Übersicht. 6. Lithographie: 1. Optische Lithographie. 2. e-beam / AFM /STM. 3. Röntgen. 4. EUV (soft X-ray) 5. Imprint Technologie

Größe: px
Ab Seite anzeigen:

Download "Übersicht. 6. Lithographie: 1. Optische Lithographie. 2. e-beam / AFM /STM. 3. Röntgen. 4. EUV (soft X-ray) 5. Imprint Technologie"

Transkript

1 Übersicht : 1. Optische Lithographie 2. e-beam / AFM /STM 3. Röntgen 4. EUV (soft X-ray) 5. Imprint Technologie Prof. Dr. H. Baumgärtner B6.1-1 Der Begriff "Lithographie" stammt aus dem Altgriechischen und bedeutet soviel wie "Steinschreiben". Von der technischen Betrachtung her, kann die Lithographie jedoch eher mit der konventionellen (nichtdigitalen) Fotographie verglichen werden. B6.1-1

2 Fertigungsprinzip 5-30 Maskenschritte Prof. Dr. H. Baumgärtner B6.1-2 Die Herstellung von Halbleiterbauelementen ist im Prinzip ein sich wiederholender Kreislauf (Anzahle der Maskenschritte) von Strukturierung, Abscheidung und Reinigung. Benötigte Materialien sind Isolatoren, im wesentlichen SiO 2 (Siliziumdioxid) und Si 3 N 4 (Siliziumnitrid), p- und n-dotiertes Silizium und Metalle bzw. Metallverbindungen. Die Anzahl der Maskenschritte variiert je nach Komplexität der Schaltung zwischen 5 und 30. Der gesamte Fertigungsprozess in der Halbleitertechnologie besteht aus zirka Einzelschritten und dauert ungefähr 4-8 Wochen. B6.1-2

3 Geschichte Kriterien: Auflösung Genauigkeit Defektdichte Kosten Durchsatz Prof. Dr. H. Baumgärtner B6.1-3 Im Rahmen der zunehmenden Bauelementverkleinerung sind auch die Anforderungen an die Lithographieverfahren gewachsen. In der Abbildung ist ein Überblick über die zu erzielenden Linienbreiten mit den heute möglichen Verfahren gegeben. Optische Verfahren sind der Standard in der Produktion. Bei der fortschreitenden Miniaturisierung zeichnet sich jedoch ein baldiges Erreichen der mit optischer Lithographie realisierbaren Grenze der Miniaturisierung ab. Zwar wurde diese geschätzte Grenze der kleinstmöglichen Strukturen, die mit optischer Lithographie realisiert werden können, von früher 250nm auf inzwischen 32nm korrigiert, jedoch dürfte eine weitere Veränderung dieser Grenze nach unten fast ausgeschlossen bzw. falls erreichbar dann zumindest nicht wirtschaftlich sein. Außerdem zeigen sich bereits deutliche Schwierigkeiten in den Bemühungen zumindest die 32nm Technik mit optischer Lithographie zu erreichen. Alternativen sind die EUV-Lithographie (Extreme UV) oder die Imprinttechnologie (Abdruckverfahren). B6.1-3

4 Lichtquellen Je kleiner die Wellenlänge umso kleiner die Strukturen Spektrum der elektromagnetischen Wellen Hg EUV DUV Hg-Dampflampe: g-linie: h-linie: i-linie: 435 nm 405 nm 365 nm Excimer Laser (DUV): KrF: 248 nm ArF: 193 nm F 2 : 157 nm? Next Generation Litho EUV: 13,5 nm Prof. Dr. H. Baumgärtner B6.1-4 Um noch kleinere Strukturen abbilden zu können, musste eine neue Lichtquelle mit noch kürzeren Wellenlängen entwickelt werden, der Excimer-Laser. Der Gaslaser erzeugt monochromatisches Licht, dessen Wellenlänge von der Gasfüllung abhängt. Da diese bereits im tiefen UV Bereich liegen fasst man diese Art der Belichtung zu dem Überbegriff DUV (deep UV) zusammen. Die nächste Generation ist dann die EUV-Belichtung (extreme UV) mit einer Wellenlänge von 13,5 nm. B6.1-4

5 Beugung Wasserwelle: Beugung am Spalt Definition: Güte Q = W 2 λg λ: Wellenlänge W: Spaltbreite g: Abstand Maske-Substrat Prof. Dr. H. Baumgärtner B6.1-5 Trifft eine ebene Welle (hier eine Wasserwellle) auf eine schmale Öffnung in der Größenordnung der Wellenlänge (Abstand Wellenberg zu Wellenberg) so läuft die Welle hinter der Öffnung nicht mehr geradlinig weiter, sondern wird gebeugt. Dies bedeutet, dass auch im abgeschatteten Bereich eine Welle entsteht. Die Welle läuft um die Kurve. Dies gilt für alle Wellen, also auch Lichtwellen. Die Wellenhöhe ist in der Mitte am größten und nimmt zum Rand hin ab. B6.1-5

6 Auflösung Airy-Ringe ,22λf/D Prof. Dr. H. Baumgärtner B6.1-6 Die physikalischen Effekte der Beugung des Lichts und der Interferenz bewirken, dass die Intensität nach der Maskenöffnung eine glockenförmige Verteilung mit mehreren Nebenmaxima aufweist. Es entstehen dadurch sogar helle Bereiche in eigentlichen Schattenbereich der Maske. Diese Verteilung wird mit einem optischen Abbildungssystem (Linsen) auf das Substrat übertragen. In dem gezeigten Beispiel wird aus einem kreisförmigen Loch ein Loch mit mehreren konzentrischen Ringen abgebildet (Airy-Scheiben). B6.1-6

7 Auflösung Photolack falsch ok belichtet belichtet unbelichtet α klein α groß kleinste Struktur: λ f λ amin = k1 = k1 R NA k 1 0,4 PL, RET Ziel: 0,25 Numerische Apertur: NA R / f NA 0,85 Optik Ziel: > 1,2 λ mit Immersion Tiefenschärfebereich: DOF = ± k 2 NA 2 Prof. Dr. H. Baumgärtner B6.1-7 Betrachtet man zwei Bildpunkte, die den Abstand a aufweisen, so ergeben sich zwei überlappende Airy-Scheiben. Die kleinste Struktur auf der Maske a min, die noch scharf abgebildet werden kann hängt von der Wellenlänge λ (Farbe) des Lichts ab. Ein kleines λ (blau bis ultraviolett) ergibt ein gute Auflösung. Die zweite wichtige Größe ist die numerische Apertur NA. Sie ist eine technische Begrenzung, während die Wellenlänge ein physikalisches Limit darstellt. Leider nimmt mit der Verbesserung der lateralen Auflösung auch die Tiefenschärfe der Abbildung (DOF) ab. Dies hat folgende Konsequenz: mit besserer lateraler Auflösung nimmt die Tiefenschärfe drastisch ab, d.h., dass die Reduktion der Wellenlänge noch bessere Planarisierungsverfahren für die Photolithographie verlangt. B6.1-7

