sie 0 Heftzwecke gleichzeitig ud merke Sie sich die Azahl des Ereigisses. E: Die Hertzwecke liegt auf dem Rücke. Führe Sie diese Versuch isgesamt 0 mal durch. Die Versuchsdurchführug soll als gleichwertig mit dem Versuch eie Heftzwecke 00 mal zu werfe agesehe werde. Trage Sie die kumulierte absolute Häufigkeit i die Tabelle ei ud bereche Sie die relative Häufigkeite. Versuch Nr i H E kumuliert HE he 0,5 0,45 0,7 0,5 0,6 0,42 0,4 0,4 0,4 0,44 i Wird dieser Versuch vo mehrere Persoe uter gleiche Bediguge durchgeführt, so ka das als gleichbedeuted mit eier Erhöhug der Azahl der Versuche gewertet werde. Eie Aufsummierug der Ergebisse vo z. B. 0 Versuchspersoe ist gleichbedeuted mit eier Vergrößerug der Azahl der Versuche auf 000 Bereche Sie auch hier die relative Häufigkeite. Perso Nr i H E H E kumuliert i HE he 0,44 0,4 0,4 0,4 0,446 0,452 0,46 0,46 0,457 0,455 Trage Sie die relative Häufigkeite i ei Diagramm ei ud betrachte Sie die Etwicklug der Relative Häufigkeite. Gebe Sie ei Itervall a, auf welches sich die relative Häufigkeite eizupedel scheie. Kommetiere Sie de Ausgag des Experimetes.

5 rel_h Versuche 00 Die relative Häufigkeite scheie sich auf das Itervall I 0,45;0,46 eizupedel. Das Experimet verdeutlicht, das bei eier gerige Azahl vo Versuche die relative Häufigkeit stark um eie bestimmte Wert pedelt. Je größer die Azahl der Versuche wird, desto mehr ähert sich der Wert der relative Häufigkeit eiem bestimmte Wert. Dieser Wert ka als statistische Wahrscheilichkeit für das Auftrete des Ereigisses E gedeutet werde. Für user Beispiel bedeutet das, dass die Wahrscheilichkeit dafür, dass die Heftzwecke auf dem Rücke liegt zwische de Werte 0,45 ud 0,46 zu fide ist. Für das Gegeereigis (Heftzwecke liegt auf der Seite) liegt die Wahrscheilichkeit zwische de Werte 0,54 ud 0,55. Das bedeutet, die verwedete Heftzwecke hat für das Auftrete beider Ereigisse (Rücke oder Seite) ugleiche Wahrscheilichkeite.

6 Beispiel: Das ebestehede Glücksrad hat sechs Sektore, teils uterschiedlicher Größe. Die Ergebismege S besteht aus 6 mögliche Ergebisse: S ;2;;4;5;6 Wir defiiere zwei Ereigisse: A: Die Nummer ist gerade A 2;4;6 B: Der Sektor ist gelb B ;;5 We das Glücksrad auf eiem der Sektore 2, 4 oder 6 stehe bleibt, sagt ma, dass das Ereigis A eigetrete ist. Bleibt der Zeiger auf Sektor, oder 5 stehe, tritt Ereigis B ei Zuerst betrachte wir die Wahrscheilichkeite der Elemetarereigisse. P P P2 P4 P5 P Die Wahrscheilichkeit für das Eitrete des Ereigisses A ka wie folgt berechet werde: 7 PA P2;4;6 P2 P4 P Die Wahrscheilichkeit für das Eitrete des Ereigisses B ka wie folgt berechet werde: 5 PB P;;5 P P P Übug: Ermittel Sie die Wahrscheilichkeit für das Gegeereigis vo A Lösug: Die Ergebismege S besteht aus de Zahle, 2,, 4, 5 ud 6 Zum Ereigis A gehöre die gerade Zahle 2, 4 ud 6. Das Gegeereigis zu A fidet ma über die Differezmegebildug. A S \ A ;;5 Zufälliger Weise ist das gerade die Ereigismege B, dere Wert scho zu 5 PB bestimmt wurde. 2 Eie weitere Lösugsmöglichkeit für das Gegeereigis A vo A: 7 5 P A P A 2 2 Die Wahrscheilichkeit für die Ergebismege S ist immer, also PS Das leuchtet auch sofort ei, de ei Elemetarergebis tritt immer auf, z. B. bei eiem Würfel erscheit immer eie Zahl.

7 Zusammefassug elemetarer Eigeschafte. Ist S e ;e 2 ;e ;...;e die Ergebismege eies Zufallsexperimetes, wobei e ;e 2 ;e ;...;e dere Elemetarereigisse sid, z.b. beim Würfel die Zahle, 2,, 4, 5, ud 6 so gilt für die Wahrscheilichkeit P 0 Pei für alle i vo bis. Das bedeutet, die Wahrscheilichkeit für das eitrete eies Ereigisses liegt immer zwische 0 ud ud ka icht egativ sei. Pe... P P S P e P e PA P A 2 e Für das Gegeereigis vo A, also für A gilt immer: i Elemetare Summeregel Für ei umögliches Ergebis, z.b. beim 6-er Würfel eie 7 zu würfel gilt: P 0 Übug: Ei Würfel wird eimal geworfe. Folgede Ereigisse werde festgelegt. A: Die Augezahl ist kleier als 4 B: Die Augezahl ist eie ugerade Zahl C: [ 4 ; 5 ] a) E A B Bestimme Sie P E ud beschreibe Sie E mit Worte. b) c) d) E2 A B Bestimme Sie P E ud beschreibe Sie E mit Worte. 2 2 E A B Bestimme Sie P E ud beschreibe Sie E mit Worte. E4 A C Bestimme Sie P E ud beschreibe Sie E mit Worte. 4 4

8 Lösug: a) A ;2; B ;;5 E A B ; PE P P 6 6 E : Die Augezahl ist kleier als 4 ud eie ugerade Zahl. b) A ;2; B ;;5 E A B ;2;;5 2 PE2 P P2 P P E : Die Augezahl ist kleier als 4 oder eie ugerade Zahl. 2 c) E A B 5 A ;2; A 4;5;6 Die Augezahl ist größer als 2 B ;;5 Die Augezahl ist eie ugerde Zahl PE P5 6 E : Die Augezahl ist größer als ud eie ugerade Zahl. d) A ;2; C 4;5 E4 A C PE P 0 Laplace- Experimete 4 4 E : Die Augezahl ist kleier als 4 ud 4 oder 5 Ei solches Ereigis et ma uvereibar, daher ist die Wahrscheilichkeit für das auftrete vo E gleich Null. Wir habe bisher zwei verschiedee Arte vo Zufallsversuche kee gelert.. solche, mit gleicher Wahrscheilichkeitsverteilug. 2. solche mit ugleicher Wahrscheilichkeitsverteilug. Zur erste Gruppe gehörte: - Werfe eies Würfels - Werfe eier Müze - Drehe eies Glücksrades mit gleich große Segmete Zur zweite Gruppe gehörte: - Werfe eier Heftzwecke - Drehe eies Glücksrades mit ugleich große Segmete 4

9 Laplace- Experimet Habe alle mögliche Ergebisse eies Zufallsversuches (erste Gruppe) die gleiche Wahrscheilichkeit, da spricht ma vo eiem Laplace- Experimet. We ma also jedem Ergebis die Wahrscheilichkeit p Azahl aller mögliche Ergebisse zuordet, da ist dies eie Modell- Aahme (Laplace- Modell) Bei eiem Laplace- Experimet gilt für die Wahrscheilichkeit P E eies Ereigisses: PE Azahl der zu E gehörige Ergebisse Azahl aller mögliche Ergebisse Übug: Lösug: Übug: Ei Glücksrad hat 0 gleiche Sektore. E : Zeiger bleibt auf eier durch teilbare Zahl stehe. Bestimme Sie PE. Wie groß ist die Wahrscheilichkeit dafür, dass der Zeiger auf eier Zahl stehe bleibt, die icht durch teilbar ist? S ;2;;4;5;6;7;8;9;0 E ;6;9 P E 0, 0 P E P E 0, 0,7 I eier Ure befide sich 2 schwarze ud rote Kugel. Es wird eimal gezoge. a) Mit welcher Wahrscheilichkeit ist die gezogee Kugel schwarz? b) Wie viele schwarze Kugel müsse midestes i der Ure liege, so dass die Wahrscheilichkeit, eie schwarze Kugel zu ziehe, größer als 0,7 ist?