8 Justierung Justiersystem: Laser Interferometrie Justierstruktur 110 nm Technologie: Verschieben um 22 mm in 0,2 sec: Justieren auf 20 nm oder aus ca. 400 km/h nach 2,2 km auf 2 mm genau stoppen Prof. Dr. H. Baumgärtner B6.1-8 Die Justiergenauigkeit beträgt etwa ein Drittel der lateralen Strukturgröße, die Messgenauigkeit etwa ein Drittel der Justiergenauigkeit. Mechanisch wird die Justierung über Linearmotoren und Piezosteller erreicht. Die Kontrolle erfolgt optisch über interferometrische Methoden. Die Justierung aufeinander folgender Maskenebenen (Lagefehler) stellt ein Problem dar, da die optische Schärfe von Kanten für verschiedene Materialien nicht identisch ist. Durch geeignete Justierstrukturen mit einer Skaleneinteilung lassen sich Justierabweichungen erkennen. Außerdem muss durch ein geeignetes Design dafür gesorgt werden, dass im Bereich der Justierstruktur Schichten mit einem guten optischen Kontrastverhältnis übereinander liegen. B6.1-8

9 Stand der Technik Twinscan AT 400 Twinscan AT 850C Twinscan AT 1200 B Wavelength [nm] 365 (i-line) 248 (KrF) 193 (ArF) Resolution [nm] Reduction 4:1 4:1 4:1 Fieldsize [mm] 26 x x x 33 Num. Apertur NA 0,48-0,65 0,55-0,80 0,6-0,85 Alignment [nm] rel. Alignment 9 % 13,6% 15% Wafer [mm] Throughput [wph] Quelle: ASML Prof. Dr. H. Baumgärtner B6.1-9 Die Daten einiger Projektionsmaschinen sind in der Tabelle zusammengestellt. B6.1-9

10 RET Resolution Enhancement Techniques Year Technology node (nm) Wavelength (nm) i (157) 193i (157) 193i (EUV) Reticle convent. PSM PSM OPC OAI PSM OPC OAI PSM OPC OAI DPT DPT PSM = Phase Shift Mask; OAI = Off Axis Illumination OPC = Optical Proximity Correction DPT = Double Patterning Technology k 1 193i = mit Immersion EUV = Extreme UV λ k NA NA λ Prof. Dr. H. Baumgärtner B a min = 1 Soll die erzielbare Auflösung unterhalb der Wellenlänge der verwendeten Belichtungsquelle liegen, so müssen technische Korrekturen auf der Maske oder bei der Abbildung eingeführt werden. Nur mit diesen sehr aufwendigen und teuren Maßnahmen lässt sich das durch die Physik vorgegebene Beugungslimit unterschreiten. Die Maskenpreise steigen damit jedoch dramatisch an. B6.1-10

11 RET Übersicht Wavefront Engineering Scanning Projection Phase Shift Mask PSM Off - Axis Illumination OAI Optical Proximity Correction OPC Immersion Lithographie Double Patterning Technology 157 nm Excimer Prof. Dr. H. Baumgärtner B B6.1-11

12 Phase Shift Mask Prinzip n 1 n 2 n = 1 E E 0 λ 2 λ = n 0 2 Quelle: K. Nakamura, "ULSI - Technology" in C.Y. Chang, S.M. Sze (Eds.), McGraw-Hill, New York 1996 Prof. Dr. H. Baumgärtner B Die Verwendung von Phasenshiftmasken verbessert die Auflösung und bietet sich vor allem bei periodischen Strukturen, wie z.b. DRAMs an. Das Problem ist aber der hohe Preis für die Masken. Durch die Beugung überlagern sicht die Intensitäten von zwei benachbarten Linien, was in der Abbildung auf dem Wafer zu nicht mehr unterscheidbaren Strukturen führt. Durch den zusätzlichen Phasenschieber auf einer der beiden Linien wird die Amplidude der Lichtwelle um 180 gedreht, so dass sie sich mit der Amplidude der anderen Linie gerade auslöscht. Dadurch kommt es auf dem Wafer wieder zur Abbildung von zwei getrennten Linien. B6.1-13

13 Phase Shift Mask Probleme: Masken Layout (periodisches Layout) Maskenherstellung (teuer): 90 nm Technologie (CMOS): 1,5 Mio. / Satz 45 nm Technologie (CMOS): 3,0 Mio. / Satz Dosis fest an Maske gekoppelt (keine Optimierung der Belichtung ohne neue Maske) Prof. Dr. H. Baumgärtner B Für einen CMOS-Maskensatz muss für eine 90 nm Technologie ca. 1,5 Mio veranschlagt werden, für eine 45 nm Technologie bereits das Doppelte. Die durchschnittliche Lebensdauer eines Maskensatzes beträgt nur noch Wafer. B6.1-16

14 OPC Problem: Beugung beeinflusst benachbarte Linien Linienbreite hängt ab vom Abstand der Linien Lösung: Optical Proximity Correction Zusätzliche Strukturen (Serifen, Scatter bars) zur Korrektur hoher Aufwand Prof. Dr. H. Baumgärtner B Die Abbildung für hoch auflösende Lithographiesysteme wird - wie gezeigt stark von Beugungseffekten beeinflusst, d.h. dass Linien, wenn sie nahe beisammen liegen (dense lines) mit Nachbarstrukturen wechselwirken. Die resultierende Breite für 240 nm Linien ist in der Abbildung gezeigt. Die Linienbreiten müssen deshalb bei OPC (Optical proximity Correction) individuell je nach Lage angepasst werden. Durch kleine Zusatzstrukturen auf dem Reticle (Serifen) können Ecken kompensiert werden, während zusätzliche Linien (scatter bars) in der Nähe von isolierten Linien eine dense Umgebung erzeugen. Die Hilfsstrukturen sind so schmal, dass sie unterhalb der Auflösungsgrenze der Projektionsoptik liegen und deshalb im Wesentlichen Streulicht erzeugen. B6.1-19

15 Pixelated Mask Techn. Prinzip: "Computational Lithography" Korrektur mit der inversen Übertragungsfunktion Quelle: Intel, Solid State Technology 2007 Intel: first test 2006 not used for 65, 45 nm Option for 22 nm, if EUV, DPT delay full-chip simulation: 10 6 CPU hrs = 114 Jahre k 1 = 0,29 Prof. Dr. H. Baumgärtner B B6.1-20

16 kleinste Struktur: Immersion 193 nm a min λ = k 1 NA Numerische Apertur NA = n sin( α ) Physikalisches Limit: NA = 1 für Luft praktisch =0,93 n Brechungsindex Zwischenraum Luft: n 0 = 1 Ultrapure DI Wasser: n W = 1,47 NA 0 0,93 NA im n W /n 0 NA 0 1,35 k 1 0,25 a min = 52 nm a min = 52 nm 0,93/1,35 = 36 nm Prof. Dr. H. Baumgärtner B Da die Auflösung direkt proportional zur Brechzahl ist, wurde die Immersionstechnik entwickelt, bei der die Brechzahl durch Einbringung einer Flüssigkeit zwischen Objekt und Linse vergrößert wird (z.b. Wasser). Dadurch vergrößert sich die Numerische Apertur und die Auflösung kann verbessert werden. Nachteil: Mit zunehmender Auflösung nimmt die Tiefenschärfe (DOF = Deph of Focus) ab. Um die Problematik der abnehmenden Tiefenschärfe zu lösen, muss die Planarisierung der Oberflächen verbessert werden. B6.1-21

17 Immersionslithographie Herausforderungen: Defektdichte Temperatur n = f(t) Durchsatz Prof. Dr. H. Baumgärtner B Es entstehen neue technische Probleme bei der Realisierung, da die Brechzahlen der Medien eine Funktion der Temperatur sind und sich entgegen ersten Schätzungen, der Einfluss der Temperatur auch bei diesen kurzen Belichtungszeiten nicht vernachlässigen lässt. Außerdem unterscheidet sich die Brechzahl temperaturbedingt auch innerhalb der jeweilig eingesetzten Flüssigkeit. Durch Aufbringen einer Flüssigkeit auf den Wafer, wird das Risiko erhöht, diesen durch Partikel zu Verunreinigen. B6.1-22

18 Trend Imm.-Litho Brechungsindex Absorbtionskoeffizient Prof. Dr. H. Baumgärtner B B6.1-23

19 Double patterning Techn. Half pitch PL HM Layer 1. Etch HM 2. PL DPT klassisch Genauigkeit! 2. Exposure 2. Etch HM Etch Layer Result Prof. Dr. H. Baumgärtner B Bei dieser Technik wird die technische Auflösung der Geräte im eigentlichen Sinne nicht verändert. Stattdessen wird die Belichtung örtlich versetzt auf dem Wafer wiederholt. Das bedeutet, dass nachdem die ersten Strukturen durch optische Lithographie erzeugt wurden, erneut Fotolack auf den Wafer aufgebracht wird. Anschließend wird eine Maske so ausgerichtet, dass bei der anschließenden Belichtung die neu erzeugten Strukturen in den ungenutzten Zwischenräumen der im ersten Durchgang erzeugten Strukturen entstehen. Vorteil: - Die Auflösung der erzeugten Strukturen kann vergrößert werden, ohne dass die technische Auflösung der Geräte verändert wird. Nachteil: - Der Durchsatz nimmt ab, da bestimmte Schritte in der Waferbearbeitung zweimal durchgeführt werden müssen. - Das Erzeugen von Strukturen zwischen bereits existierenden Strukturen erfordert eine sehr hohe Genauigkeit in der Ausrichtbarkeit/Justierbarkeit der eingesetzten Geräte. B6.1-24

20 Double patterning Techn. Herausforderungen: Überlapp Genauigkeit Durchsatz Kosten für 2. Maske Zwischenlösung für Übergang zu EUV Prof. Dr. H. Baumgärtner B B6.1-25

21 157 nm Lithographie Stepper: O 2 frei N 2 Spülung Quelle: Lambda Physik Quelle: Energiedichte: 1999: 600 Hz, 6W 2001: 2000 Hz, 20W Bandbreite: 1999: 2 pm? < 0,1 pm Optik: Silikatglas:nicht geeignet wg. Absorption durch eingebaute OH- Gruppen (Transmission zu klein) CaF 2 : Probleme: Einkristallzüchtung hoher Reinheit Einkristall Bruchgefahr hoher thermischer Ausdehnungskoeffizient: ca. 36 x Silikatglas weicher als Silikatglas Polierspuren teuer: $ / kg Prof. Dr. H. Baumgärtner B CaF 2 := CalciumFluorid Die 157nm-Litho erfordert eine N 2 -Spülung oder Evakuieren der Anlage, da Licht dieser Wellenlänge den vorhandenen Sauerstoff nicht durchdringen kann Energieverlust. Außerdem hat man noch sehr wenig Erfahrung im Umgang mit diesem Material. B6.1-26

22 Maskenkosten Lebenszeit: ca Wafer Prof. Dr. H. Baumgärtner B B6.1-30

23 Tool Price Prof. Dr. H. Baumgärtner B B6.1-31

Lithographie. Mirco Pötter. 19. Juni Universität Osnabrück

Lithographie. Mirco Pötter. 19. Juni Universität Osnabrück Lithographie Mirco Pötter Universität Osnabrück 19. Juni 2007 Herleitung des Namens lithos (λίθος) = Stein graphein (γράφειν) = schreiben Spiegelverkehrtes Relief in Stein prägen Farbe auftragen Auf Papier

Mehr

Übersicht. 6. Lithographie: 1. Optische Lithographie. 2. e-beam / AFM /STM. 3. Röntgen. 4. EUV (soft X-ray) 5. Imprint Technologie B6.

Übersicht. 6. Lithographie: 1. Optische Lithographie. 2. e-beam / AFM /STM. 3. Röntgen. 4. EUV (soft X-ray) 5. Imprint Technologie B6. Übersicht 6. Lithographie: 1. Optische Lithographie 2. e-beam / AFM /STM 3. Röntgen 4. EUV (soft X-ray) 5. Imprint Technologie Prof. Dr. H. Baumgärtner B6.4-1 Die Extrem UV Lithographie ist eine Weiterentwicklung

Mehr

1 Lithografie. 1.1 Maskentechnik Maskentechnik Schritte bei der Maskenherstellung. 1.1 Maskentechnik

1 Lithografie. 1.1 Maskentechnik Maskentechnik Schritte bei der Maskenherstellung. 1.1 Maskentechnik 1 Lithografie 1.1 Maskentechnik 1.1.1 Maskentechnik Die in der Fototechnik eingesetzten Masken enthalten ein Muster mit dem die jeweilige Schicht auf dem Wafer strukturiert wird. Ausgangsmaterial für die

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 3.6: Beugung am Gitter Inhaltsverzeichnis 1. Theorie Seite 1 2. Versuchsdurchführung Seite 2 2.1 Bestimmung des Gitters mit der kleinsten Gitterkonstanten

Mehr

Aufbringen eines Haftvermittlers und Entfernen von Wasser auf dem Wafer

Aufbringen eines Haftvermittlers und Entfernen von Wasser auf dem Wafer 1 Lithografie 1.1 Belichten und Belacken 1.1.1 Übersicht In der Halbleiterfertigung werden Strukturen auf liciumscheiben mittels lithografischer Verfahren hergestellt. Dabei wird zuerst ein strahlungsempfindlicher

Mehr

Physikalische Grundlagen des Sehens.