10 Lösug: a) Lösug mittels Baumdiagramm 2/5 /5 Die Wahrscheilichkeit eie schwarze Kugel zu ziehe ist 2/5, die eie rote zu ziehe ist /5. Die Wahrscheilichkeite werde a die jeweilige Pfade geschriebe. b) I der Ure seie x schwarze ud rote Kugel. Isgesamt befide sich i der Ure also x + Kugel. E: die gezogee Kugel ist schwarz Asatz: P E 0,7 x x 0,7 PE x x x x 0,7 0,7x 2, 0,7x 0,x 2, : 0, x 7 Es müsse also midestes 8 schwarze Kugel i der Ure liege, damit eie solche mit eier Wahrscheilichkeit vo midestes 0,7 gezoge wird.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brikma http://brikma-du.de Seite 1.0.014 Lösuge zur Biomialverteilug I Ergebisse: E1 E E E4 E E E7 Ergebis Ei Beroulli-Experimet ist ei Zufallsexperimet, das ur zwei Ergebisse hat. Die Ergebisse werde

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr

AngStat1(Ue13-21).doc 23

AngStat1(Ue13-21).doc 23 3. Ereigisse Versuchsausgäge ud Wahrscheilicheite: a) Wie wird die Wahrscheilicheit des Auftretes eies Elemetarereigisses A geschätzt? A Ω heißt Elemetarereigis we es ur eie Versuchsausgag ethält also

Mehr

Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10

Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10 Stochastik Beroulli-Experimete, biomialverteilte Zufallsvariable Gymasium ab Klasse 0 Alexader Schwarz www.mathe-aufgabe.com November 203 Hiweis: Für die Aufgabe darf der GTR beutzt werde. Aufgabe : Ei

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

3.2 Das Wahrscheinlichkeitsmaß

3.2 Das Wahrscheinlichkeitsmaß 3 Wahrscheilichkeite 21 3.2 Das Wahrscheilichkeitsmaß 3.2.1 Relative Häufigkeite Der Begriff der relative Häufigkeit Peter verliert beim Mesch ärgere Dich icht. Wüted behauptet er, dass der verwedete Würfel

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung Seite vo 7 5 Beroulli-Kette Jakob Beroulli 654-705 Schweizer Mathematiker ud Physiker 5. Beroulli-Exerimet 5.. Eileitug Oft iteressiert ma sich bei Zufallsexerimete icht für die eizele Ergebisse, soder

Mehr

8. Der Wahrscheinlichkeitsbegriff

8. Der Wahrscheinlichkeitsbegriff 8. Der Wahrscheilichkeitsbegriff M.5 Wahrscheilichkeitsbegriff (ca. 0 Std.) Die Etwicklug eies abstrakte Wahrscheilichkeitsbegriffs erlaubt es de Schüler, verschiedee bereits aus de vorhergehede Jahrgagsstufe

Mehr

Erfolg im Mathe-Abi 2013

Erfolg im Mathe-Abi 2013 Gruber I Neuma Erfolg im Mathe-Abi 2013 Vorabdruck Wahlteil Stochastik für das Abitur ab 2013 zum Übugsbuch für de Wahlteil Bade-Württemberg mit Tipps ud Lösuge Vorwort Vorwort Erfolg vo Afag a...ist das

Mehr

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Fassug vom 13. Februar 2006 Mathematik für Humabiologe ud Biologe 129 9.1 Stichprobe-Raum 9.1 Stichprobe-Raum Die bisher behadelte Beispiele vo Naturvorgäge oder Experimete

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Bernoulli-Experiment und Binomialverteilung

Bernoulli-Experiment und Binomialverteilung IV Beroulli-Exerimet ud Biomialverteilug Beroulli-Exerimet ud Beroulliette Defiitio: Zufallsexerimete, bei dee ma sich ur für das Eitrete ( Treffer, Symbol ) oder das Nichteitrete ( Niete, Symbol 0 ) eies

Mehr

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden?