Physikalische Grundlagen des Sehens. Physikalische Grundlagen des Sehens. Medizinische Physik und Statistik I WS 2016/2017 Tamás Marek 30. November 2016 Einleitung - Lichtmodelle - Brechung, - Bildentstehung Gliederung Das Sehen - Strahlengang

Mehr

Maskenfertigung für die EUV-Lithographie Aufbau und Charakterisierung

Maskenfertigung für die EUV-Lithographie Aufbau und Charakterisierung Maskenfertigung für die EUV-Lithographie Aufbau und Charakterisierung Michaela Wullinger Christian Holfeld Advanced Mask Technology Center GmbH & Co KG Dresden, Germany Gliederung Mooresches Gesetz: Immer

Mehr

Intensitätsverteilung der Beugung am Spalt ******

Intensitätsverteilung der Beugung am Spalt ****** 5.10.801 ****** 1 Motivation Beugung am Spalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). 2 Experiment Abbildung 1: Experimenteller Aufbau

Mehr

Optische Systeme (5. Vorlesung)

Optische Systeme (5. Vorlesung) 5.1 Optische Systeme (5. Vorlesung) Yousef Nazirizadeh 20.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 5.2 1. Grundlagen der Wellenoptik 2. Abbildende optische Systeme 2.1 Lupe / Mikroskop

Mehr

22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)

22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) 22. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche

Mehr

EUV-Lithographie. Christian Krause HHU Düsseldorf, , Matrikelnr

EUV-Lithographie. Christian Krause HHU Düsseldorf, , Matrikelnr EUV-Lithographie Christian Krause HHU Düsseldorf, 2013-04-15, Matrikelnr. 1956616 Inhalt Grundlagen der Lithographie Moore'sches Gesetz Konventionelle Lithographie Technische Herausforderungen der EUV

Mehr

Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016

Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016 Übungsklausur Optik und Wellenmechanik (Physik311) WS 2015/2016 Diese Übungsklausur gibt Ihnen einen Vorgeschmack auf die Klausur am 12.02.2015. Folgende Hilfsmittel werden erlaubt sein: nicht programmierbarer

Mehr

1 Lithografie. 1.1 Belichtungsverfahren Übersicht Kontaktbelichtung. 1.1 Belichtungsverfahren

1 Lithografie. 1.1 Belichtungsverfahren Übersicht Kontaktbelichtung. 1.1 Belichtungsverfahren 1 Lithografie 1.1 Belichtungsverfahren 1.1.1 Übersicht Die Fototechnik kann, je nach Art der Bestrahlung in mehrere Verfahren Unterteilt werden: optische Lithografie (Fotolithografie), Elektronenstrahllithografie,

Mehr

m s km v 713 h Tsunamiwelle Ausbreitungsgeschwindigkeit: g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter

m s km v 713 h Tsunamiwelle Ausbreitungsgeschwindigkeit: g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter Wellen Tsunami Tsunamiwelle Ausbreitungsgeschwindigkeit: v g h g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter Berechnungsbeispiel: h=4000 m v 9,81 4000 198 km v 713 h m s Räumliche

Mehr

Wo sind die Grenzen der geometrischen Optik??

Wo sind die Grenzen der geometrischen Optik?? In der Strahlen- oder geometrischen Optik wird die Lichtausbreitung in guter Näherung durch Lichtstrahlen beschrieben. Wo sind die Grenzen der geometrischen Optik?? Lichtbündel Lichtstrahl Lichtstrahl=

Mehr

Wellenwanne für Projektion DW401-2W. Versuchsanleitung

Wellenwanne für Projektion DW401-2W. Versuchsanleitung Wellenwanne für Projektion DW401-2W Versuchsanleitung INHALTSVERZEICHNIS AKD 7.09 AKD 7.07 AKD 7.08 AKD 7.02 AKD 7.01 AKD 7.03 AKD 7.05 AKD 7.06 AKD 7.04 Dopplereffekt Reflexion Spiegel hohl Brechung

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker. Vorlesung 27.6.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723

Mehr

Physik 4, Übung 4, Prof. Förster

Physik 4, Übung 4, Prof. Förster Physik 4, Übung 4, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Physikalisches Praktikum 3. Abbésche Theorie

Physikalisches Praktikum 3. Abbésche Theorie Physikalisches Praktikum 3 Versuch: Betreuer: Abbésche Theorie Dr. Enenkel Aufgaben: 1. Bauen Sie auf einer optischen Bank ein Modellmikroskop mit optimaler Vergrößerung auf. 2. Untersuchen Sie bei verschiedenen

Mehr

Lithographietechniken

Lithographietechniken Ida Stapf Vorlesung WS 14/15 Dozenten: Dr. Koblischka und Prof. Kreibig Inhalt Allgemeines Prozessschritte Auflösungsvermögen Prozessumgebung Lacke Belichtungsarten Klassische Photolithographie Immersionslithographie

Mehr

Beugung, Idealer Doppelspalt

Beugung, Idealer Doppelspalt Aufgaben 10 Beugung Beugung, Idealer Doppelspalt Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt

Mehr

2. Optik. 2.1 Elektromagnetische Wellen in Materie Absorption Dispersion. (Giancoli)

2. Optik. 2.1 Elektromagnetische Wellen in Materie Absorption Dispersion. (Giancoli) 2. Optik 2.1 Elektromagnetische Wellen in Materie 2.1.1 Absorption 2.1.2 Dispersion 2.1.3 Streuung 2.1.4 Polarisationsdrehung z.b. Optische Aktivität: Glucose, Fructose Faraday-Effekt: Magnetfeld Doppelbrechender

Mehr

Fotolithographie (Reinraumpraktikum)

Fotolithographie (Reinraumpraktikum) Fotolithographie (Reinraumpraktikum) Inhaltsverzeichnis n e g un Motivation...1 Hintergrund...1 Kurzbeschreibung des Praktikumsablaufes...2 Ergebnisse...3 Ergebnisse nach Bedampfung...4 Mögliche Fehlerquellen...5