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden? Bemerkug: I Mathematik sollte ma keie Fahrpläe verwede, i der Stochastik erst recht icht. Zitat vo S.L. Das Baumdiagramm ist aber fast immer ei geeigetes Hilfsmittel. Produktregel Aufgabe: Wie viele Nummerschilder

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

Diskrete Zufallsvariablen

Diskrete Zufallsvariablen Erste Beispiele diskreter Verteiluge Diskrete Zufallsvariable Beroulli-Verteilug Eie diskrete Zufallsvariable heißt beroulliverteilt mit arameter p, falls sie die Wahrscheilichkeitsfuktio p,, f ( ) ( )

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Lösungen Mehrstufige Zufallsversuche I. Ausführliche Lösung

Lösungen Mehrstufige Zufallsversuche I. Ausführliche Lösung Lösuge Mehrstufige Zufallsversuche I e: A1 Aufgabe Eie Müze wird zweimal geworfe. Zeiche Sie das Baumdiagramm ud bestimme Sie die Wahrscheilichkeit für folgede Ereigisse: a) A: Geau eimal Wappe. b) B:

Mehr

Der Additionssatz und der Multiplikationssatz für Wahrscheinlichkeiten

Der Additionssatz und der Multiplikationssatz für Wahrscheinlichkeiten Der Additiossatz ud der Multiplikatiossatz für Wahrscheilichkeite Die Wahrscheilichkeitsrechug befasst sich mit Ereigisse, die eitrete köe, aber icht eitrete müsse. Die Wahrscheilichkeit eies Ereigisses

Mehr

Kapitel 9: Schätzungen

Kapitel 9: Schätzungen - 73 (Kapitel 9: chätzuge) Kapitel 9: chätzuge Betrachte wir folgedes 9. Beispiel : I eiem Krakehaus wurde Date über Zwilligsgeburte gesammelt. Bei vo 48 Paare hatte die beide Zwillige verschiedees Geschlecht.

Mehr

Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln.

Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln. Systematisches Abzähle ud Aorde eier edliche Mege vo Objekte uter Beachtug vorgegebeer Regel Permutatioe Variatioe Kombiatioe Permutatioe: Eie eieideutige (bijektive) Abbildug eier edliche Mege i sich

Mehr

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung Prof. Dr. V. Schmidt WS 200/20 G. Gaiselma, A. Spettl 7.02.20 Lösugsvorschlag Probeklausur zur Elemetare Wahrscheilichkeitsrechug Hiweis: Der Umfag ud Schwierigkeitsgrad dieser Probeklausur muss icht dem

Mehr

Übungen zur Klausur Nr. 2: Wahrscheinlichkeitsrechnung II

Übungen zur Klausur Nr. 2: Wahrscheinlichkeitsrechnung II Berufskolleg Marieschule Lippstadt Schule der Sekudarstufe II mit gymasialer Oberstufe ud Fachschule - staatlich aerkat - Kurslehrer: Lagebach Berufskolleg Marieschule Lippstadt Schule der Sekudarstufe

Mehr

Für die Vorlesung von Prof. Schmitz

Für die Vorlesung von Prof. Schmitz Agewadte Mathematik Skript Für die Vorlesug vo Prof. Schmitz Vo Michael Barth www.little-thigs.de Dak a Patrick Bader 1 Table of Cotets 6. Graphe ud Bäume... 3 6.1 Graphe...3 6.1.1 Grudlegede e...3 6.1.2

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

Daten und Zufall in der Jahrgangsstufe 9 Seite 1

Daten und Zufall in der Jahrgangsstufe 9 Seite 1 Date ud uall i der Jahrgagsstue Seite usammegesetzte uallsexperimete, Padregel Aubaued au de Erahruge aus de vorhergehede Jahrgagsstue beschätige sich die Schüler systematisch mit zusammegesetzte uallsexperimete

Mehr

Erfolg im Mathe-Abi 2015

Erfolg im Mathe-Abi 2015 Gruber I Neuma Erfolg im Mathe-Abi 2015 Übugsbuch für de Wahlteil Bade-Württemberg mit Tipps ud Lösuge Ihaltsverzeichis Ihaltsverzeichis Aalysis 1 Tuel... 2 Widkraftalage... 7 3 Testzug... 8 4 Abkühlug...

Mehr

Stochastik A. Prof. Dr. Barbara Gentz

Stochastik A. Prof. Dr. Barbara Gentz Stochastik A Prof. Dr. Barbara Getz Zusammefassug. Diese Mitschrift basiert auf Frau Prof. Getz Vorlesug Stochastik A aus dem Witersemester 2010/2011, welche sich i weite Teile a [Mee03] orietiert. Wer

Mehr

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht?