Mehr

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt 5.10.802 ****** 1 Motivation Beugung am Doppelspalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Der Unterschied der Intensitätsverteilungen

Mehr

Fotolithografie: Definition und Methoden

Fotolithografie: Definition und Methoden Fotolithografie: Definition und Methoden Fotolithografie ist eine Verfahrensgruppe in der die laterale Strukturdefinition mittels Aufprägen eines Abbildes in einem strahlungsempfindlichen n Lack und die

Mehr

Multimediatechnik / Video

Multimediatechnik / Video Multimediatechnik / Video Lichtwellen und Optik http://www.nanocosmos.de/lietz/mtv Inhalt Lichtwellen Optik Abbildung Tiefenschärfe Elektromagnetische Wellen Sichtbares Licht Wellenlänge/Frequenz nge/frequenz

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.1 Auflösungsvermögen von Spektralapparaten Sitchwörter: Geometrische Optik, Wellenoptik, Auflösungsvermögen, Rayleigh Kriterium, Spektrograph,

Mehr

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik Vorlesung Physik für Pharmazeuten PPh - 10a Optik 15.01.2007 1 Licht als elektromagnetische Welle 2 E B Licht ist eine elektromagnetische Welle 3 Spektrum elektromagnetischer Wellen: 4 Polarisation Ein

Mehr

Vorkurs Physik des MINT-Kollegs

Vorkurs Physik des MINT-Kollegs Vorkurs Physik des MINT-Kollegs Optik MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum in der

Mehr

Wellen Aufgaben. Lsg.: a) t = 0,4031s

Wellen Aufgaben. Lsg.: a) t = 0,4031s Wellen Aufgaben Aufgabe 1 Ein Seil der Masse m = 0,65kg ist auf die Länge l = 30m festgespannt. a. Wie lang wird ein Wellenpaket für die Distanz l benötigen, wenn die Zugspannung F = 120N beträgt? Lsg.:

Mehr

Interferenz von Licht. Die Beugung von Lichtwellen an einem Doppelspalt erzeugt ein typisches Interferenzbild.

Interferenz von Licht. Die Beugung von Lichtwellen an einem Doppelspalt erzeugt ein typisches Interferenzbild. Interferenz von Licht Die Beugung von Lichtwellen an einem Doppelspalt erzeugt ein typisches Interferenzbild. Verbesserung der Sichtbarkeit? (1) kleinerer Spaltabstand b s~ 1 b (2) mehrere interferierende

Mehr

Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung!

Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung! Profilkurs Physik ÜA 08 Test D F Ks. 2011 1 Test D Gitter a) Vor eine Natriumdampflampe (Wellenlänge 590 nm) wird ein optisches Gitter gehalten. Erkläre kurz, warum man auf einem 3,5 m vom Gitter entfernten

Mehr

23. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)

23. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) 23. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche

Mehr

Anforderungen an die optische Lithographie bei der Chip-Herstellung

Anforderungen an die optische Lithographie bei der Chip-Herstellung Anforderungen an die optische Lithographie bei der Chip-Herstellung Daniel Ploss 22.10.2008 Scheinseminar Wintersemester 2008/2009 Optische Lithographie Anwendungen, Grenzen und Perspektiven Gliederung

Mehr

wir-sind-klasse.jimdo.com

wir-sind-klasse.jimdo.com 1. Einführung und Begriffe Eine vom Erreger (periodische Anregung) wegwandernde Störung heißt fortschreitende Welle. Die Ausbreitung mechanischer Wellen erfordert einen Träger, in dem sich schwingungsfähige

Mehr

Inhalte. Beugung. Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck

Inhalte. Beugung. Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck Beugung Inhalte Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck Fresnel-Kirchhoff Theorie der Beugung Fresnel-Kirchhoff-Integral Fraunhofer (Fernfeld) Näherung

Mehr

Wellenoptik/Laser. Praktikumsversuch Meßtechnik INHALT

Wellenoptik/Laser. Praktikumsversuch Meßtechnik INHALT Praktikumsversuch Meßtechnik Wellenoptik/Laser INHALT 1.0 Einführung 2.0 Versuchsaufbau/Beschreibung 3.0 Aufgaben 4.0 Zusammenfassung 5.0 Fehlerdiskussion 6.0 Quellennachweise 1.0 Einführung Die Beugung

Mehr

Physik für Naturwissenschaften. Dr. Andreas Reichert

Physik für Naturwissenschaften. Dr. Andreas Reichert Physik für Naturwissenschaften Dr. Andreas Reichert Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Termine Klausur: 5. Februar?, 12-14 Uhr,

Mehr

Light Amplification by Stimulated Emission of Radiation

Light Amplification by Stimulated Emission of Radiation Light Amplification by Stimulated Emission of Radiation Licht: a) Elektromagnetische Welle E = E 0 sin(-kx) k = 2 p/l E = E 0 sin(t) = 2 p n = 2 p/t c = l n c = Lichtgeschwindigkeit = 2,99792458 10 8 m/s

Mehr

Physik Klausur JII.1 #2.2

Physik Klausur JII.1 #2.2 Physik Klausur JII. #. Aufgabe : Die Skizze zeigt das Interferenzfeld zweier Erreger E und E, die mit gleicher Frequenz in Phase schwingen und kreisförmige Wasserwellen erzeugen (im Moment liegt bei E

Mehr

2 Mehrdimensionale mechanische Wellen

2 Mehrdimensionale mechanische Wellen TO Stuttgart OII 30 (Physik) Mehrdimensionale mechanische Wellen. Darstellung mehrdimensionaler Wellen Um die Beschreibung von mehrdimensionalen Wellen zu vereinfachen werden in Diagrammen nur die Wellenfronten

Mehr

Gitter. Schriftliche VORbereitung:

Gitter. Schriftliche VORbereitung: D06a In diesem Versuch untersuchen Sie die physikalischen Eigenschaften eines optischen s. Zu diesen za hlen insbesondere die konstante und das Auflo sungsvermo gen. Schriftliche VORbereitung: Wie entsteht

Mehr

VLSI-Entwurf. Vorlesung Pierre Mayr. FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIONSTECHNIK Lehrstuhl für Integrierte Systeme

VLSI-Entwurf. Vorlesung Pierre Mayr. FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIONSTECHNIK Lehrstuhl für Integrierte Systeme VLSI-Entwurf Vorlesung 2 25.10.2013 Pierre Mayr FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIONSTECHNIK Lehrstuhl für Integrierte Systeme Ziel der Vorlesung Probleme bei der Herstellung kennen Den Weg vom