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht? Der χ Test Es gibt verschiedee Arte vo Sigifikaztests Nebe Sigifikaztests, die sich mit dem Mittelwert beschäftige, gibt es auch Testverfahre für Verteiluge Bei Verteiluge Beatwortug der Frage, ob eie

Mehr

Hilfsmittel aus der Kombinatorik, Vollständige Induktion, Reelle Zahlenfolgen

Hilfsmittel aus der Kombinatorik, Vollständige Induktion, Reelle Zahlenfolgen 7. Vorlesug im Brückekurs Mathematik 2017 Hilfsmittel aus der Kombiatorik, Vollstädige Iduktio, Reelle Zahlefolge Dr. Markus Herrich Markus Herrich Kombiatorik, Vollstädige Iduktio, Zahlefolge 1 Hilfsmittel

Mehr

Seminarausarbeitung: Gegenbeispiele in der Wahrscheinlichkeitstheorie. Unterschiedliche Konvergenzarten von Folgen von Zufallsvariablen

Seminarausarbeitung: Gegenbeispiele in der Wahrscheinlichkeitstheorie. Unterschiedliche Konvergenzarten von Folgen von Zufallsvariablen Semiarausarbeitug: Gegebeispiele i der Wahrscheilichkeitstheorie - Uterschiedliche Kovergezarte vo Folge vo Zufallsvariable Volker Michael Eberle 4. März 203 Eileitug Die vorliegede Arbeit thematisiert

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

Erfolg im Mathe-Abi 2014

Erfolg im Mathe-Abi 2014 Gruber I Neuma Erfolg im Mathe-Abi 2014 Übugsbuch für de Pflichtteil Bade-Württemberg mit Tipps ud Lösuge Ihaltsverzeichis Ihaltsverzeichis Aalysis 1 Ableite 1.1 Potezfuktioe mit atürliche Expoete... 7

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

Stochastik. Eine Vorlesung für das Lehramtsstudium. Franz Hofbauer

Stochastik. Eine Vorlesung für das Lehramtsstudium. Franz Hofbauer Stochastik Eie Vorlesug für das Lehramtsstudium Fraz Hofbauer SS 01 Vorwort Der Begriff Wahrscheilichkeit wird üblicherweise mit Häufigkeit assoziiert. Was oft eitritt, hat hohe Wahrscheilichkeit, was

Mehr

Teil II Zählstatistik

Teil II Zählstatistik Teil II Zählstatistik. Aufgabestellug. Vergleiche Sie experimetelle Zählverteiluge mit statistische Modelle (POISSON-Verteilug ud Normalverteilug) 2. Theoretische Grudlage Stichworte zur Vorbereitug: Impulszahl,

Mehr

3 Wichtige Wahrscheinlichkeitsverteilungen

3 Wichtige Wahrscheinlichkeitsverteilungen 26 3 Wichtige Wahrscheilicheitsverteiluge Wir betrachte zuächst eiige Verteilugsfutioe für Produtexperimete 31 Die Biomialverteilug Wir betrachte ei Zufallsexperimet zum Beispiel das Werfe eier Müze, bei

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

Übungen zu QM III Mindeststichprobenumfang

Übungen zu QM III Mindeststichprobenumfang Techische Hochschule Köl Fakultät für Wirtschafts- ud Rechtswisseschafte Prof. Dr. Arreberg Raum 221, Tel. 39 14 jutta.arreberg@th-koel.de Übuge zu QM III Mideststichprobeumfag Aufgabe 12.1 Sie arbeite

Mehr

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf # 0 Atwort Diese Lerkarte sid sorgfältig erstellt worde, erhebe aber weder Aspruch auf Richtigkeit och auf Vollstädigkeit. Das Lere mit Lerkarte fuktioiert ur

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Einführung in die Grenzwerte

Einführung in die Grenzwerte Eiführug i die Grezwerte Dieser Text folgt hauptsächlich der Notwedigkeit i sehr kurzer Zeit eie Idee ud Teile ihrer Awedug zu präsetiere, so dass relativ schell mit dieser Idee gerechet werde ka. Der

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Gazratioale Fuktioe 9. Defiitio gazratioaler Fuktioe Im Folgede werde ebe lieare ud quadratische Fuktioe auch solche betrachtet, bei dee die Variable i der dritte, vierte oder auch i eier och höhere Potez

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo suge zu Blatt 0 Kleigruppe zur Service-Verastaltug Mathematik I fu r Igeieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 9.. Theme: Kovergez vo Folge Aufgabe P (i) Sei a : k kk.