Mehr

Einfaches Spektroskop aus alltäglichen Gegenständen

Einfaches Spektroskop aus alltäglichen Gegenständen Illumina-Chemie.de - Artikel Physik aus alltäglichen Gegenständen Im Folgenden wird der Bau eines sehr einfachen Spektroskops aus alltäglichen Dingen erläutert. Es dient zur Untersuchung von Licht im sichtbaren

Mehr

PRISMEN - SPEKTRALAPPARAT

PRISMEN - SPEKTRALAPPARAT Grundpraktikum der Physik Versuch Nr. 20 PRISMEN - SPEKTRALAPPARAT Versuchsziel: Bestimmung der Winkeldispersionskurve und des Auflösungsvermögens von Prismen. brechende Kante Ablenkwinkel einfallendes

Mehr

Übungsblatt 11 Geometrische und Technische Optik WS 2012/2013

Übungsblatt 11 Geometrische und Technische Optik WS 2012/2013 Übungsblatt 11 Geometrische und Technische Optik WS 212/213 Diaprojektor und Köhler sche Beleuchtung In dieser Übung soll ein einfacher Diaprojektor designt und strahlenoptisch simuliert werden. Dabei

Mehr

1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter

1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter 1 Beugungsmuster am Gitter Ein Gitter mit 1000 Spalten, dessen Spaltabstand d = 4, 5µm und Spaltbreite b = 3µm ist, werde von einer kohärenten Lichtquelle mit der Wellenlänge λ = 635nm bestrahlt. Bestimmen

Mehr

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für den 13.02.2003 unter www.physik.uni-giessen.de/ dueren/

Mehr

Quantenphysik. Teil 3: PRAKTISCHE AKTIVITÄTEN

Quantenphysik. Teil 3: PRAKTISCHE AKTIVITÄTEN Praktische ktivität: Bestimmung der Dicke eines Haars mittels Beugung von Licht 1 Quantenphysik Die Physik der sehr kleinen Teilchen mit großartigen nwendungsmöglichkeiten Teil 3: PRKTISCHE KTIVITÄTEN

Mehr

Diffraktive Optik (O9)

Diffraktive Optik (O9) 5. Juni 08 Diffraktive Optik (O9) Ziel des Versuches Das Prinzip der diffraktiven Optik, die Beugung und Interferenz von Licht ausnutzt, soll an einer fresnelschen Zonenplatte kennen gelernt werden. Bestimmte

Mehr

Abbildungsgleichung der Konvexlinse. B/G = b/g

Abbildungsgleichung der Konvexlinse. B/G = b/g Abbildungsgleichung der Konvexlinse Die Entfernung des Gegenstandes vom Linsenmittelpunkt auf der vorderen Seite der Linse heißt 'Gegenstandsweite' g, seine Größe 'Gegenstandsgröße' G; die Entfernung des

Mehr

Praktikum GI Gitterspektren

Praktikum GI Gitterspektren Praktikum GI Gitterspektren Florian Jessen, Hanno Rein betreut durch Christoph von Cube 9. Januar 2004 Vorwort Oft lassen sich optische Effekte mit der geometrischen Optik beschreiben. Dringt man allerdings

Mehr

NG Brechzahl von Glas

NG Brechzahl von Glas NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes

Mehr

Revolutionäre Optik für die Herstellung des Computerchips der Zukunft

Revolutionäre Optik für die Herstellung des Computerchips der Zukunft Revolutionäre Optik für die Herstellung des Computerchips der Zukunft Dr. Peter Kürz (Sprecher) Winfried Kaiser Dr. Martin Lowisch Carl Zeiss SMT Nominiert zum Deutschen Zukunftspreis 2007 Die Halbleiterindustrie

Mehr

Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes

Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 2: Beugung am Gitter Beugung am Gitter Theoretische Grundlagen Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes beeinträchtigen.

Mehr

Versuch 4.1b: Interferenzrefraktor von Jamin

Versuch 4.1b: Interferenzrefraktor von Jamin PHYSIKALISCHES PRAKTIKUM FÜR FORTGESCHRITTENE Technische Universität Darmstadt Abteilung A: Institut für Angewandte Physik Versuch 4.1b: Interferenzrefraktor von Jamin Vorbereitung: Interferenzen gleicher

Mehr

Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner und Zahnmediziner im Wintersemester 2004/2005

Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner und Zahnmediziner im Wintersemester 2004/2005 Name: Gruppennummer: Aufgabe 1 2 3 4 5 6 7 insgesamt erreichte Punkte erreichte Punkte Aufgabe 8 9 10 11 12 13 14 erreichte Punkte Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner

Mehr

Ferienkurs Experimentalphysik III

Ferienkurs Experimentalphysik III Ferienkurs Experimentalphysik III 24. Juli 2009 Vorlesung Mittwoch - Interferenz und Beugung Monika Beil, Michael Schreier 1 Inhaltsverzeichnis 1 Phasendierenz und Kohärenz 3 2 Interferenz an dünnen Schichten

Mehr

Kontrollaufgaben zur Optik

Kontrollaufgaben zur Optik Kontrollaufgaben zur Optik 1. Wie schnell bewegt sich Licht im Vakuum? 2. Warum hat die Lichtgeschwindigkeit gemäss moderner Physik eine spezielle Bedeutung? 3. Wie nennt man die elektromagnetische Strahlung,

Mehr

Beugung am Spalt und Gitter

Beugung am Spalt und Gitter Demonstrationspraktikum für Lehramtskandidaten Versuch O1 Beugung am Spalt und Gitter Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt

Mehr

6.1.7 Abbildung im Auge

6.1.7 Abbildung im Auge 6.1.7 Abbildung im Auge Das menschliche Auge ist ein aussergewöhnlich hoch entwickeltes Sinnesorgan. Zur Abbildung wird ein optisches System bestehend aus Hornhaut, Kammerwasser, Linse sowie Glaskörper

Mehr

Überlagerung monochromatischer Wellen/Interferenz

Überlagerung monochromatischer Wellen/Interferenz Überlagerung monochromatischer Wellen/Interferenz Zwei ebene monochromatische Wellen mit gleicher Frequenz, gleicher Polarisation, überlagern sich mit einem sehr kleinen Relativwinkel ε auf einem Schirm

Mehr

Optik in Smartphones. Proseminar Technische Informatik Fabio Becker 9. Juli 2014

Optik in Smartphones. Proseminar Technische Informatik Fabio Becker 9. Juli 2014 Optik in Smartphones Proseminar Technische Informatik Fabio Becker 9. Juli 2014 1 Gliederung Die Kamera Grundidee für das Smartphone Grundlagen zur Optik Skalierung Aufbau Ziele/Trend in Zukunft Zusammenfassung