Mehr

Mathe-Lernzettel. Schwerpunkt 3 : Stochastik. Einführung in die Stochastik: - wichtige Begriffe: Absolute Häufigkeit

Mathe-Lernzettel. Schwerpunkt 3 : Stochastik. Einführung in die Stochastik: - wichtige Begriffe: Absolute Häufigkeit Mathe-Lerzettel Schwerpukt 3 : Stochastik Eiführug i die Stochastik: - wichtige Begriffe: Relative Häufigkeit - Baumdiagramm: h(e) ; Darstellug eies Ergebisses absolute Häufigkeit Aza l der Durc füruge

Mehr

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

1. Folgen ( Zahlenfolgen )

1. Folgen ( Zahlenfolgen ) . Folge ( Zahlefolge Allgemeies Beispiel für eie regelmäßige Folge: /, /3, /4, /5, /6,... Das erste Glied ist a =/ Das ist das Glied mit dem Ide Das zweite Glied ist a =/3 Das ist das Glied mit dem Ide

Mehr

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3.

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3. Folge Eie Folge ist eie Aordug vo reelle Zahle. Die eizele Zahle heiße Glieder der Folge. Kapitel 4 Folge ud Reihe Formal: Eie Folge ist eie Abbildug a : N R, a Folge werde mit a i i oder kurz a i bezeichet.

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger IDUKTIVE STTISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUG - LÖSUGE erutatioe. zahl der erutatioe vo verschiedefarbige erle!! 0. zahl der erutatioe vo 0 uerierte Kugel! 0!.8.800

Mehr

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern Modrago Formel Herleitug, Azahl Quadrate ud Differeze 01.doc 1 FormelfürdieAzahlmöglicherQuadrateauf*Spielfelder Mit Erläuteruge zur Ableitug der Formel vo Dr. Volker Bagert Berli, 11.03.010 Ihaltsverzeichis

Mehr

Übungsaufgaben II. Übungsaufgaben II. f) Wie groß ist die Wahrscheinlichkeit, dass er mindestens 1 richtige Antworten. ankreuzt?

Übungsaufgaben II. Übungsaufgaben II. f) Wie groß ist die Wahrscheinlichkeit, dass er mindestens 1 richtige Antworten. ankreuzt? Berufsolleg Marieschule Lippstadt Schuljahr /7 Kurs: Mathemati AHR. Berufsolleg Marieschule Lippstadt Schuljahr /7 Kurs: Mathemati AHR. Aufgabe Ei Multiple-Choise-Test besteht aus Frage für die jeweils

Mehr

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis 6. Grudlage der Wahrscheilichkeitsrechug 6.. Defiitioe ud Beispiele Spiele aus dem Alltagslebe: Würfel, Müze, Karte,... u.s.w. sid gut geeiget die Grudlage der Wahrscheilichkeitsrechug darzustelle. Wir

Mehr

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es?

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es? Uiversität Stuttgart Fachbereich Mathematik Prof Dr C Hesse PD Dr P H Lesky Dipl Math D Zimmerma Msc J Köller FAQ 4 Höhere Mathematik 724 el, kyb, mecha, phys Lieare Abbilduge ud Matrize Um was geht es?

Mehr

(4) = 37,7 % mit 37,7 % Wahrscheinlichkeit sind es höchstens 4 Fahrräder, das ist recht hoch; man kann also die Behauptung nicht wirklich ablehnen.