Mehr

Lösung: a) b = 3, 08 m c) nein

Lösung: a) b = 3, 08 m c) nein Phy GK13 Physik, BGL Aufgabe 1, Gitter 1 Senkrecht auf ein optisches Strichgitter mit 100 äquidistanten Spalten je 1 cm Gitterbreite fällt grünes monochromatisches Licht der Wellenlänge λ = 544 nm. Unter

Mehr

Protokoll zum Physikalischen Praktikum Versuch 10 - Abbésche Theorie

Protokoll zum Physikalischen Praktikum Versuch 10 - Abbésche Theorie Protokoll zum Physikalischen Praktikum Versuch 10 - Abbésche Theorie Experimentatoren: Thomas Kunze und Sebastian Knitter Betreuer: Dr Enenkel Rostock, den 19.10.04 Inhaltsverzeichnis 1 Ziel des Versuches

Mehr

Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013

Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013 Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013 Gegeben ist eine GRIN-Linse oder Glasaser) mit olgender Brechzahlverteilung: 2 2 n x, y, z n0 n1 x y Die Einheiten der Konstanten bzw. n 1 sind

Mehr

Entwurf und Implementierung eines konsistenzprüfenden Steuerdateigenerators für die Lithographieprozesssimulation mit grafischer Benutzerführung

Entwurf und Implementierung eines konsistenzprüfenden Steuerdateigenerators für die Lithographieprozesssimulation mit grafischer Benutzerführung Entwurf und Implementierung eines konsistenzprüfenden Steuerdateigenerators für die Lithographieprozesssimulation mit grafischer Benutzerführung Vorstellung des Diplomthemas 29.02.2008 Jana Wetzel Inhalt

Mehr

Wellenoptik. Beugung an Linsenöffnungen. Kohärenz. Das Huygensche Prinzip

Wellenoptik. Beugung an Linsenöffnungen. Kohärenz. Das Huygensche Prinzip Wellenopti Beugung an Linsenöffnungen Wellenopti Typische Abmessungen Dder abbildenden System (Blenden, Linsen) sind lein gegen die Wellenlänge des Lichts Wellencharater des Lichts führt zu Erscheinungen

Mehr

UNIVERSITÄT BIELEFELD. Optik. GV Interferenz und Beugung. Durchgeführt am

UNIVERSITÄT BIELEFELD. Optik. GV Interferenz und Beugung. Durchgeführt am UNIVERSITÄT BIELEFELD Optik GV Interferenz und Beugung Durchgeführt am 10.05.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Daniel Fetting Marius Schirmer Inhaltsverzeichnis 1 Ziel

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #45 am 18.07.2007 Vladimir Dyakonov Erzeugung von Interferenzen: 1) Durch Wellenfrontaufspaltung

Mehr

Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2

Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2 Praktikum Physik Protokoll zum Versuch: Beugung Durchgeführt am 01.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Farb- und Mehrkanalsensoren in erweiterter CMOS-Technologie

Farb- und Mehrkanalsensoren in erweiterter CMOS-Technologie Farb- und Mehrkanalsensoren in erweiterter CMOS-Technologie Fraunhofer-Institut für Integrierte Schaltungen IIS Am Wolfsmantel 33, 91058 Erlangen Stephan Junger, Nanko Verwaal, Wladimir Tschekalinskij,

Mehr

Physikalisches Praktikum 3

Physikalisches Praktikum 3 Datum: 0.10.04 Physikalisches Praktikum 3 Versuch: Betreuer: Goniometer und Prisma Dr. Enenkel Aufgaben: 1. Ein Goniometer ist zu justieren.. Der Brechungsindex n eines gegebenen Prismas ist für 4 markante

Mehr

Superauflösende nichtlineare Femtosekundenlaserlithographie. Elena Fadeeva, Jürgen Koch, Boris N. Chichkov

Superauflösende nichtlineare Femtosekundenlaserlithographie. Elena Fadeeva, Jürgen Koch, Boris N. Chichkov Superauflösene nichtlineare Femtosekunenlaserlithographie Elena Faeeva, Jürgen Koch, Boris N. Chichkov Lithography Ol Greek: writing in stone Konventionelle Photolithographie Licht Maske Schicht Photoresist

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

Design und Layout. Schaltungssimulation. Prozesssimulation Systemsimulation

Design und Layout. Schaltungssimulation. Prozesssimulation Systemsimulation Design und Layout Schaltungsdesign Schaltungssimulation Layout Prozess Prozesssimulation Systemsimulation Layout (4:30-5:48) Fertigung Maskenfertigung Prof. Dr. H. Baumgärtner B4-1 Bevor ein neuer Chip

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #22 27/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Optische Instrumente Allgemeine Wirkungsweise der optischen Instrumente Erfahrung 1. Von weiter

Mehr

Metamaterialien mit negativem Brechungsindexeffekt. Vortrag im Rahmen des Hauptseminars SS2008 Von Vera Eikel

Metamaterialien mit negativem Brechungsindexeffekt. Vortrag im Rahmen des Hauptseminars SS2008 Von Vera Eikel Metamaterialien mit negativem Brechungsindexeffekt Vortrag im Rahmen des Hauptseminars SS8 Von Vera Eikel Brechungsindex n 1 n Quelle: http://www.pi.uni-stuttgart.de Snellius sches Brechungsgesetz: sin

Mehr

Photolithographie. Mirco Pötter 19. Juni 2007

Photolithographie. Mirco Pötter 19. Juni 2007 19. Juni 2007 Inhaltsverzeichnis 1 Lithographie 1 2 Photolithographie 1 2.1 Allgemeines Prinzip.................................... 1 2.2 Maske/Photomaske..................................... 2 2.3 Phasenmaske........................................