(4) = 37,7 % mit 37,7 % Wahrscheinlichkeit sind es höchstens 4 Fahrräder, das ist recht hoch; man kann also die Behauptung nicht wirklich ablehnen. Schülerbuchseite 98 1 Lösuge vorläufig IV Beurteilede Statistik S. 98 p S. 1 p w a t Tabelle Tabelle dowloadbar im Iteretauftritt 1 Teste vo Hypothese 1 a) Erwartugswert μ = 5 ud Stadardabweichug σ = 1,6;

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 4: Aufgaben zu den Kapiteln 7 und 8

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 4: Aufgaben zu den Kapiteln 7 und 8 1 Lösuge ausgewählter Übugsaufgabe zum Buch Elemetare Stochastik (Spriger Spektrum, 2012) Teil 4: Aufgabe zu de Kapitel 7 ud 8 Aufgabe zu Kapitel 7 Zu Abschitt 7.1 Ü7.1.1 Ω sei höchstes abzählbar, ud X,

Mehr

Wahrscheinlichkeit und Statistik

Wahrscheinlichkeit und Statistik ETH Zürich HS 2015 Prof. Dr. P. Embrechts Wahrscheilichkeit ud Statistik D-INFK Lösuge Serie 2 Lösug 2-1. (a Wir bereche P [W c B] auf zwei Arte: (a Wir betrachte folgede Tabelle: Azahl W W c B 14 6 B

Mehr

Stochastisches Integral

Stochastisches Integral Kapitel 11 Stochastisches Itegral Josef Leydold c 26 Mathematische Methode XI Stochastisches Itegral 1 / 2 Lerziele Wieer Prozess ud Browsche Bewegug Stochastisches Itegral Stochastische Differetialgleichug

Mehr

K. Felten: Internet Network infrastucture Fachhochschule Kiel, Fachbereich IuE

K. Felten: Internet Network infrastucture Fachhochschule Kiel, Fachbereich IuE Defiitio ach DIN4004 Als Zuverlässigkeit ( reliability ) gilt die Fähigkeit eier Betrachtugseiheit ierhalb vorgegebeer Greze dejeige durch de Awedugszweck bedigte Aforderuge zu geüge, die a das Verhalte

Mehr

A D A E B D D E D E D C C D E

A D A E B D D E D E D C C D E ie Kombiatori beschäftigt sich mit der Zusammestellug vo lemete eier Mege. s werde 2 Kugel ohe Zurüclege aus zwei Ure gezoge. ie erste Ure ethält 3 Kugel ; ; ud die zweite Ure 2 Kugel ;. ie erste Kugel

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gaz ausführliches Traiig Datei Nr. 4002 Neu Überarbeitet Stad: 7. Juli 206 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Index. Majorante, 24 Minorante, 23. Partialsumme, 17

Index. Majorante, 24 Minorante, 23. Partialsumme, 17 Folge, Reihe Idex Kovergezkriterie Hauptkriterium, Leibiz-Kriterium, Majoratekriterium, 4 Mioratekriterium, otwediges Kriterium, 0 Quotietekriterium, teleskopierede Summe, Wurzelkriterium, Majorate, 4

Mehr

Übungen zur Analysis I WS 2008/2009

Übungen zur Analysis I WS 2008/2009 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. E. Freitag /Thorste Heidersdorf Übuge zur Aalysis I WS 008/009 Blatt 3, Lösugshiweise Die folgede Hiweise sollte auf keie Fall als Musterlösuge

Mehr

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge 1 Beispiel 4 (Die Ure zu Fall 4 mit Zurücklege ud ohe Beachte der Reihefolge ) das Sitzplatzproblem (Kombiatioe mit Wiederholug) 1. Übersicht Ziehugsmodus ohe Zurücklege des gezogee Loses mit Zurücklege

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 5

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 5 TUM, Zetrum Mathematik Lehrstuhl für Mathematische Physik WS 13/14 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weider Tutoraufgabe: Eiführug i die Wahrscheilichkeitstheorie Lösugsvorschläge zu Übugsblatt

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Arbeitsblatt A 8-4 Polynom-& Wurzel-& Winkelfunktionen Teil 1/2

Arbeitsblatt A 8-4 Polynom-& Wurzel-& Winkelfunktionen Teil 1/2 Schule Budesgymasiu um ür Berustätige Salzburg Modul Thema Mathematik 8 Arbeitsblatt A 8-4 Polyom-& Wurzel-& Wikeluktioe Teil 1/2 Polyomuktioe Eie wichtige Klasse vo Fuktioe bilde die Polyomuktioe (x =

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Eigenschaften von Texten

Eigenschaften von Texten Worthäufigkeite Eigeschafte vo Texte Eiige Wörter sid sehr gebräuchlich. 2 der häufigste Wörter (z.b. the, of ) köe ca. 0 % der Wortvorkomme ausmache. Die meiste Wörter sid sehr selte. Die Hälfte der Wörter

Mehr

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand:

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand: M 9.1 Quadratwurzel a ist diejeige ichtegative Zahl (a 0), die quadriert a ergibt: a 2 = a Die Zahl a uter der Wurzel heißt Radikad: a Quadratwurzel sid ur für ichtegative Zahle defiiert: a 0 25 = 5; 81

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Mathematik Funktionen Grundwissen und Übungen

Mathematik Funktionen Grundwissen und Übungen Mathematik Fuktioe Grudwisse ud Übuge Potezfuktio Hyperbel Epoetialfuktio Umkehrfuktio Stefa Gärter 004 Gr Mathematik Fuktioe Seite Grudwisse Potezfuktio Defiitio Durch die Zuordugsvorschrift f: Æ mit

Mehr

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik Statistik Kapitel 5: Schließede Statistik 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel 1» Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte der arithmetische

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

A Ω, Element des Ereignisraumes

A Ω, Element des Ereignisraumes ue biostatisti: grudlegedes zur wahrscheilicheit ud ombiatori 1/6 WAHRSCHEINLICHKEIT / EINIGE BEGRIFFE Ereigisraum Ω Elemetarereigis A: Ω ist die Mege aller mögliche Elemetarereigisse A Ω, Elemet des Ereigisraumes

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

Bei 95%iger Konfidenz wäre der Mittelwert der GG zwischen 1421,17DM und 1778,83DM zu erwarten.

Bei 95%iger Konfidenz wäre der Mittelwert der GG zwischen 1421,17DM und 1778,83DM zu erwarten. Aufgabe 36 (S. 346: Schätzverfahre für Mittelwert ud Stadardabweichug a Puktschätzuge für µ aufgrud der Werte der kleie Stichprobe aus Aufgabe 3 Bei eier Puktschätzug wird für de zu schätzede Parameter

Mehr

Tests für beliebige Zufallsvariable

Tests für beliebige Zufallsvariable Kapitel 10 Tests für beliebige Zufallsvariable 10.1 Der Chi-Quadrat-Apassugstest Sei x eie gaz beliebige Zufallsvariable, dere Dichtefuktio icht oder icht geau bekat ist. Beispiel: Es seie z.b. mittels

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Von Kurven und Flächen. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Von Kurven und Flächen. Das komplette Material finden Sie hier: Uterrichtsmaterialie i digitaler ud i gedruckter Form Auszug aus: Vo Kurve ud Fläche Das komplette Material fide Sie hier: School-Scout.de Das bestimmte Itegral ach Riema Eizelstude 69 Klasse 11 ud 12

Mehr

Bernsteinpolynome Vortrag zum Proseminar zur Analysis, Malte Milatz

Bernsteinpolynome Vortrag zum Proseminar zur Analysis, Malte Milatz Bersteipolyome Vortrag zum Prosemiar zur Aalysis, 6. 10. 2010 Malte Milatz I diesem Vortrag wird der bereits im Sript zur Aalysis ii zitierte Approximatiossatz vo Weierstraß mithilfe der Bersteipolyome

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

Pflichtlektüre: Kapitel 10 Grundlagen der Inferenzstatistik

Pflichtlektüre: Kapitel 10 Grundlagen der Inferenzstatistik Pflichtlektüre: Kapitel 10 Grudlage der Iferezstatistik Überblick der Begriffe Populatio Iferezstatistik Populatiosparameter Stichprobeverteiluge Auch Stichprobekewerteverteiluge Wahrscheilichkeitstheorie

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

4 Schwankungsintervalle Schwankungsintervalle 4.2

4 Schwankungsintervalle Schwankungsintervalle 4.2 4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form

Mehr

Verteilungsfunktionen

Verteilungsfunktionen Verteilugsfuktioe Wie sid zufällige Fehler verteilt? Wie sid Messwerte verteilt? Fehler Messwerte Verteilugsfuktioe: Maxwell-Boltza Feri-Dirac Bose-Eistei Placksche Verteilug Frage ist stets, wie groß

Mehr