Mehr

Auflösung optischer Instrumente

Auflösung optischer Instrumente Aufgaben 12 Beugung Auflösung optischer Instrumente Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt

Mehr

Übersicht über die Vorlesung

Übersicht über die Vorlesung Übersicht über die Vorlesung 4.1 I. Einleitung II. Physikalische Grundlagen der Optoelektronik III. Herstellungstechnologien III.1 Epitaxie III.2 Halbleiterquantenstrukturen III.3 Prozessierung IV. Halbleiterleuchtdioden

Mehr

O9a Interferenzen gleicher Dicke

O9a Interferenzen gleicher Dicke Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O9a Interferenzen gleicher Dicke Aufgaben 1. Bestimmen Sie den Krümmungsradius einer konvexen Linsenfläche durch Ausmessen Newtonscher

Mehr

notation for the light field from geometrical optics to electromagnetism. 1 a + 1 b = 1 f = f 2 n 2 n 1

notation for the light field from geometrical optics to electromagnetism. 1 a + 1 b = 1 f = f 2 n 2 n 1 Kapitel 0 Grundlagen 0.1 Basic concepts notation for the light field from geometrical optics to electromagnetism. 0.2 Optische Abbildungen Fokussieren, Auflösung, Immersions-Linsen, Anregung von Punktquellen

Mehr

PeP Physik erfahren im ForschungsPraktikum

PeP Physik erfahren im ForschungsPraktikum Physik erfahren im ForschungsPraktikum Vom Kerzenlicht zum Laser Kurs für die. Klasse, Gymnasium, Mainz.2004 Daniel Klein, Klaus Wendt Institut für Physik, Johannes Gutenberg-Universität, D-55099 Mainz

Mehr

Optische Materialien. Klaus Betzler. 28. Januar 2009

Optische Materialien. Klaus Betzler. 28. Januar 2009 Optische Materialien Klaus Betzler 28. Januar 2009 1 1 Überblick Materialien Worum geht es? Physikalische Beschreibung 2 Absorption Lumineszenz Lebensdauer, Effizienz 3 4 Klaus Betzler Optische Materialien

Mehr

4. Klausur ( )

4. Klausur ( ) EI PH J2 2011-12 PHYSIK 4. Klausur (10.05.2012) Telle oder Weilchen? Eure letzte Physik-Klausur in der Schule! Du kannst deinen GTR verwenden. Achte auf eine übersichtliche Darstellung! (Bearbeitungszeit:

Mehr

OW_01_02 Optik und Wellen GK/LK Beugung und Dispersion. Grundbegriffe der Strahlenoptik

OW_01_02 Optik und Wellen GK/LK Beugung und Dispersion. Grundbegriffe der Strahlenoptik OW_0_0 Optik und Wellen GK/LK Beugung und Dispersion Unterrichtliche Voraussetzungen: Grundbegriffe der Strahlenoptik Literaturangaben: Optik: Versuchsanleitung der Fa. Leybold; Hürth 986 Verfasser: Peter

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Winkelvergrößerung einer Lupe Das Fernrohre Das Mikroskop m m = ges f f O e m = ( ) N f l fo fe N ln f f f f O e O e Abbildungsfehler

Mehr

Versuchsvorbereitung P2-13: Interferenz

Versuchsvorbereitung P2-13: Interferenz Versuchsvorbereitung P2-13: Interferenz Michael Walz, Kathrin Ender Gruppe 10 26. Mai 2008 Inhaltsverzeichnis 1 Newton'sche Ringe 2 1.1 Bestimmung des Krümmungsradius R...................... 2 1.2 Brechungsindex

Mehr

Lösungen zu den Aufg. S. 363/4

Lösungen zu den Aufg. S. 363/4 Lösungen zu den Aufg. S. 363/4 9/1 Die gemessene Gegenspannung (s. Tab.) entspricht der max. kin. Energie der Photoelektronen; die Energie der Photonen = E kin der Elektronen + Austrittsarbeit ==> h f

Mehr

4. Elektromagnetische Wellen

4. Elektromagnetische Wellen 4. Elektromagnetische Wellen 4.1. elektrische Schwingkreise Wir haben gesehen, dass zeitlich veränderliche Magnetfelder elektrische Felder machen und zeitlich veränderliche elektrische Felder Magnetfelder.

Mehr

13. Mechanische Wellen Darstellung harmonischer Wellen Überlagerung von Wellen, Interferenz und Beugung. 13.

13. Mechanische Wellen Darstellung harmonischer Wellen Überlagerung von Wellen, Interferenz und Beugung. 13. 13. Mechanische Wellen 13.1 Darstellung harmonischer Wellen 13.2 Überlagerung von Wellen, Interferenz und Beugung 13.33 Stehende Wellen 13.4 Schallwellen 13.5 Wellen bei bewegten Quellen Schematische Darstellung

Mehr

Erhöhung der Messgenauigkeit von 3D-Lasertriangulation

Erhöhung der Messgenauigkeit von 3D-Lasertriangulation Erhöhung der Messgenauigkeit von 3D-Lasertriangulation Das Messprinzip von Laser-Triangulation Triangulationsgeometrie Beispiel Z Y X Messobjekt aus der Kamerasicht Sensorbild der Laserlinie 3D Laser-Triangulation

Mehr

OPTIK. Miles V. Klein Thomas E. Furtak. Übersetzt von A. Dorsel und T. Hellmuth. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

OPTIK. Miles V. Klein Thomas E. Furtak. Übersetzt von A. Dorsel und T. Hellmuth. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Miles V. Klein Thomas E. Furtak OPTIK Übersetzt von A. Dorsel und T. Hellmuth Mit 421 Abbildungen und 10 Tabellen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Inhaltsverzeichnis 1. Die

Mehr

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen )

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen ) . Vorlesung EP (. Vorlesung: III) Elektrizität und Magnetismus. Wechselstrom. Elektromagnetische Wellen ) IV) Optik = Lehre vom Licht. Licht = sichtbare elektromagnetische Wellen 3. Geometrische Optik

Mehr

1. Licht, Lichtausbreitung, Schatten, Projektion

1. Licht, Lichtausbreitung, Schatten, Projektion 1. Licht, Lichtausbreitung, Schatten, Projektion Was ist Licht? Definition: Die Optik ist das Gebiet der Physik, das sich mit dem Licht befasst. Der Begriff aus dem Griechischen bedeutet Lehre vom Sichtbaren.

Mehr

Analyse der Messfehler einer Mikrowaage bei der Inline-Schichtdickenbestimmung auf Silizium-Wafern

Analyse der Messfehler einer Mikrowaage bei der Inline-Schichtdickenbestimmung auf Silizium-Wafern Analyse der Messfehler einer Mikrowaage bei der Inline-Schichtdickenbestimmung auf Silizium-Wafern Belegverteidigung Dresden, 08.07.2007 Marco Gunia marco.gunia@gmx.de Gliederung Motivation der Aufgabenstellung

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 10. Übungsblatt - 10. Januar 2011 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (6 Punkte) a)

Mehr

Versuch Nr. 18 BEUGUNG

Versuch Nr. 18 BEUGUNG Grundpraktikum der Physik Versuch Nr. 18 BEUGUNG Versuchsziel: Justieren eines optischen Aufbaus. Bestimmung der Wellenlänge eines Lasers durch Ausmessen eines Beugungsmusters am Gitter. Ausmessen der

Mehr